Supplementary Information for

Structured cyclic peptides that bind the EH domain of EHD1

Alissa J. Kamens, ${ }^{a}$ Robyn J. Eisert, ${ }^{a}$ Tiffany Corlin,,${ }^{b}$ James Baleja, ${ }^{b}$ and Joshua A. Kritzer ${ }^{a}$
${ }^{a}$ Department of Chemistry, Tufts University, 62 Talbot Ave., Medford, MA 02155
${ }^{b}$ Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111.

Table of Contents

Protein preparation 2
Peptide synthesis and purification. 3
Table S1. Peptide preparation data 3
Figure S1. Chemical structures of cNPF1 and the linear NPF peptide 3
Isothermal titration calorimetry 4
Table S2. Binding data from ITC 4
Figure S3. Raw data from ITC experiments. 5
Fluorescence polarization assays 7
Table S3. Data from FP binding assays 7
Figure S4. FP direct binding data 8
Circular dichroism 9
Figure S5. CD spectra of EHD1-EH and Eps15-EH2 9
Fluorescence polarization competition assays. 10
NMR spectroscopy 10
Table S4. Chemical shifts for cNPF1 and linear NPF peptide 11
Figure S6. Temperature dependence of amide proton line shapes. 12
Table S5. NMR structural data and refinement statistics 13
Table S6. Distance restraints for the linear NPF peptide 14
Table S7. Distance restraints for cNPF1 15
References 17

Protein preparation. The EH domains were prepared from plasmids encoding the EH domain of EHD1 (EHD1-EH) and the second EH domain of Eps15 (Eps15-EH2), as described. ${ }^{[1]}$ The EH domains were expressed in BL21 cells as a glutathione S-transferase (GST) fusion and were purified on a glutathione-agarose column (Gold Biotechnology). ${ }^{[1,2]}$ The EH domains were cleaved from the glutathione-agarose column with thrombin (Sigma Aldrich), and thrombin was removed via a benzamidine-agarose column (Sigma Aldrich). Proteins were dialyzed in buffer (25 mM MOPS, $1 \mathrm{mM} \mathrm{CaCl} 2, \mathrm{pH}=7.0$) using 3.5 KDa MWCO dialyzers (Thermo-Scientific) at $4^{\circ} \mathrm{C} .{ }^{[1]}$ The purity of each protein was verified by SDS-PAGE with a 4-20\% SDS gradient gel (Bio-Rad), and all proteins were determined to be $>95 \%$ pure (Figure S1A, B). Concentrations were measured by absorbance at 280 nm , using an extinction coefficient of $13980 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$.

Figure S1. (a) SDS-PAGE of samples from EHD1-EH preparation. (b) SDS-PAGE of samples from Eps15-EH2 preparation. The contents of each lane are listed above the image. Serial dilutions ($1: 5,1: 25$, and $1: 125$) are shown to verify protein purity.

Peptide synthesis and purification. Materials were purchased from EMD Biosciences, Anaspec and Creosalis. All peptides were synthesized by solid-phase peptide synthesis (SPPS), using standard 9-fluoromethyloxycarbonyl (Fmoc) chemistry. Unless otherwise indicated, all fluoresceinated peptides were labeled on resin by coupling 5(6)-carboxyfluorescein succinimidyl ester. All of the peptides were purified by reverse-phase HPLC (Varian Prostar) on a C18 preparatory scale column and $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}$ with 0.1% trifluoroacetic acid, using a 5-55 \% $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ gradient over 30 minutes. The peptides were then re-purified on a C 18 analytical scale column as needed, until the final product was $\geq 95 \%$ pure. The lyophilized peptides were dissolved in dimethyl sulfoxide to prepare final stock solutions. Concentrations were determined in by absorbance at 274 nm with an extinction coefficient of $1280 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ in the assay buffer described below. The concentrations of fluorescently labeled peptides were determined with an extinction coefficient of $77,700 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ in 50 mM Tris ($\mathrm{pH}=9.0$), 150 mM NaCl , and 2.5 mM CaCl_{2}. Retention times are listed for a C18 analytical column and guard column. The peptides' identities were confirmed via ESI (Thermoscientific Finnigan LTQ) or MALDI-TOF (Bruker Microflex) mass spectrometry. Pure peptides were stored as concentrated stocks in dimethylsulfoxide (DMSO).

