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Review of Standard Stochastic Kriging (SK)

Standard stochastic kriging (SK), which was first introduced by Ankenman et al.,1 models

the dependence of a continuous response upon the quantitative factors x only. With no

qualitative factors involved, the response from the jth replication (animal subject) is written

in terms of x as follows

Yj(x) = Y(x) + εj(x) = f(x)>β + M(x) + εj(x), (S1)

where Y(x) represents the true expected response at the factor setting x = (x1, x2, . . . , xd),

with x ∈ Rd.

The expectation Y(x) is decomposed into two parts: Y(x) = f(x)>β + M(x). f(x) is

a vector of known functions of x, and β is a vector of unknown parameters of compatible

dimension. Since it has been reported that f(x)>β = β0 (that is, just a constant term)

suffices for most applications,1 this work adopts f(x)>β = β0 unless stated otherwise. The

term M represents a realization of a mean-zero stationary Gaussian random field, and can

be considered as being randomly sampled from a space of functions mapping Rd → R; the

functions in this space are assumed to exhibit spatial correlation, and thus M(x) and M(x′)

will tend to be similar if x and x′ are close to each other in the space. As in Ankenman et

al. (2010),1 the stochastic nature of M(x) is referred to as extrinsic variability.

The random noise ε1(x), ε2(x), . . . at a factor setting x has zero mean, and is independent

and identically distributed across replications (animal subjects). The error variance Var[ε(x)]

is allowed to be dependent on x. The randomness of ε(x) is referred to as intrinsic variability.

A data set, on which SK is to be applied, consists of n(xi) replications taken at design

point xi (i = 1, 2, . . . , I), with I representing the number of distinct design points (factor

settings) in the data. The paired data can be represented as {(xi,Yj(xi)); i = 1, 2, . . . , I; j =

1, 2, . . . , n(xi)}. The sample average of the responses at xi across the n(xi) replications is
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given by:

Ȳ(xi) =
1

n(xi)

n(xi)∑
j=1

Yj(xi) = β0 + M(xi) +
1

n(xi)

n(xi)∑
j=1

εj(xi).

Denote

Ȳ =
(
Ȳ(x1), Ȳ(x2), . . . , Ȳ(xI)

)>
(S2)

as the I × 1 vector of sample average responses at the I distinct design points.

Similarly, the vector of sample average errors is denoted as

ε = (ε̄(x1), ε̄(x2), . . . , ε̄(xI))
> , (S3)

with ε̄(xi) = n(xi)
−1∑n(xi)

j=1 εj(xi), i = 1, 2, . . . , I.

The Extrinsic and Intrinsic Variance Structures

The key of SK lies in the modeling of extrinsic as well as intrinsic variability, which are

presented respectively as follows.

Denote x = (x1, x2, . . . , xd)
> and x′ = (x′1, x

′
2, . . . , x

′
d)
> as two vectors of the quantitative

factors. For a stationary Gaussian process M(x), the covariance function can be represented

as

Cov[M(x),M(x′)] = δ2 ·K(x,x′) (S4)

where δ2 > 0 denotes the variance of the Gaussian process, and K(x,x′) the correlation

between M(x) and M(x′).

For the estimation of a SK model, a certain functional structure needs to be imposed

on the correlation K(x,x′). A range of choices are available in the literature (e.g., Santner

et el. 2003;2 Qian et al. 20083), and one of the most popular structures in practice is the
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exponential correlation function

K(x,x′) = exp

{
d∑

h=1

−θh|xh − x′h|p
}
. (S5)

In (S5), θ = (θ1, θ2, . . . , θd) is a vector of unknown parameters. It is required that θh > 0

(h = 1, 2, . . . , d), and θ determines the roughness of the response surface. The parameter

p ∈ (0, 2] also needs to be estimated unless p is prespecified as 2, which leads to the widely-

used quadratic correlation function.4

With a selected correlation function such as (S5), the I × I variance-covariance matrix

ΣM is constructed as follows for a data set including I distinct design points

ΣM = δ2R(θ) = δ2



1 K(x1,x2) . . . K(x1,xI)

K(x2,x1) 1 . . . K(x2,xI)

...
...

. . .
...

K(xI ,x1) K(xI ,x2) . . . 1


. (S6)

In (S6), R(θ) represents the correlation matrix, with each component being a correlation

function of unknown parameters θ. For an arbitrary setting x0, the I × 1 vector ΣM(x0, ·) is

defined as

ΣM(x0, ·) = δ2v(x0,θ) = δ2



K(x0,x1)

K(x0,x2)

...

