Factors Controlling the Spectroscopic Properties and Supramolecular Chemistry of an Electron Deficient 5,5-Dimethylphlorin Architecture

Allen J. Pistner ${ }^{a}$, Daniel A. Lutterman ${ }^{b}$, Michael J. Ghidiu ${ }^{a}$, Eric Walker ${ }^{a}$, Glenn P. A. Yap ${ }^{a}$, and Joel Rosenthal*a

${ }^{a}$ Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
${ }^{b}$ Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

Index General Experimental Methods + Synthetic Protocols		Page
		S2-S5
Figure S1	UV-vis absorbance and calculated electronic transitions for $\mathbf{3 H}\left(\mathbf{P h l}{ }^{\mathrm{CF3}}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	S6
Figure S2	UV-vis spectral changes associated with binding of fluoride to $\mathbf{3 H}\left(\mathbf{P h l}^{\mathrm{CF3}}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.	S7
Figure S3	UV-vis spectral changes associated with binding of fluoride to $\mathbf{3 H}\left(\mathrm{Phl}^{\mathrm{CF3}}\right.$) in MeCN	S8
Figure S4	UV-vis spectral changes associated with disruption of the hydrogenbonding between $\mathbf{3 H}\left(\mathrm{Phl}^{\mathrm{CF3}}\right)$ and acetate in MeCN	S9
Figure S5	Fully labeled thermal ellipsoid plot for $\mathbf{3 H}\left(\mathrm{Phl}^{\text {cF3 }}\right.$)	S10
Table S1	Crystallographic Data for $\mathbf{3 H}\left(\mathrm{Phl}^{\text {cF3 }}\right.$)	S11
Table $\mathbf{S 2}$	Bond Lengths (\AA) Determined for $\mathbf{3 H}\left(\mathbf{P h l}{ }^{\text {CF3 }}\right.$)	S12
Table S3	Bond Angles (${ }^{\circ}$) Determined for $\mathbf{3 H}\left(\mathbf{P h l}{ }^{\text {cF3 }}\right.$)	S14
Table S4	Cartesian Coordinates for the 30 most intense transitions of $\mathbf{3 H}\left(\mathbf{P h l}^{\mathrm{CF}}\right.$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	S16
Table S5	Orbitals Involved in the 30 Most Intense Electronic Transitions for $\mathbf{3 H}\left(\mathbf{P h l}^{\mathrm{CF}}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.	S18

General Experimental Methods

General Materials and Methods. Reactions were performed in oven-dried round-bottomed flasks unless otherwise noted. Reactions that required an inert atmosphere were conducted under a positive pressure of N_{2} using flasks fitted with Suba-Seal rubber septa or in a nitrogen filled glove box. Air and moisture sensitive reagents were transferred using standard syringe or cannula techniques. Reagents and solvents were purchased from Sigma Aldrich, Acros, Fisher, Strem, or Cambridge Isotopes Laboratories. Solvents for synthesis were of reagent grade or better and were dried by passage through activated alumina and then stored over $4 \AA$ molecular sieves prior to use. ${ }^{1}$ Column chromatography was preformed with $40-63 \mu \mathrm{~m}$ silica gel with the eluent reported in parentheses. Analytical thin-layer chromatography (TLC) was performed on precoated glass plates and visualized by UV or by staining with KMnO_{4}. 5,5-Dimethyl-1,9bis(pentafluorobenzoyly)dipyrromethane (1) was prepared using previously published method. ${ }^{2}$