Table S1. Peptide preparation data. Masses detected by MALDI-TOF unless otherwise noted.				
Peptide	Sequence	Retention time (min)	Expected Mass $(\mathrm{m} / \mathrm{z})$	Observed Mass $(\mathrm{m} / \mathrm{z})$
Linear	Ac-YNPFEEGG-CONH	17.0	952.4	953.4^{a}
cNPF1	-YNPFEEGG-	18.0	893.4	894.4^{a}
Linear-Flu	(Flu)-ßßYNPFEE-CONH	21.8	1296.5	1297.5^{a}
cNPF1-Flu	-YNPFEEGK(Flu)-	23.5	1322.5	1321.2
cNPF2-Flu	-YNPFEE	23 K(Flu)-	23.2	1349.5
cNPF3-Flu	-YNPFEEK(Flu)-	23.1	1265.5	1263.1
cNPF4-Flu	-YNPFEAGK(Flu)-	23.8	1264.5	1262.6
cNPF5-Flu	-YNPFAEGK(Flu)-	23.9	1264.5	1262.9
cNPF6-Flu	-YNPFEQGK(Flu)-	23.0	1321.5	1320.4
cAPA-Flu	-YAPAEEGK(Flu)-	20.1	1203.5	1204.5^{a}
cNPF1B	-YNPFEEGK(Ac)-	18.8	1006.4	1004.9
cNPF5	-YNPFAEGK-	19.7^{b}	835.4	834.1
cAPA	-YAPAEEGG-	12.3	774.3	775.4^{a}

${ }^{\text {a }}$ Mass taken by ESI
${ }^{\mathrm{b}}$ On analytical C8 column

Figure S2. Chemical structures of cNPF1 (top) and the linear NPF peptide (bottom). The NPF motif is shown in red. Structures are shown in their protonation states at $\mathrm{pH}=7.0$.

Isothermal titration calorimetry. The experiments were performed on a Microcal ITC200 system (GE Healthcare). All proteins and peptides were dialyzed together in 25 mM MOPS, 1 mM CaCl 2 , and NaCl (as specified) at a pH of 7.0 at $4^{\circ} \mathrm{C}$ prior to the experiments. Dialyzers had a molecular weight cut-off of $3,500 \mathrm{Da}$ (Thermoscientific Slide-a-lyzer, $0.5-3 \mathrm{~mL}$) for protein dialysis and a molecular weight cut-off of 100-500 Da (Spectrum Labs, Micro Float-a-lyzer dialysis device) for peptide dialysis. ITC experiments were performed at $20^{\circ} \mathrm{C}$ with stock solutions of $20-50 \mu \mathrm{M}$ protein and tenfold concentration of peptide. The buffer was verified to be $\mathrm{pH}=6.8$ at the experimental temperature.

Table S2. Binding data from ITC.						
Peptide	$\mathrm{NaCl}(\mathrm{mM})$	$\mathrm{K}_{\mathrm{d}}(\mu \mathrm{M})$	$\begin{gathered} \Delta \mathrm{H}^{\circ} \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	$\begin{gathered} \Delta \mathrm{S}^{\circ} \\ \left(\mathrm{cal} / \mathrm{mol}^{\circ}\right) \end{gathered}$	N	Figure
Linear	0	5.24	-10.1	-10.2	0.959	S3a
		5.65	-9.68	-9.02	1.06	S3b
		5.99	-9.95	-10.0	1.09	S3c
	Average	5.6 ± 0.6	-9.9 ± 0.2	-9.7 ± 0.3	1.04 ± 0.07	N/A
	15	11.06	-10.1	-11.9	1.08	S3d
		9.17	-9.33	-8.77	1.13	S3e
		8.62	-9.06	-7.73	1.06	S3f
		8.54	-9.07	-7.75	1.04	S3g
	Average	9.4 ± 1.2	-9.3 ± 0.5	-9.0 ± 2.0	1.08 ± 0.04	N/A
	150	33.90	-10.6	-15.5	0.951	S3h
		40.00	-12.5	-22.4	0.872	S3i
		33.33	-11.9	-14.3	1.07	S3j
	Average	35.7 ± 3.7	-11.1 ± 1.2	-17.4 ± 4.9	0.96 ± 0.06	N/A
cNPF1	0	1.33	-11.8	-13.3	1.03	S3k
		1.50	-11.7	-13.1	1.04	S31
		1.51	-11.9	-14.5	1.05	S3m
	Average	1.6 ± 0.3	-11.8 ± 1.3	-13.6 ± 0.8	1.04 ± 0.01	N/A
	15	1.84	-10.6	-9.79	1.17	S3n
		2.61	-12.7	-17.8	0.881	S3o
		2.87	-11.5	-13.9	1.04	S3p
		2.76	-11.9	-15.2	1.01	S3q
	Average	2.5 ± 0.5	-11.7 ± 0.9	-14.2 ± 3.3	1.03 ± 0.12	N/A
	150	9.62	-12.0	-17.8	1.04	S3r
		10.74	-11.9	-17.7	1.04	S3s
		9.23	-11.8	-17.1	1.10	S3t
	Average	9.9 ± 0.8	-11.9 ± 0.1	-17.5 ± 0.4	1.06 ± 0.03	N/A

