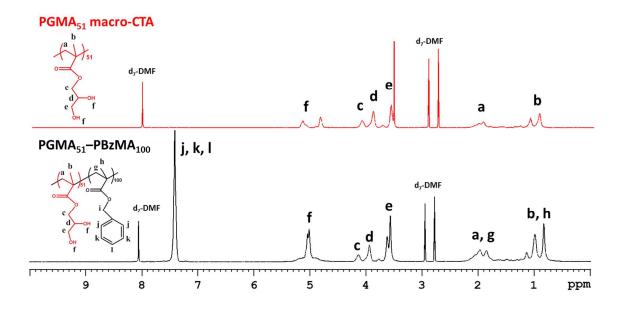
Supporting Information for

Poly(glycerol monomethacrylate)-poly(benzyl methacrylate)

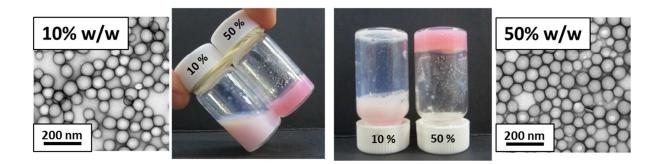
diblock copolymer nanoparticles via RAFT emulsion polymerization:

synthesis, characterization and interfacial activity

Victoria J. Cunningham, Abdullah M. Alswieleh, Kate L. Thompson, Mark Williams, Graham J. Leggett and Steven P. Armes^{*}


> Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK.

> > Osama M. Musa


Ashland Specialty Ingredients, 1005 US 202/206, Bridgewater, NJ 08807, USA.

RAFT aqueous emulsion polymerization of PEG₁₁₃-PBzMA₂₀₀

AIPD azo initiator (6.10 mg, 0.0189 mmol), PEG₁₁₃-DB macro-CTA (0.2996 g, 0.0568 mmol; [CTA]/[AIPD] molar ratio = 3.0) and BzMA monomer (2.00 g, 11.4 mmol, target DP = 200) were weighed into a round-bottomed flask containing a magnetic stir bar. These reagents were dissolved in previously deoxygenated water (9.20 mL, 10% w/w solids formulation) and purged with nitrogen for 30 min at 20°C. The flask was sealed using a rubber septum under a positive nitrogen flow and immersed in an oil bath at 50°C for 24 h, after which the reaction was quenched by exposure to air and cooling to 20°C. (N.B. The synthesis and characterization of the PEG₁₁₃-DB macro-CTA has been described elsewhere, see N. J. Warren et al. *J. Am. Chem. Soc.*, **2014**, *136*, 1023).

Figure S1. Assigned NMR spectra of the PGMA₅₁ macro-CTA and PGMA₅₁-PBzMA₁₀₀ diblock copolymer in d₇-DMF. PGMA₅₁-PBzMA₁₀₀ was freeze-dried prior to dilution in d₇-DMF.

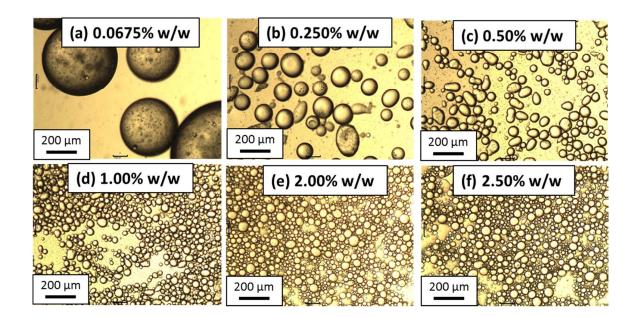
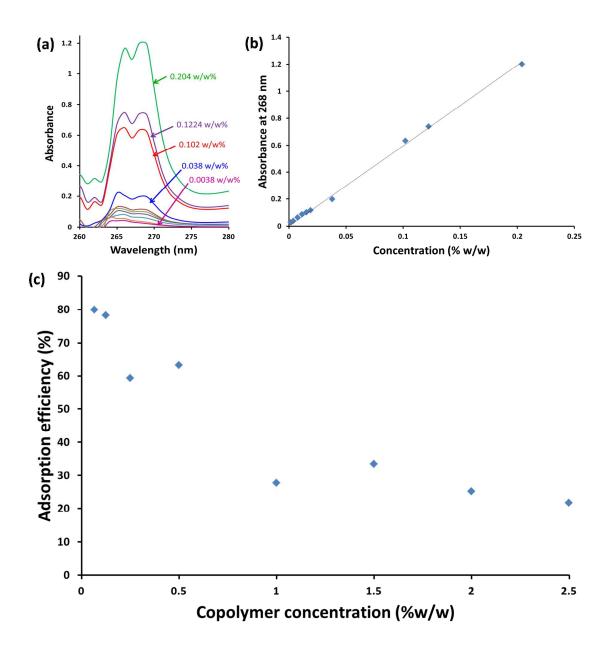

Figure S2. Digital photographs and transmission electron microscopy (TEM) images obtained for $PGMA_{51}$ -PBzMA₂₅₀ diblock copolymer nanoparticles prepared at both 10% w/w and 50% w/w. Both samples contain spherical particles, see corresponding TEM images. However, the reaction mixture has a paste-like consistency at 50% w/w solids, whereas free-flowing liquids are obtained at 10-40% w/w solids.

Table S1. Summary of solids contents, conversions, number-average molecular weights (M_n) , polydispersities (M_w/M_n) and mean DLS and TEM diameters determined for PGMA₁₈-PBzMA diblock copolymer nanoparticles and the corresponding PGMA₁₈ macro-CTA. (N.B. for the sake of brevity 'G' denotes PGMA and 'B' denotes PBzMA).


	Target	Solids	Conversion ^a	$M_{\rm n}{}^{\rm b}$	$M_{\rm w}/M_{\rm n}^{\rm b}$	Particle Diameter	
	Composition	Content	(%)			DLS	TEM
		(w/w%)				(nm)	(nm)
S1	G ₁₈	40	68	6,500	1.12	N/A	N/A
S2	G_{18} - B_{50}	20	>99	10,700	1.10	38 (0.161)	29
S3	G_{18} - B_{100}	20	>99	16,800	1.10	97 (0.209)	78
S4	G_{18} - B_{150}	20	>99	21,600	1.14	215 (0.044)	215

a. Monomer conversion determined by ¹H NMR spectroscopy.

b. Determined by DMF GPC using a series of near-monodisperse poly(methyl methacrylate) calibration standards

Figure S3. Representative optical microscopy images obtained for sunflower oil-in-water Pickering emulsions prepared using PGMA₅₁-PBzMA₂₅₀ nanoparticles as the sole emulsifier at 0.0675, 0.250, 0.500, 1.00, 2.00 or 2.50% w/w. Scale bar = 200 μ m in each case.

Figure S4. (a) UV absorption spectra recorded for various concentrations of PGMA₅₁-PBzMA₂₅₀ diblock copolymer dissolved in DMF. The chromophore at 268 nm is the aromatic benzyl group on the PBzMA block. (b) Beer-Lambert plot obtained for PGMA₅₁-PBzMA₂₅₀ diblock copolymer dissolved in DMF. (c) Adsorption efficiency vs. nanoparticle concentration for PGMA₅₁-PBzMA₂₅₀ nanoparticles when used as the sole Pickering emulsifier for sunflower oil, as determined using a supernatant depletion assay. This UV spectroscopy-based assay involves nanoparticle dissolution in DMF to avoid UV scattering problems at shorter wavelengths.