Compound Characterization. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at $25{ }^{\circ} \mathrm{C}$ on a Bruker 400 MHz spectrometer. Proton spectra are referenced to the residual proton resonance of the deuterated solvent $\left(\mathrm{CDCl}_{3}=\delta 7.26\right)$ and carbon spectra are referenced to the carbon resonances of the solvent $\left(\mathrm{CDCl}_{3}=\delta 77.16\right)$. All chemical shifts are reported using the standard δ notation in parts-per-million; positive chemical shifts are to higher frequency from the given reference. LR-GCMS data were obtained using an Agilent gas chromatograph consisting of a 6850 Series GC System equipped with a 5973 Network Mass Selective Detector. Low resolution MS data was obtained using either a LCQ Advantage from Thermofinnigan or a Shimadzu LC/MS-2020 single quadrupole MS coupled with an HPLC system, with dual ESI/APCI source. High-resolution mass spectrometry analyses were either performed by the Mass Spectrometry Laboratory in the Department of Chemistry and Biochemistry at the University of Delaware.
UV-vis Absorption Experiments. UV/visible absorbance spectra were acquired on a StellarNet CCD array UV-vis spectrometer using screw cap quartz cuvettes (7q) of 1 cm pathlength from Starna. All absorbance spectra were recorded at room temperature. All samples for spectroscopic analysis were prepared in dry solvent within a N_{2} filled glovebox. TBAF titrations were conducted by placing 2.0 mL of a $10 \mu \mathrm{M}$ solutions of $\mathbf{3 H}\left(\mathbf{P h l}^{\text {CF3 }}\right)$ into a screw cap quartz cuvette. Following the recording of an initial UV-vis absorbance spectrum, $10 \mu \mathrm{~L}$ aliquots of a 0.25 mM solution of TBAF and phlorin ($10 \mu \mathrm{M}$) were added to the cuvette and changes in the UV-vis profile were monitored. Since the aliquots were all $10 \mu \mathrm{M}$ in $\mathbf{3 H}\left(\mathrm{Phl}^{\mathrm{CF}}\right)$, the concentration of phlorin did not change over the course of the experiment, which significantly simplifies analysis of the titration data. Job analysis for fluoride binding to $\mathbf{3 H}\left(\mathrm{Phl}^{\mathrm{CF}}{ }^{\mathrm{C}}\right)$ was carried out using solutions containing $10 \mu \mathrm{M}$ of total analyte (TBAF $+\mathbf{3 H}\left(\mathrm{Phl}^{\mathrm{CF3}}\right)$). The ratio of $\mathbf{3 H}\left(\mathrm{PhI}^{\mathrm{CF3}}\right)$ to fluoride was systematically varied by combining the appropriately sized aliquots of $10 \mu \mathrm{M}$ stock solutions of TBAF and phlorin. Titrations and Job analyses conducted for binding of $\mathbf{3 H}\left(\mathrm{Phl}^{\mathrm{CF3}}\right)$ to carboxylate salts were carried out using analogous methods.
Electrochemical Measurements. All electrochemistry was performed using either a CHI-620D potentiostat/galvanostat or a CHI-760D bipotentiostat. Differential pulse voltammetry (DPV) was performed for a N_{2} sparged solution using a standard three-electrode configuration for quiescent solutions using a glassy carbon working disk electrode (3.0 mm diameter), a platinum wire auxiliary electrode and a $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode. DPV experiments were performed in

1. Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518.
2. Pistner, A. J.; Lutterman, D. A.; Ghidiu, M. J.; Ma, Y.-Z.; Rosenthal, J. J. Am. Chem. Soc. 2013, 135, 6601-6607.
acetonitrile with 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF_{6}) as the supporting electrolyte. Concentrations of the phlorin analyte was 1 mM and a scan rate of $50 \mathrm{mV} / \mathrm{s}$ and sensitivity of $10 \mathrm{~mA} / \mathrm{V}$ were maintained during data acquisition.

Steady-State Fluorescence Measurements. Spectra were recorded on an automated Photon Technology International (PTI) QuantaMaster 40 fluorometer equipped with a $75-\mathrm{W}$ Xenon arc lamp, a LPS-220B lamp power supply and a Hamamatsu R2658 photomultiplier tube. Samples for fluorescence analysis were prepared in an analogous method to that described above for the preparation of samples for UV-vis spectroscopy. Samples of $\mathbf{3 H}\left(\mathrm{Ph}^{\mathrm{CF}}\right)$ were excited at $\lambda=650$ nm and emission was monitored from 680-850 nm with a step size of 0.5 nm and integration time of 0.25 seconds. Reported spectra are the average of at least three individual acquisitions.
Emission quantum yields were calculated using Nile Blue in ethanol ($\Phi_{\text {ref }}=0.27$) as the reference actinometer using the expression below, ${ }^{4}$

$$
\Phi_{e m}=\Phi_{r e f}\left(\frac{A_{r e f}}{A_{e m}}\right)\left(\frac{I_{e m}}{I_{r e f}}\right)\left(\frac{\eta_{e m}}{\eta_{r e f}}\right)^{2}
$$