The fourfold improvement in binding affinity for cNPF1 over the linear control suggested that the cyclization of NPF promoted a conformation compatible with target binding. The low affinity of the interaction between the linear peptide and EHD1 at 150 mM salt resulted in a poorer signal-to-noise ratio and larger experimental error. As a result, it was difficult to directly compare the thermodynamic parameters of the linear and cyclic peptides binding to EHD1 at physiological salt. However, the overall trends in the $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ values remained consistent as 15 mM and 0 mM salt, and suggested that the improvement in binding affinity upon cyclization was primarily enthalpic in nature. This supports the hypothesis that the cyclized NPF motif can make more favorable noncovalent interactions with EHD1-EH. Interestingly, the binding
entropy ($\Delta \mathrm{S}$) was more thermodynamically favorable for the linear peptide than for cNPF1 at lower salt concentrations. We have previously attributed entropy changes in EH domain binding to differences in water organization around charged residues near the NPF-binding pocket. ${ }^{[1]}$ The small entropic penalty observed for cNPF1 has been seen in other cyclic molecules; evidently, the preorganization of a binding epitope does not always confer entropically favored proteinligand interactions, and that the entropy of these interactions may be dominated by water organization rather than peptide structure. ${ }^{[3,4,5]}$ The difference in $\Delta \mathrm{S}$ between linear and cyclic peptides was no longer observed under physiological salt conditions, perhaps because the greater concentration of NaCl lessened the organization of water around the negatively charged sidechains of the ligand and the positively charged side-chains of the protein.

Figure S3. Raw data from ITC experiments. (a-c) ITC data from experiments with the linear control with no NaCl . (d-g) ITC data from experiments with the linear control at 15 mM NaCl . (h-j) ITC data from experiments with the linear control at 150 mM NaCl . ($\mathrm{k}-\mathrm{m}$) ITC data from experiments with cNPF1 and no NaCl . ($\mathrm{n}-\mathrm{q}$) ITC data from cNPF1 experiments at 15 mM NaCl . (r-t) ITC data from experiments with cNPF1 at 150 mM NaCl .

Fluorescence polarization (FP) assays. All FP experiments were performed in flat-bottom, black 384 well plates (Corning). The assay buffer (25 mM MOPS , and $1 \mathrm{mM} \mathrm{CaCl}_{2}$ at a pH of 7.0 at $4^{\circ} \mathrm{C}$) had a final NaCl concentration of either 15 or 150 mM as needed. Each experiment also had a final concentration of 1.5% DMSO and 0.1% Tween-20, which were added along with the probe. The buffer was verified to be $\mathrm{pH}=6.8$ at $20^{\circ} \mathrm{C}$. Each probe was incubated at a final concentration of 100 nM at room temperature with varying concentrations of EHD1-EH or Eps15-EH2. The plates were spun at $1,600 \mathrm{G}$ at $20^{\circ} \mathrm{C}$ after the addition of the probe. Fluorescence polarization was measured 1 hour after the addition of the probe, and again at 4 hours after addition of the probe (Tecan F200 Pro). No difference in the data was detected between 1 and 4 hours, and 1-hour data was used for curve fitting. K_{d} curve fits were derived from first principles, and calculated using non-linear regression (Kaleidagraph, Synergy Software, Equation 1). The data obtained from the 150 mM NaCl experiments were fit by assuming the upper bounds observed for each probe at 15 mM NaCl . Three or more independent trials were performed on each probe, under both sets of salt conditions.
(1) $\quad \mathrm{P}=\mathrm{P}_{\mathrm{F}}+\left(\mathrm{P}_{\mathrm{B}}-\mathrm{P}_{\mathrm{F}}\right) \times \frac{\mathrm{L}_{\mathrm{T}}+\mathrm{K}_{\mathrm{d}}+\mathrm{R}_{\mathrm{T}}-\sqrt{\left[\left(\mathrm{L}_{\mathrm{T}}+\mathrm{K}_{\mathrm{d}}+\mathrm{R}_{\mathrm{T}}\right)^{2}-4 \mathrm{~L}_{\mathrm{T}} \mathrm{R}_{\mathrm{T}}\right]}}{2}$
$\mathrm{P}=$ experimental polarization value, $\mathrm{P}_{\mathrm{F}}=$ polarization of free ligand, $\mathrm{P}_{\mathrm{B}}=$ polarization of bound ligand, $\mathrm{L}_{\mathrm{T}}=$ total ligand concentration, $\mathrm{K}_{\mathrm{d}}=$ dissociation constant, $\mathrm{R}_{\mathrm{T}}=$ total concentration of protein.