K(x0,xI)


, (S7)

where v(x0,θ) is a correlation vector with each component dependent on x0 and the unknown

parameter θ.

The intrinsic variance of the random response at xi (i = 1, 2, . . . , I) is denoted as

Var[ε(xi)]. Let Σε be the I × I variance-covariance matrix of vector ε, which is defined
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in (S3). Under the i.i.d assumption for random errors, Σε is a diagonal matrix

Σε = diag{Var[ε(x1)]/n(x1),Var[ε(x2)]/n(x2), . . . ,Var[ε(xI)]/n(xI)}. (S8)

Estimation and Inference by Standard Stochastic Kriging

Recall that the random response can be written as

Yj(x) = β0 + M(x) + εj(x), (S9)

As stated in Ankenman et al. (2010),1 the SK-based modeling and inference requires the

following assumption.

Assumption 1 The random field M is a stationary Gaussian random field; and ε1(x), ε2(x), . . .

are i.i.d. N(0,Var[ε(x)]), independent of εj(x
′) for all j and x 6= x′, and independent of M.

The assumption of M being a stationary Gaussian random field is standard for kriging

(Santner et al. 2003,2), and it implies that the random vector (M(x1),M(x2), . . . ,M(xI))
>

follows a multivariate normal distribution with constant marginal mean 0, variance δ2, and

correlation matrix R as in (S6). The assumption for the random errors allows the variance

Var[ε(x)] to be dependent on x.

For a data set {(xi,Yj(xi)); i = 1, 2, . . . , I; j = 1, 2, . . . , n(xi)}, and under Assumption 1,

the log-likelihood function of the unknown parameters (β0, δ
2,θ) is

lnL(β0, δ
2,θ) = − ln[(2π)I/2]− 1

2
ln[|δ2R(θ)+Σε|]−

1

2
(Ȳ −β01I)>[δ2R(θ)+Σε]

−1(Ȳ −β01I),

(S10)

where 1I is a (I × 1) vector of ones.

Ankenman et al. (2010)1 summarizes the SK modeling steps as follows.
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1. Obtain the estimated Σε:

Σ̂ε = diag{V̂ar[ε(x1)]/n(x1), V̂ar[ε(x2)]/n(x2), . . . , V̂ar[ε(xI)]/n(xI)} (S11)

where

V̂ar[ε(xi)] =
1

n(xi)− 1

n(xi)∑
j=1

(
Yj(xi)− Ȳ(xi)

)2
, i = 1, 2, . . . , I . (S12)

2. Using Σ̂ε instead of Σε, maximize the log-likelihood (S10) over (β̂0, δ̂
2, θ̂).

3. Estimate the expected response Y(x0) by

Ŷ(x0) = β̂0 + δ̂2v(x0, θ̂)>[δ̂2R(θ̂) + Σ̂ε]
−1(Ȳ − β̂01I), (S13)

where (β̂0, δ̂
2, θ̂) are obtained from the previous step. The mean squared error (MSE)

is estimated as

M̂SE[Ŷ(x0)] = δ̂2− δ̂4v(x0, θ̂)>[δ̂2R(θ̂) + Σ̂ε]
−1v(x0, θ̂) + η>η(1>I [δ̂2R(θ̂) + Σ̂ε]

−11I)
−1

(S14)

where η = 1− 1>I [δ̂2R(θ̂) + Σ̂ε]
−1v(x0, θ̂)δ̂2.

The (1− α)× 100% confidence interval for Y(x0) is

Ŷ(x0)± z(1−α)/2
√

M̂SE[Ŷ(x0)] (S15)

where z(1−α)/2 is the upper (1− α)/2 critical value for standard normal distribution.

Review of Mixed-Effects Model (MEM)

Recognizing the importance of pooling information for modeling efficiency, the mixed-effects

model has been developed and used for multi-source exposure-response data in the literature.
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Interested readers can refer to Davidian et al.5 for details. In this part, a brief review is

provided for the readers’ convenience.