where Φ_{em} and Φ_{ref} are the emission quantum yield of the sample and the reference, respectively, $A_{\text {ref }}$ and $A_{\text {em }}$ are the measured absorbance of the reference and sample at the excitation wavelength, respectively, $I_{\text {ref }}$ and $I_{\text {em }}$ are the integrated emission intensities of the reference and sample, respectively, and $\eta_{\text {ref }}$ and $\eta_{\text {em }}$ are the refractive indices of the solvents of the reference and sample, respectively.
Time-Resolved Fluorescence Measurements. The experimental setup for picosecond timecorrelated single-photon-counting (TCSPC) measurements has been described in detail previously ${ }^{5}$ and only a brief account will be given here. The detection system includes an actively quenched single photon avalanche photodiode (PDM 50CT module, Micro Photon Devices) and a TCSPC module (PicoHarp 300, PicoQuant). The light source was an optical parametric amplifier pumped by a 250 kHz Ti:Sapphire regenerative amplifier. Excitation was at 650 nm with typically 50 fs (full width at half maximum, fwhm) pulse duration and < 10 nJ pulse energy. Fluorescence emission was selected by using a 10 nm (fwhm) bandpass filter centered at 750 nm (CVI, F10-750.0-4-1.00), which were chosen according to the peak wavelength of the fluorescence emission spectra. The instrument response function (IRF) showed a fwhm of ~ 40 ps as recorded at the excitation wavelength using a dilute water suspension of coffee creamer. A 4.0-ps channel time was chosen and typically more than 10,000 counts were collected in the peak channel in order to obtain an acceptable signal-to-noise ratio. The polarization of the excitation beam was set to the magic angle (54.7°) with respect to an emission linear polarizer, which enables us to eliminate any depolarization contribution. Quantitative analysis of the time-resolved fluorescence data were performed by employing a least squares deconvolution fitting algorithm with explicit consideration of the finite IRF (FluoFit, PicoQuant) and a reduced chi-squares $\left(\chi^{2}\right)$ value is used to judge the quality of each fit.
X-Ray Crystallography. Crystals of $\mathbf{3 H}\left(\mathbf{P h l}^{\mathrm{CF3}}\right)$ were mounted using viscous oil onto a plastic mesh and cooled to the data collection temperature. Data were collected on a Bruker-AXS APEX CCD diffractometer with graphite-monochromated Mo-K α radiation ($\lambda=0.71073 \AA$). Unit
3. Brouwer, A. M. Pure Appl. Chem. 2011, 83, 2213.
4. Calvert, J. M.; Caspar, J. V.; Binstead, R. A.; Westmoreland, T. D.; Meyer, T. J. J. Am. Chem. Soc. 1982, 104, 6620.
5. Ma, Y.; Shaw, R.; Yu, X.; O'Neil, H. M.; Hong, K. J. Phys. Chem. B 2012, 116, 14451.
cell parameters were obtained from 36 data frames, $0.3^{\circ} \omega$, from three different sections of the Ewald sphere. The systematic absences in the diffraction data are uniquely consistent with the reported space group. The data sets were treated with absorption corrections based on redundant multiscan data. The structures were solved using direct methods and refined with fullmatrix, least-squares procedures on F^{2}. All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were treated as idealized contributions. Structure factors are contained in the SHELXTL 6.12 program library The CIF has been deposited under CCDC 960702.

Computations. All density functional calculations were performed using the Gaussian 09 (G09) program package, ${ }^{6}$ with the Becke three-parameter hybrid exchange and Lee-Yang-Parr correlation functional (B3LYP). ${ }^{7-9}$ A $6-31 \mathrm{G}^{*}$ basis set was used for all atoms. All geometry optimizations were performed in C_{1} symmetry with subsequent vibrational frequency analysis to confirm that each stationary point was a minimum on the potential energy surface. A polarizable continuum model was utilized in the geometry optimization to model the solvent effects of the system. ${ }^{10-14}$ The vertical singlet transition energies of the complexes were computed at the time-dependent density functional theory (TDDFT) level in methanol within G09 by using the optimized ground state structure. Molecular orbital were visualized using Visual Molecular Dynamics (VMD) software. ${ }^{15}$
6. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; et al. Gaussian 09, Revision A.1; Gaussian, Inc., Wallingford CT, 2009.
7. Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
8. Becke, A. D. Phys. Rev. A: Gen. Phys. 1988, 38, 3098.
9. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785.
10. Cances, M. T.; Mennucci, B.; Tomasi, J. J. Chem. Phys. 1997, 107, 3032.
11. Tomasi, J.; Persico, M. Chem. Rev. 1994, 94, 2027.
12. Cossi, M.; Barone, V.; Mennucci, B.; Tomasi, J. Chem. Phys. Lett. 1998, 286, 253.
13. Mennucci, B.; Tomasi, J. J. Chem. Phys. 1997, 106, 5151.
14. Cossi, M.; Scalmani, G.; Rega, N.; Barone, V. J. Chem. Phys. 2002, 117, 43.
15. www.ks.uiuc.edu