Table S3. Data from FP binding assays. K_{d} values were obtained from the curve fits shown in Figures 1 and S4.

Peptide	$\mathrm{K}_{\mathrm{d}}(\mu \mathrm{M})$ 15 mM NaCl	$\mathrm{K}_{\mathrm{d}}(\mu \mathrm{M})$ 150 mM NaCl
Lin-Flu	6.9 ± 0.6	31.4 ± 0.5
cNPF1-Flu	3.3 ± 0.3	16.8 ± 0.1
cNPF2-Flu	4.5 ± 0.3	20.5 ± 0.3
cNPF3-Flu	11.3 ± 1.0	57.8 ± 0.2
cNPF4-Flu	17.4 ± 0.1	46.7 ± 0.9
cNPF5-Flu	8.7 ± 0.9	28.3 ± 0.3
cNPF6-Flu	12.8 ± 0.8	34.0 ± 0.3
cAPA-Flu	>67	Not determined

Figure S4. FP direct binding data. Identical data to Figure 1a are reproduced here, separated into two plots that compare different macrocycle sizes (a) and different substitutions for the negatively charged side chains (b). Data from similar direct binding assays at 150 mM NaCl are shown in (c), with curve fits shown. Curves for the data in (c) were fitted using the upper polarization limits from the data in (a) and (b) in order to extract K_{d} values solely for comparison among the different peptides at physiological salt. (d) Direct binding experiments with Eps15EH2. Eps15 experiments were performed with 1mM DL-dithiothreitol (Sigma Aldrich). Error bars show standard deviation from three to four independent trials. Binding experiments with Eps15-EH2 (d) were done in duplicate.

Circular dichroism. EHD1-EH and Eps15-EH2 was dialyzed at $4^{\circ} \mathrm{C}$ in 10 mM sodium phosphate buffer at $\mathrm{pH}=7.0$ with 1 mM CaCl 2 and 1 mM dithiothreitol. CD was performed at room temperature (Jasco J-715 circular dichroism spectropolarimeter) with EHD1-EH at 40.3 $\mu \mathrm{M}$ and Eps15-EH2 at $35.5 \mu \mathrm{M}$. Spectra were taken from 190 nm to 260 nm at 1 nm intervals.

Figure 5 5. CD spectra of EHD1-EH (a) and Eps15-EH2 (b). The spectra for both proteins are consistent with predominantly alpha-helical secondary structure, as expected for EH domains. These results indicate that the proteins were properly folded, and that lack of binding affinity for Eps15-EH2 by cNPF1-flu results from genuine selectivity among EH domains.

Fluorescence polarization competition assays. All experiments were performed in flat-bottom, black 384 well plates (Corning). The assay buffers were prepared at $4^{\circ} \mathrm{C}$ with 25 mM MOPS with $\mathrm{pH}=7.0,1 \mathrm{mM} \mathrm{CaCl} 2$, and 15 mM NaCl . The experiments were performed at room temperature, at which MOPS was verified to have a pH of 6.8 . Each experiment also had a final concentration of 1.5% DMSO and 0.1% Tween-20, which were added along with the probe. Each inhibitor was added and to EHD1-EH, spun at $1,600 \mathrm{G}$, and incubated at room temperature for 30 minutes. The fluorescent probes were then added to the mixture so that the final concentration of probe was 100 nM and the final concentration of EHD1-EH was $20 \mu \mathrm{M}$. The plates were spun at $1,600 \mathrm{G}$ at $20^{\circ} \mathrm{C}$ after the addition of the probe. No difference in the data was detected between 1 and 4 hours, and 1-hour data was used for curve fitting. The fluorescence polarization was measured at 1 hour and 4 hours after the addition of the probe. The IC_{50} curve fits were calculated with a non-linear regression software (Kaleidagraph, Synergy Software, Equation 2). No deviation in fluorescence signal was observed up to DMSO concentrations of 10%.
$P=P_{F}+\frac{\left(\mathrm{P}_{\mathrm{B}}-\mathrm{P}_{\mathrm{F}}\right)}{\left(1+10^{\left[\mathrm{X}-\log \left(\mathrm{IC}_{50}\right)\right]}\right)}$
$\mathrm{P}=$ measured polarization, $\mathrm{P}_{\mathrm{F}}=$ polarization of free probe, $\mathrm{P}_{\mathrm{B}}=$ polarization of fully bound probe, $\mathrm{X}=$ concentration of inhibitor, $\mathrm{IC}_{50}=$ half-maximal inhibitory concentration.

