## Crystallization of a Bicontinuous Cubic Phase of a Lipid

Toshihiko Oka\*,†,§, and Hiroki Hojo‡

<sup>†</sup>Department of Physics, Graduate School of Science, <sup>§</sup>Nanomaterials Research Division, Research Institute of Electronics, and <sup>‡</sup>Department of Physics, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan \*Corresponding author: <u>stoka@ipc.shizuoka.ac.jp</u>

## Supporting Information

Figure S1: A circular averaged profile of Figure 2a. Indexing of the peaks indicates the phase of this region is the  $Q_{II}^{D}$ .

Figure S2: Sequential X-ray diffraction patterns of the MO sample after one week soaking in water without oscillation.

Figure S3: Sequential X-ray diffraction patterns of the MO sample at the 22 mm with the oscillation angle of the  $10^{\circ}$ 

Table S1: Averaged intensities of diffraction spots.

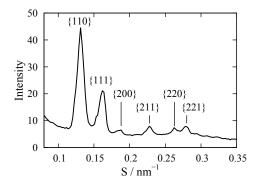



Figure S1: A circular averaged profile of Figure 2a. Indexing of the peaks indicates the phase of this region is the  $Q_{II}^{D}$ .

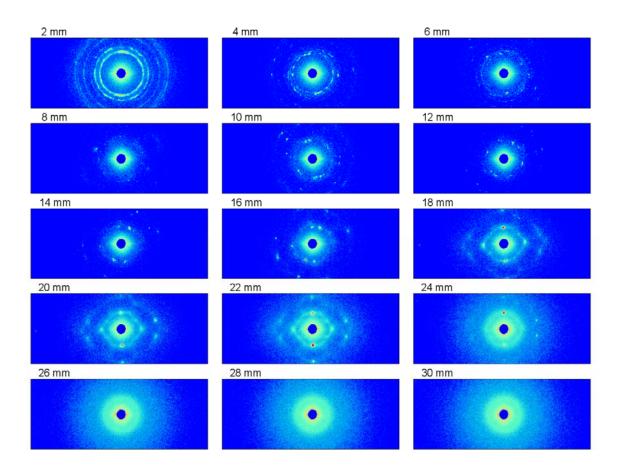



Figure S2. Sequential X-ray diffraction patterns of the MO sample after one week soaking in water without oscillation. Distances from the edge facing the bulk water are also shown.

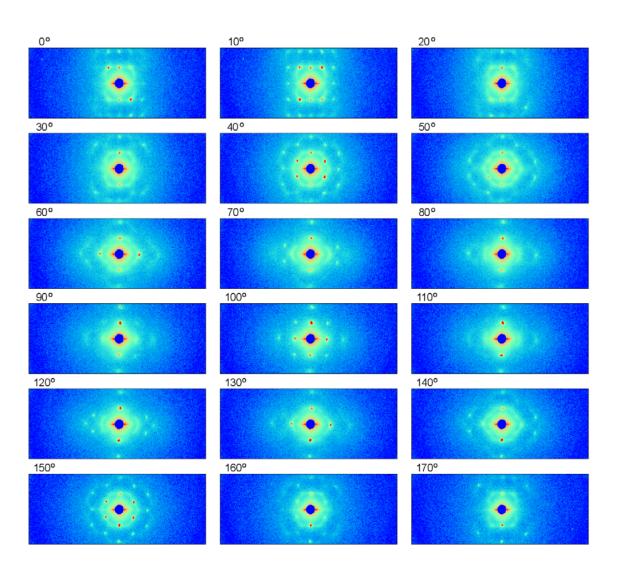



Figure S3. Sequential X-ray diffraction patterns of the MO sample at the 22 mm with the oscillation angle of the 10°. Rotation angles are also shown. Diffraction patterns change angle dependently.

| Miller index    | Intensity      |
|-----------------|----------------|
| {1 1 0}         | $8945 \pm 139$ |
| {1 1 1}         | $8924 \pm 467$ |
| $\{2 \ 0 \ 0\}$ | $627 \pm 187$  |
| {2 1 1}         | $674 \pm 46$   |
| $\{2\ 2\ 0\}$   | $425 \pm 85$   |
| {2 2 1}         | $459 \pm 53$   |
| {2 2 2}         | $255 \pm 265$  |

Table 1. Averaged intensities of diffraction spots.