Formulation and Assumptions for Mixed-Effects Model (MEM)

Following the notations in Section STATEMENT OF THE RESEARCH PROBLEM, for a

subpopulation cq (q = 1, 2, . . . , Q), the response from the jth replication (animal subject) is

written as

Yj(x, cq) = g(x,αcq) + εj(x, cq); q = 1, 2, . . . , Q, (S16)

In Equation (S16), g is a regression model of a prior-assumed functional form (e.g., logistic

model), which is common to all subpopulations {cq; q = 1, 2, . . . , Q}; αcq is a u × 1 vector

of unknown parameters, the values of which are cq-dependent; and x denotes the vector of

quantitative factors.

At a factor setting (x, cq), the random noise ε1(x, cq), ε2(x, cq), . . . has zero mean, and

is independent and identically distributed across replications (animal subjects). The error

variance Var[ε(x, cq)] is assumed to be response-dependent through the following common

form for any cq:

Var[ε(x, cq)] = σ2h2(g(x,αcq),γ); q = 1, 2, . . . , Q (S17)

The variance function h describes the common pattern of variability. The scalor σ and vector

γ are unknown parameters, which take common values for any cq.

In MEM, the unknown model coefficient vector αcq is generally modeled as

αcq = d(ν,α) + bcq , (S18)

where d is a u-dimensional vector-valued function with each component associated with

the corresponding component of αcq . The vector ν includes the factors (or covariates)

for subpopulation attributes that affect the parameter αcq for the subpopulation cq. In
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the problem setting of Section STATEMENT OF THE RESEARCH PROBLEM, all the

qualitative factors in z are candidate components for ν. The vector α denotes the unknown

fixed parameters (or fixed effects), and bcq is a random vector representing the random

effects. It is assumed that

bcq ∼ Norm(0,D) (S19)

with D being an unknown variance-covariance matrix of compatible dimensions.

The simplest example form of (S18) is

αcq = α+ bcq , (S20)

which is commonly used.

It has been demonstrated that MEM is able to provide improved estimation/inference for

multi-source data, by pooling information across different data subsets.6 Nevertheless, the

following shortcomings exist, which originate from the model formulation given above. (i)

A common nonlinear functional form (e.g., logistic model) has to be assumed adequate for

describing the exposure-response surface of all subpopulations. Such a common form may

be difficult to obtain, especially when x is high-dimensional. (ii) MEM assumes a common

variance model for all the subpopulations. That is, for each subpopulation, the same variance

model as in (S17) is used to describe the dependence of variance upon the response. (iii)

As given in (S19), one of the fundamental assumptions made in MEM is: The unknown

coefficient vector αcq for a subpopulation follows a multivariate normal distribution, which

may well not hold.

Estimation and Inference by Mixed-Effects Model (MEM)

To estimate MEM from given data, the global two-stage (GTS) method proposed by Steimer

et al.5–7 can be used. The fitted MEM models are denoted as follows: {g(x, α̂cq); q =

1, 2, . . . , Q}, the fitted response surface models; {σ̂h(g(x, α̂cq), γ̂); q = 1, 2, . . . , Q}, the esti-
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mated variance model; and D̂, the estimated covariance matrix of α̂cq .

For an arbitrary setting w0 = (x0, cq), the expected response is estimated as

Ŷ(x0, cq) = g(x0, α̂cq).

The variance of Ŷ(x0, cq) is estimated as:

V̂ar[Ŷ(x0, cq)] = (gα(x0, α̂cq))
>D̂gα(x0, α̂cq),

where gα(x0, α̂cq) is the u× 1 first derivative vector of function g w.r.t. αcq .

The (1− α)100% confidence interval for Ŷ(x0, cq) is

Ŷ(x0, cq)± t1−α/2,v ×
√

V̂ar[Ŷ(x0, cq)] (S21)

where t denotes Student’s t distribution with degree of freedom v. Following the context

of BMD estimation in Subsection Inverse Estimation and Inference, we consider the cases

where there is only one quantitative factor x, denoting the dose level. Using the fitted MEM,

the BMD associated with a subpopulation cq is estimated as follows for a given BMR:

B̂MD(cq) = g−1(BMR, α̂cq). (S22)

For MEM, the analytic form of the inverse function g−1 can be easily obtained.

The variance of B̂MD(cq) is estimated as:

V̂ar[B̂MD(cq)] = (g−1α )>D̂g−1α (S23)

where g−1α is the u × 1 first derivative vector of the inverse function g−1 w.r.t. αcq . The
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one-sided 100(1− α) confidence interval for B̂MD(cq) is given as:

[B̂MD(cq)− t1−α,v
√

V̂ar[B̂MD(cq)],∞) (S24)

where t is student’s t distribution with the degree of freedom v.