NMR Spectroscopy. The NMR spectra were collected on a Bruker Avance 600 MHz spectrometer. The linear NPF peptide and cNPF1 were at concentrations of 1.2 mM and 4.9 mM , respectively, as determined by absorbance at 274 nm with an extinction coefficient of 1280 $\mathrm{M}^{-1} \mathrm{~cm}^{-1}$. Both peptides were dissolved in 10 mM deuterated imidazole, $10 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM}$ 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) and $0.02 \% \mathrm{NaN}_{3}$ in a $10 \% \mathrm{D}_{2} \mathrm{O} / 90 \% \mathrm{H}_{2} \mathrm{O}$ solution, which was adjusted to a pH between 5.6 and 5.9. A temperature series of ${ }^{1} \mathrm{H} 1 \mathrm{D}$ spectra for linear NPF and cNPF1 were collected in $5{ }^{\circ} \mathrm{C}$ increments from $5{ }^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$. A total correlation spectroscopy (TOCSY) was collected with a mixing time of 40 ms and a rotatingframe nuclear Overhauser effect correlation spectroscopy (ROESY) was collected at a mixing time of 250 ms at $5{ }^{\circ} \mathrm{C}$. Additionally, a ${ }^{13} \mathrm{C}$ heteronuclear single-quantum correlation spectroscopy (HSQC) and a nuclear Overhauser effect correlation specrescopy (NOESY) with a mixing time of 200 ms were taken at $5^{\circ} \mathrm{C}$ for cNPF1. Proton assignments were made according to standard homonuclear methods. ${ }^{[6]}$ Distance restraints, dihedral restraints, hydrogen bond restraints, and both carbon and hydrogen chemical shifts were used in CNSSolve Version 1.3 for structure determination. Restraints were refined with CcpNMR Analysis Version 2.2 and structures were validated with CING through CcpNMR.

Table S4. ${ }^{1} \mathrm{H}$ chemical shifts for cNPF1 and linear NPF peptide, and carbon chemical shifts for cNPF1 determined from ${ }^{13} \mathrm{C}$-HSQC.

cNPF1	NH	HA			$H B$	$H G$		$H D$	HE		
Y1		8.46		4.46	3.12/2.91				7.13		6.85
N2		8.08		4.18	2.72/2.67			7.90	7.13		
P3				4.49	2.05/1.42		/1.76		3.59		
F4		8.30		4.49	3.39/3.10				7.26		7.38
E5		7.66		4.62	2.11/1.86		/2.23				
E6		8.94		4.16	2.03		2.29				
G7		8.87		/3.78							
G8		8.07		/3.96							
Linear											
NPF	NH		HA		HB	$H G$		$H D$		HE	
Y1		8.36		4.49	2.99/2.87				7.09		6.79
N2		8.49		4.92	2.82/2.62			7.76	7.10		
P3				4.21	2.14/1.63		1.85	3.6	3.40		
F4		8.02		4.59	3.23/3.02				7.28		6.79
E5		7.84		4.26	2.02/1.90		2.22				
E6		8.58		4.24	2.08/1.98		2.30				
G7		8.75		4.01							
G8		8.38		3.91							

cNPF1	$C A$		$C B$	$C G$	$C D$
$Y 1$	59.03	38.45			$C E$
$N 2$		39.27			
$P 3$		64.15	31.80	27.31	50.68
F4	58.01	37.98			
$E 5$	54.75	32.20		36.06	
$E 6$	57.80	31.75		35.92	
G7	45.22				
G8	45.26				

Figure S6. Temperature dependence of amide proton line shapes. a) Temperature series of the amide region of ${ }^{1} \mathrm{H}$ spectra of the linear NPF peptide at $5^{\circ} \mathrm{C}$ (blue), $10^{\circ} \mathrm{C}$ (yellow), $15^{\circ} \mathrm{C}$ (red), and $20^{\circ} \mathrm{C}$ (black). b) Temperature series of the amide region of ${ }^{1} \mathrm{H}$ spectra of cNPF1 at $5^{\circ} \mathrm{C}$ (blue), $10^{\circ} \mathrm{C}$ (yellow), $15^{\circ} \mathrm{C}$ (red), and $20^{\circ} \mathrm{C}$ (black). The black arrows at 7.9 ppm and 8.3 ppm indicate the asparagine and phenylalanine amide peaks, respectively, which are broadening due to their involvement in a hydrogen bond within the NPF motif.

