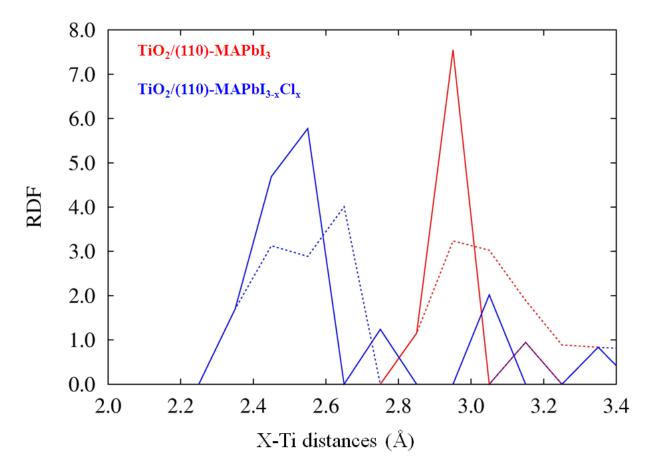
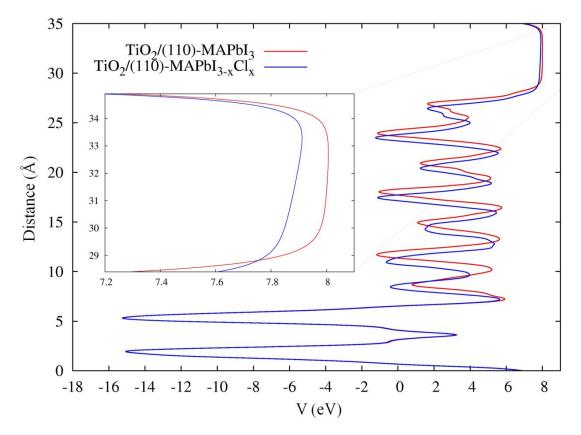
First Principles Investigation of the TiO₂/Organohalide Perovskites Interface: The Role of Interfacial Chlorine


Edoardo Mosconi,^{a,*} Enrico Ronca,^{a,b} Filippo De Angelis^{a,*}

^aComputational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), CNR-ISTM, Via Elce di Sotto 8, I-06123, Perugia, Italy


^b Department of Chemistry, Biochemistry and Biotechnologies, University of Perugia, Via Elce di Sotto 8, I-06123, Perugia, Italy.

*E-mail: edoardo@thch.unipg.it, filippo@thch.unipg.it

SUPPORTING INFORMATION

Figure S1. X-Ti (X=I or Cl) radial distribution functions (RDF) for the $TiO_2/MAPbI_3$ (red) and $TiO_2/MAPbI_{3-x}Cl_x$ (blue) interfaces. Solid and dashed lines correspond to the (110) and (001) surfaces, respectively.

Figure S2. Integrated electrostatic potential along the direction normal to the TiO_2 surface. The inset shows a zoom of the vacuum region, where a bending of the electrostatic potential is calculated for the MAPbI_{3-x}Cl_x perovskite, as opposed to the almost flat potential calculated for MAPbI₃.