Supporting Information for

2	A new strategy for reversible modulation of protein
3	activity through site-specific conjugation of small
4	molecule and polymer
5	Lei Wang, Lin Yuan, Hongwei Wang,* Xiaoli Liu, Xinming Li and Hong Chen*
6	
7	The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Department of
8	Polymer Science and Engineering, College of Chemistry, Chemical Engineering and
9	Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R.
10	China.
11	
12	E-mail: wanghw@suda.edu.cn (H. Wang); chenh@suda.edu.cn (H. Chen)
13	

Table of Contents

- Figure S1. DNA sequencing of the *E. coli* WT-ppa gene and mutant ppa gene
- Figure S2. CD spectra of the PP and PPC.
- 17 Figure S3. ¹H NMR spectrum and GPC trace of the pyridyl disulfide-functionalized
- 18 pHEMA.

14

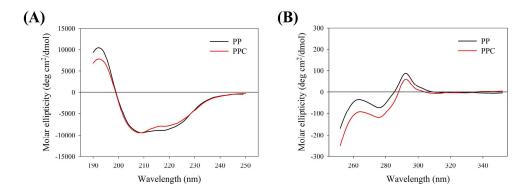
- 19 Figure S4. The influence of 8 mM cysteine on the PPi hydrolysis activity of the PP
- and PPC.
- 21 Figure S5. The influence of 8 mM DTT on the PPi hydrolysis activity of the PP and
- PPC.
- Table S1. Metal ion selectivity of the PP and PPC.
- Table S2. The effect of pHEMA with different molecular weights on PPC activity.
- 25 **Table S3.** Michaelis-Menten parameters of sodium pyrophosphate hydrolysis
- catalyzed by PPC, the conjugated products and reduced products.

	* ATGAGAGGATCGCA ATGAGAGGATCGCA	TCACCATCACCA		CCAGCTTACTC		GCGGGTAAAGA		
	* CTACGTTGTTATTC	AGATCCCGGCT	ACGCAGATO		CGAAATCGA	CAAAGAGAGCG		
	* ACCGCTTCATGTCC							
	* GTTGACGTACTGGT GTTGACGTACTGGT	CCCAACTCCGT	ACCCGCTGC		GTGATCCGT	IGCCGTCCGGT	TGGCGTTCT	GAAAAT
	* GACCGACGAAGCCC	GTGAAGATGCG	AACTGGTT		CAGCAAGCT	GAGCAAAGAAT.		
	* ACGTTAACGATCTC	GCCTGAACTGCT	GAAAGCGCAA		CTTCGAGC.	ACTACAAAGAC		
1 1	* TGGGTGAAAGTTGA TGGGTGAAAGTTGA	AGGTTGGGAAA	CGCAGAAG		GAAATCGTT	GCCTCCTTCGA		
WT-ppa : K148C-ppa:								

- Figure S1. DNA sequencing results of the *E. coli* WT-ppa gene and mutant ppa gene.
- 30 (nucleotides in the frame represent mutations).

Table S1. Metal ion selectivity of the PP and PPC.

Metal ions —	Relative activity (%)			
Wietai ions —	PP	PPC		
Mg^{2+}	100.00 ± 2.17	100.00 ± 3.28		
Mn^{2+}	4.75 ± 1.55	0.47 ± 1.16		
Co^{2+}	0.76 ± 1.63	0.87 ± 0.64		
Zn^{2+}	0.39 ± 1.12	0.86 ± 1.04		
Ca^{2+}	2.91 ± 2.06	2.78 ± 1.86		
Ni ²⁺	0.63 ± 0.98	0.09 ± 0.77		
Cu ²⁺	1.00 ± 1.26	0.06 ± 0.75		



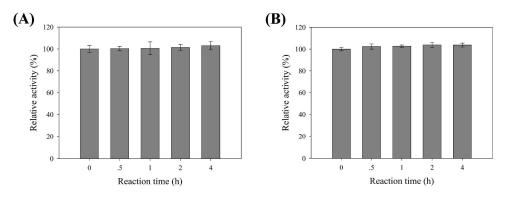
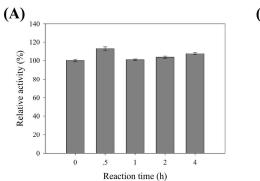


Figure S2. CD spectra in the near ultraviolet region (A) and far ultraviolet region (B)

of the PP and PPC.



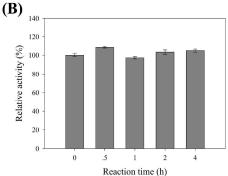

Figure S3. ¹H NMR spectrum (A) (in CD₃OD) and GPC trace (B) of the pyridyl disulfide-functionalized pHEMA.

Figure S4. The influence of 8 mM cysteine on the PPi hydrolysis activity of the PP (A) and PPC (B). Here, a relative activity of 100% corresponds to the activity of PP and PPC without treatment respectively. Each column represents the mean of separate

experiments with bar as SE (n = 3).

45

46 Figure S5. The influence of 8 mM DTT on the PPi hydrolysis activity of the PP (A)

- and PPC (B). Here, a relative activity of 100% corresponds to the activity of PP and
- 48 PPC without treatment respectively. Each column represents the mean of separate
- 49 experiments with bar as SE (n = 3).

50 Table S2. The effect of pHEMA with different molecular weights on PPC activity.

The relative activity of 100 corresponds to the activity of the PPC without treatment.

Relative activity (%)	ative activity (%) PPC		Reduced PPC-pHEMA
PPC-pHEMA1 ^a	100.00±1.31	0.37±0.01	102.64±1.85
PPC-pHEMA2 ^b	100.00±1.09	0.33 ± 0.02	101.08±0.64

^a pHEMA1: M_{n,HNMR}=8019, PDI=1.24; ^b pHEMA2: M_{n,HNMR}=25049, PDI=1.31.

Table S3. Michaelis-Menten parameters of sodium pyrophosphate hydrolysis
 catalyzed by PPC, the conjugated products and reduced products.

Michaelis-Menten	PPC	PPC-PCMB	Reduced	DDC #HEMA	Reduced
parameters	PPC		PPC-PCMB	PPC-pHEMA	PPC-pHEMA
K_{M} (mM)	1.08	1.10	1.12	0.90	1.06
$k_{\rm cat}$ (s ⁻¹)	377.7	68.3	335.4	10.4	329.4
$k_{\rm cat}/K_{\rm M}~({\rm mM}^{\text{-}1}\cdot{\rm s}^{\text{-}1})$	351.1	62.3	300.0	11.6	312.1