Table S5. NMR structural data and refinement statistics.

	linear NPF peptide	cNPF1
Experimental restraints		
\quad Distance restraints from NOEs	64	135
Dihedral angle restraints	0	3
Hydrogen bond restraints	0	2
Total no. of experimental restraints	64	140
Rms deviations from experimental data		
\quad Average distance restraint violation (\AA)	0.0 ± 0.0	0.0 ± 0.0
\quad Dihedral restraint violations $>5^{\circ}$	0.0 ± 0.0	0.0 ± 0.0
Rms deviations from ideal stereochemistry		
\quad Bonds (\AA)	0.0046 ± 0.00058	0.0046 ± 0.00011
Angles (deg)	0.4354 ± 0.0247	0.6272 ± 0.0094
\quad Impropers (deg)	0.3822 ± 0.0149	0.5149 ± 0.0232
Ramachandran analysis of the structures		
\quad Residues in favored regions	72.5%	50.0%
Residues in additionally allowed regions	27.5%	50.0%
\quad Residues in disallowed regions	0.0%	0.0%
Lennard-Jones potential energies		
\quad Ensemble average (kcal/mol)	27.30 ± 2.9	43.98 ± 0.8
Coordinate precision (\AA)		
\quad Backbone	0.816 ± 0.3701	0.048 ± 0.1085
All heavy atoms	1.343 ± 0.4809	0.556 ± 0.2674

Table S6. Distance Restraints for the linear NPF peptide.

Restraint	Resonances						Value (\AA)	Upper Limit	Lower Limit
1	residue	2	HA	residue	2	HN	2.613	3.136	2.090
2	residue	2	HA	residue	2	HB1	2.777	4.177	1.377
3	residue	2	HA	residue	2	HB2	3.032	4.432	1.632
4	residue	2	HB1	residue	2	HN	2.771	3.325	2.217
5	residue	2	HB2	residue	2	HN	2.729	3.275	2.183
6	residue	2	HD\#	residue	2	HB2	2.480	4.976	0.000
7	residue	2	HD\#	residue	2	HB1	2.332	4.798	0.000
8	residue	2	HD\#	residue	2	HA	2.324	4.789	0.000
9	residue	2	HE\#	residue	4	HB2	3.198	5.838	0.558
10	residue	3	HN	residue	3	HB1	3.058	3.670	2.446
11	residue	3	HN	residue	3	HB2	2.974	3.569	2.379
12	residue	3	HN	residue	3	HA	2.717	3.260	2.174
13	residue	3	HB1	residue	3	HA	2.707	3.807	1.607
14	residue	3	HB2	residue	3	HA	2.777	3.777	1.777
15	residue	3	HB1	residue	3	HD21	2.800	3.560	2.040
16	residue	3	HB2	residue	3	HD21	3.028	3.834	2.222
17	residue	3	HD22	residue	3	HA	3.363	4.036	2.690
18	residue	3	HN	residue	2	HA	2.247	2.696	1.798
19	residue	4	HA	residue	4	HB1	3.048	4.748	1.348
20	residue	4	HA	residue	4	HB2	2.473	4.073	0.873
21	residue	4	HD1	residue	4	HB1	3.736	6.483	0.989
22	residue	4	HD1	residue	4	HB2	3.385	6.062	0.708
23	residue	4	HG1	residue	4	HA	3.765	5.518	2.012
24	residue	4	HD1	residue	3	HA	2.221	2.665	1.777
25	residue	4	HD1	residue	2	HE\#	3.296	5.955	0.637
26	residue	4	HD2	residue	5	HD\#	3.251	5.901	0.601
27	residue	4	HD2	residue	3	HA	2.122	2.524	1.698
28	residue	5	HN	residue	5	HA	2.674	3.209	2.139
29	residue	5	HN	residue	5	HB1	3.129	4.255	2.003
30	residue	5	HN	residue	5	HB2	2.641	3.669	1.613
31	residue	5	HA	residue	5	HD\#	2.290	4.748	0.000
32	residue	5	HB1	residue	5	HA	3.275	4.575	1.975
33	residue	5	HB2	residue	5	HA	3.037	4.337	1.737
34	residue	5	HB1	residue	5	HD\#	2.436	4.923	0.000
35	residue	5	HB2	residue	5	HD\#	2.391	4.869	0.000
36	residue	5	HN	residue	4	HB1	3.237	3.884	2.590
37	residue	5	HN	residue	4	HA	2.453	2.944	1.962
38	residue	5	HN	residue	4	HD2	3.046	3.655	2.437
39	residue	6	HN	residue	6	HA	2.799	3.359	2.239
40	residue	6	HN	residue	6	HB1	2.868	3.742	1.994
41	residue	6	HN	residue	6	HB2	3.210	4.152	2.268
42	residue	6	HN	residue	6	HG1	3.121	3.745	2.497
43	residue	6	HA	residue	6	HG1	2.935	3.522	2.348
44	residue	6	HA	residue	6	HB1	2.912	4.012	1.812
45	residue	6	HA	residue	6	HB2	2.960	4.060	1.860
46	residue	6	HN	residue	5	HA	2.385	2.862	1.908
47	residue	7	HN	residue	7	HA	2.265	2.718	1.812
48	residue	7	HN	residue	7	HB1	2.892	3.870	1.914
49	residue	7	HN	residue	7	HB2	3.259	4.779	1.739
50	residue	7	HN	residue	7	HG\#	3.421	5.105	1.737
51	residue	7	HA	residue	7	HB1	2.893	3.993	1.793
52	residue	7	HA	residue	7	HB2	2.907	4.007	1.807
53	residue	7	HG\#	residue	7	HA	3.080	4.696	1.464
54	residue	8	HN	residue	8	HA1	2.748	3.498	1.998
55	residue	8	HN	residue	8	HA2	2.930	3.716	2.144
56	residue	8	HN	residue	6	HA	2.468	2.962	1.974
57	residue	9	HN	residue	9	HA1	2.417	3.817	1.017
58	residue	9	HN	residue	9	HA2	3.336	4.836	1.836
59	residue	9	HN	residue	7	HA	3.205	3.846	2.564

