Supplementary information:

Inactivation and adsorption of human carbonic anhydrase II by nanoparticles Anna Assarsson^a, Isabel Pastoriza-Santos^b and Celia Cabaleiro-Lago^{a, *}

^aDepartment of Biochemistry and Structural Biology, Lund University, P O Box 124, SE 221 00 Lund, Sweden

^bDepartamento de Química Física, Universidade de Vigo, 36310 Pontevedra, Spain

Isothermal titration calorimetry

We describe here briefly the model used to obtain the biding equilibrium constant K_a and number of proteins adsorbed on the particle surface, n. We apply a simple model in which the nanoparticles are assumed to have n independent and equal protein binding sites (the number of sites would change with the type of protein since the particle surface is considered homogeneous).

The equilibrium association constant is

$$K_a = \frac{[NPS - HCAII]}{[NPS]_f [HCAII]_f}$$
(S1)

where NPs are the protein binding sites on the particle and can be expressed as function of the total concentration of nanoparticles, $[NP]_t$

$$[NPs]_t = n[NP]_t$$
(S2)

Taking into account eq (S1), (S2) and the mass balances for HCAII and NPs

$$[HCAII]_t = [HCAII]_f + [NPs - HCAII]$$
(S3)

$$[NPs]_t = [NPs]_f + [NPs - HCAII] (S4)$$

We can obtained an expression for the fraction of sites with bound protein, f, as a function of the total protein and nanoparticles concentrations [HCAII]_t and [NP]_t

$$f = \frac{1}{2} \left[1 + \frac{[HCAII]_t}{n[NP]_t} + \frac{1}{nK_a[NP]_t} - \sqrt{\left(1 + \frac{[HCAII]_t}{n[NP]_t} + \frac{1}{nK_a[NP]_t} \right)^2 - \frac{4[HCAII]_t}{n[NP]_t}} \right] (S5)$$

The amount of heat absorbed or released in each titration Q depends on the amount of protein bound and is given by

$$Q = nf[NP]_t V_{cell} \Delta H \quad (S6)$$

where V_{cell} is the volume of the ITC cell and ΔH the molar enthalpy change. Combining equations (S5) and (S6):

$$Q = \frac{n[NP]_t V_{cell} \Delta H}{2} \left[1 + \frac{[HCAII]_t}{n[NP]_t} + \frac{1}{nK_a[NP]_t} - \sqrt{\left(1 + \frac{[HCAII]_t}{n[NP]_t} + \frac{1}{nK_a[NP]_t}\right)^2 - \frac{4[HCAII]_t}{n[NP]_t}} \right]$$
(S7)

The change of heat from injection *i*-1 to 1 is given by

$$\Delta Q_{i} = Q_{i} - Q_{i-1} + \frac{dV_{i}}{V} \left(\frac{Q_{i} - Q_{i-1}}{2}\right)$$
(S8)

where Q_i is the heat amount after injection *i*, V is the volume in the cell and dV_i the injected volume. Using equations (S7) and (S8), n, K_a and ΔH can be calculated using an iterative fitting, based on standard Marquant methods. ΔS can be calculated consequently taking into account that:

$$\Delta G = -RTLnK_a = \Delta H - T\Delta S \quad (S9)$$

The dissociation constant is $K_d = 1/K_{a.}$

Figure S1: Upper row) TEM images of the polyelectrolytes coated gold nanoparticles and lower row) particle size distribution obtained from the size measurement of 100 nanoparticles.

Figure S2: Variation of hydrodynamic diameter of polystyrene nanoparticles when titrated in a solution of 0.36 μ M HCAII. \blacksquare) PSCOOH, \blacktriangle) PS, \bigcirc) PSNH2.

Figure S3: Nanoparticle size distribution by DLS of the different nanoparticles in absence (black) and presence of protein. Legend indicates the added volume of a stock solution of HCA in 5 mM Hepes/NaOH buffer pH 7.4 ([HCA] stock = $12 \mu M$) as well as the polydispersity index (PDI) of the size distribution.

Figure S4. Variation in the molar ratio of unbound HCAII with the concentration of added polystyrene nanoparticles \blacksquare) PSCOOH, \blacktriangle) PS, \bigcirc) PSNH2 in 5 mM Hepes/NaOH buffer pH 7.4 at room temperature. [HCA] = 8 μ M,

Figure S5: Far UV-CD spectra of polystyrene nanoparticles in buffer. [PS] = 1.8 nM, [PSCOOH] = 0.3 nM and [PSNH2]= 0.3 nM.

Figure S6: ITC data for the titrations of human serum albumin, HSA, into PSCOOH. [HSA]= 60μ M and [PS-COOH] = 18 nM in 5mM Hepes/NaOH, pH 7.4 at 25°C. The upper panel

show the raw data and the lower panel the integrated heats for each injection (\blacksquare) and the best fit of a 1:1 binding model (line).