True Expected Exposure-Response Model for Case 1

As part of the simulation model for Case 1 (Subsection Case 1: Modeling Dose-Time-

Response Data), the following two models (S25-S26) provide the true expected response

surfaces for the two subpopulations (short and long TiO2 nanobelts) respectively. Both of

the models take the form of a single-hidden layer feedforward network (SLFN),8,9 and are

estimated from the real dose-time-response data in NIOSH’s in-vivo study of TiO2 nanopar-
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ticles.10

Y(x, c1) = 67.55 +
0.14

exp (−12.85 + 0.41x1 + 0.06x2)
+

−33.23

exp (−1.39 + 0.12x1 − 0.02x2)
(S25)

+
−0.08

exp (−8.57 + 1.22x1 − 0.2x2)
+

−76.00

exp (−0.21 + 0.06x1 − 0.01x2)

+
−3.49

exp (−0.40 + 0.20x1 − 0.04x2)
+

−76.99

exp (−0.51− 0.05x1 + 0.03x2)

+
5.15

exp (−5.52 + 0.16x1 + 0.04x2)
+

−0.03

exp (−25.89 + 2.99x1 + 0.28x2)

+
32.77

exp (−0.62 + 0.05x1 + 0.03x2)
+

1.09

exp (5.76 + 0.26x1 − 0.07x2)

Y(x, c2) = 71.74 +
−104.84

exp (−0.66 + 0.09x1 − 0.02x2)
+

−1.18

exp (7.66− 0.45x1 − 0.01x2)
(S26)

+
0.04

exp (28.01− 3.62 + 0.24x2)
+

−4.50

exp (5.02− 0.16x1 − 0.04x2)

+
82.50

exp (0.74 + 0.04x1 − 0.03x2)
+

−27.73

exp (0.83 + 0.13x1 − 0.02x2)

+
35.84

exp (−1.18 + 0.04x1 + 0.03x2)
+

−13.58

exp (−0.85− 0.18x1 + 0.03x2)

+
−2.61

exp (0.32− 0.27x1 + 0.01x2)
+

2.59

exp (−8.86− 0.05x1 + 0.08x2)
.

An Estimation Data Set (EDS) for Case 2

Table S1 shows an estimation data set (EDS) randomly generated from the simulation models

of Case 2 (Subsection Case 2: Modeling Multi-Source Dose-Response Data). The first column

provides the 15 distinct design points, with each one specified in terms of (x, cq), the dosage

x and subpopulation cq (q = 1, 2, 3). At each design point, 8 replications were obtained

corresponding to the 8 columns of the responses in the table.
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Table S1: An estimation data set (EDS) for Case 2: modeling the multi-source dose-response
data

w = (x, cq) Response
(0, c1) 19.606 19.630 19.059 19.119 19.799 19.197 21.341 21.641
(5, c1) 30.715 29.792 28.982 33.335 31.580 31.415 28.696 32.305
(10, c1) 52.016 49.630 50.397 49.462 57.212 48.896 50.396 50.329
(15, c1) 76.507 76.149 80.295 77.499 73.711 72.691 78.404 73.824
(20, c1) 121.624 121.009 120.366 120.168 126.850 118.587 117.079 127.984
(0, c2) 20.476 19.672 19.071 19.832 21.288 19.604 20.582 19.601
(5, c2) 28.907 26.911 31.777 28.914 31.867 30.150 31.717 32.173
(10, c2) 48.531 52.631 51.625 54.031 54.321 49.066 49.427 52.142
(15, c2) 81.604 82.863 79.106 80.348 84.498 87.584 82.051 78.335
(20, c2) 134.977 123.213 133.363 125.405 131.264 130.982 132.469 132.215
(0, c3) 23.819 27.994 26.262 26.843 25.228 27.381 25.827 24.452
(5, c3) 38.927 35.478 36.313 40.699 39.396 38.104 37.377 38.829
(10, c3) 57.377 54.406 54.933 55.961 62.745 52.841 58.847 53.044
(15, c3) 82.621 81.036 78.257 81.493 78.597 80.067 80.918 79.754
(20, c3) 114.988 113.588 118.589 117.208 121.077 114.184 114.511 119.074
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