Table S7. Distance Restraints for cNPF1.

Restraint	Resonances					Value (\AA)	Upper Limit	Lower Limit
1	residue 1	HN	residue	1	HB1	2.313	3.426	1.200
2	residue	HN	residue	1	HB2	2.610	4.032	1.188
3	residue	HA	residue	1	HB1	2.719	3.863	1.575
4	residue	HA	residue	1	HB2	2.837	4.104	1.570
5	residue	HA	residue	1	HD\#	2.490	4.988	0.000
6	residue	HE\#	residue	1	HA	3.427	6.112	0.742
7	residue	HN	residue	1	HA	2.520	3.024	2.016
8	residue	HB1	residue	1	HD\#	2.330	4.796	0.000
9	residue	HB2	residue	1	HD\#	2.364	4.837	0.000
10	residue	HE\#	residue	1	HB1	3.329	6.095	0.563
11	residue	HE\#	residue	1	HB2	3.476	6.271	0.681
12	residue	HN	residue	1	HD\#	2.909	5.491	0.327
13	residue	HB1	residue	2	HN	2.879	3.605	2.153
14	residue	HB2	residue	2	HN	2.939	4.939	2.351
15	residue	HB2	residue	2	HD22	3.898	5.128	2.668
16	residue	HB1	residue	2	HD22	3.635	5.112	2.158
17	residue	HA	residue	2	HN	2.904	3.585	2.223
18	residue	HN	residue	2	HN	2.128	2.536	1.702
19	residue	HN	residue	5	HB1	3.683	5.020	2.346
20	residue 1	HN	residue	5	HB2	3.774	5.179	2.369
21	residue 1	HN	residue	8	HA2	2.583	3.200	1.966
22	residue 1	HN	residue	8	HA1	2.320	3.284	1.356
23	residue 2	HB\#	residue	1	HD\#	3.185	6.022	0.348
24	residue 2	HB\#	residue	2	HD22	2.658	3.790	1.526
25	residue $\quad 2$	HB2	residue	2	HD21	3.034	5.141	1.927
26	residue 2	HB1	residue	2	HD21	3.318	4.882	1.754
27	residue 2	HB1	residue	2	HD22	2.695	3.834	1.556
28	residue 2	HB\#	residue	2	HD22	2.319	3.783	0.855
29	residue 2	HN	residue	2	HB\#	2.375	3.850	0.900
30	residue 2	HA	residue	2	HD21	3.315	4.528	2.102
31	residue 2	HA	residue	2	HD22	3.553	5.024	2.082
32	residue 2	HN	residue	2	HB1	2.730	3.526	1.934
33	residue 2	HN	residue	2	HB2	2.710	3.752	1.668
34	residue 2	HN	residue	2	HA	2.455	2.946	1.964
34	residue 2	HB2	residue	2	HA	2.664	3.897	1.431
35	residue 2	HB1	residue	2	HA	2.881	4.157	1.605
36	residue 2	HD22	residue	2	HD21	1.720	1.920	1.376
37	residue 2	HB2	residue	5	HN	3.975	6.270	2.680
38	residue 2	HB1	residue	5	HN	3.436	4.973	2.099
39	residue 2	HN	residue	5	HG\#	3.626	5.351	1.901
40	residue 3	HD2	residue	2	HA	2.408	3.360	1.456
41	residue 3	HD1	residue	2	HA	2.232	3.278	1.186
42	residue 3	HD2	residue	2	HB1	2.612	3.824	1.340
43	residue 3	HD2	residue	2	HB2	2.789	3.947	1.631
44	residue 3	HG1	residue	2	HB\#	3.302	4.962	1.642
45	residue 3	HD1	residue	2	HB1	3.189	4.077	2.301
46	residue 3	HD1	residue	2	HB2	3.201	4.041	2.361
47	residue 3	HG2	residue	3	HA	3.671	4.905	2.437
48	residue 3	HG1	residue	3	HA	3.128	4.254	2.002
49	residue 3	HD1	residue	3	HB1	3.251	4.101	2.401
50	residue 3	HD2	residue	3	HB1	3.448	4.338	2.558
51	residue 3	HG2	residue	3	HB2	2.479	2.975	1.983
52	residue 3	HB2	residue	3	HB1	2.356	3.827	1.885
53	residue 3	HG2	residue	3	HD2	2.384	3.461	1.307
54	residue 3	HG1	residue	3	HD2	2.711	3.853	1.569
55	residue 3	HA	residue	3	HB2	2.639	3.667	1.611
56	residue 3	HG1	residue	3	HB2	2.597	3.116	2.078

115	residue	6	HB2	residue	6	HN	2.332	4.048	0.616
116	residue	6	HN	residue	6	HG\#	2.915	4.498	1.332
117	residue	6	HB\#	residue	6	HN	2.145	3.570	0.716
118	residue	6	HN	residue	6	HG1	3.434	4.371	2.497
119	residue	6	HN	residue	6	HG2	3.326	4.091	2.561
120	residue	6	HA	residue	6	HN	2.520	3.024	2.016
121	residue	6	HA	residue	6	HG1	3.433	4.420	2.446
122	residue	6	HN	residue	5	HN	3.375	6.050	2.700
123	residue	6	HA	residue	7	HN	2.600	3.470	1.730
124	residue	6	HG\#	residue	7	HN	3.432	5.118	1.746
125	residue	6	HB\#	residue	7	HN	2.853	4.424	1.282
126	residue	6	HA	residue	8	HN	3.468	4.162	2.774
127	residue	7	HA1	residue	7	HA2	2.031	2.342	1.625
128	residue	7	HA1	residue	7	HN	2.053	2.766	1.342
129	residue	7	HA2	residue	7	HN	2.545	3.254	1.836
130	residue	8	HN	residue	7	HN	2.476	3.971	1.981
131	residue	8	HN	residue	7	HA1	3.181	3.817	2.545
132	residue	8	HN	residue	7	HA2	2.813	3.376	2.250
133	residue	8	HA1	residue	8	HN	2.928	4.214	1.642
134	residue	8	HA2	residue	8	HN	2.103	3.286	0.982

References

[^0]
[^0]: ${ }^{1}$ Henry, G.; Corrigan, D.; Dineen, J.; Baleja, J. Biochemistry, 2010, 49, 3381-3392.
 ${ }^{2}$ Kim, S.; Dubelman, A.; Goonesekera, S.; Feig, L.; Baleja,J. J. Biomolec. NMR, 2000, 18, 367368.
 ${ }^{3}$ DeLorbe, J. E.; Clements, J. H.; Teresk, M.G.; Benfield, A. P.; Plake, S. R.; Millspaugh, L. E.; Martin, S. F. JACS, 2009, 131, 16758-16770.
 ${ }^{4}$ DeLorbe, J. E.; Clements, J. H.; Whiddon, B. B.; Martin, S. F. ACS Med. Chem. Lett. 2010, 1 , 448-452.
 ${ }^{5}$ Udugamasooriya, D. G.; Spaller, M. R. Biopolymers, 2008, 89, 653-667.
 ${ }^{6}$ Wüthrich K. NMR of Proteins and Nucleic Acids. New York: Wiley; 1986.