Synthetic Protocols

5-(3,5-bis(trifluoromethyl)phenyl)dipyrromethane (2). This compound was prepared by
 adapting a literature method. ${ }^{16}$ Pyrrole ($25 \mathrm{~mL}, 360 \mathrm{mmol}$) and 3,5bis(trifluoromethyl)benzaldehyde ($1.76 \mathrm{~mL}, 14.4 \mathrm{mmol}$) were combined in a round bottom flask and the resulting mixture was sparged with N_{2} for 10 minutes. To the degassed solution was added trifluoroacetic acid ($110 \mu \mathrm{~L}, 1.4$ mmol) and the mixture was stirred for 5 min , following which time, the reaction was quenched with 100 mL of 0.1 M NaOH . The product was then extracted into ethyl acetate and this organic layer was washed with water and dried over sodium sulfate. Following removal of the solvent by rotary evaporation, the desired product was purified via vacuum distillation to give 3.1 g of the title compound as a white solid (69%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta / \mathrm{ppm}: 8.14(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 6.73(\mathrm{~m}, J=2.7,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.17(\mathrm{q}, \mathrm{J}=$ $6.1,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.03(\mathrm{~m}, 2 \mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) δ / ppm : 128.23, 118.26, 108.81, 107.77, 77.16, 33.18. GCMS: [M] ${ }^{+} \mathrm{m} / \mathrm{z}$: calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~F}_{6} \mathrm{~N}_{2}, 358.09$; found, 358. HR-EI-MS: m/z: calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~F}_{6} \mathrm{~N}_{2}, 358.0905$; found, 358.0895

5,5-Dimethyl-10,20-bis(pentafluorophenyl)-15-(bis-3,5-trifluoromethylphenyl)phlorin

$\left(3 \mathrm{H}\left(\mathrm{Phl}^{\mathrm{CF}}\right)\right)$. This compound was prepared by amending a previously described method. Error! Bookmark not defined. To a solution of 5,5-Dimethyl-1,9-bis(pentafluorobenzoyly)dipyrromethane (281 $\mathrm{mg}, 0.50 \mathrm{mmol}$) dissolved in 40 mL of THF and MeOH (3:1) was added 946 mg of NaBH_{4} (25.0 mmol). The resulting mixture was stirred at room temperature for 2 hrs , following which time, the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with dichloromethane. The organic layer was washed sequentially with $\mathrm{H}_{2} \mathrm{O}$ and brin e and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was then removed via rotary evaporation and the resulting residue was dissolved in 200 mL of dichloromethane and combined with $173 \mathrm{mg}(0.50 \mathrm{mmol})$ of compound 2 and $1.54 \mathrm{~mL}(20.0 \mathrm{mmol})$ of trifluoroacetic acid. The resulting solution was stirred at room temperature for 15 min , after which time 167 mg of DDQ (0.730 mmol) was added to the reaction. After stirring the reaction for an additional $5 \mathrm{~min}, 14 \mathrm{~mL}(100 \mathrm{mmol})$ of triethylamine was added. After stirring the solution for an additional 30 min , the reaction was filtered through a pad of silica and eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ until the mobile phase was no longer green. Following removal of the solvent under reduced pressure, the crude green colored material was purified by flash chromatography on silica using hexanes and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2: 1)$ as the eluent to deliver 183 mg of the title compound as an deep green powder (41%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta / \mathrm{ppm}: 8.17$ (s, 2H), 8.05 (s, 1H), 7.38 (d, J = 5.0 Hz, 2H), 7.18 (d, J = $5.0 \mathrm{~Hz}, 2 \mathrm{H}$), $6.99(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 2 \mathrm{H})$, $4.98(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 6 \mathrm{H}){ }^{19} \mathrm{~F} \operatorname{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) \mathrm{\delta} / \mathrm{ppm}$: $-63.49(\mathrm{~s}),-139.09$ to -$139.60(\mathrm{~m}),-153.73(\mathrm{t}, J=21.0 \mathrm{~Hz}),-162.35(\mathrm{td}, J=23.3,8.0 \mathrm{~Hz}) . \mathrm{HR}-E S I-M S:[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$: calcd for $\mathrm{C}_{42} \mathrm{H}_{21} \mathrm{~F}_{16} \mathrm{~N}_{4}$, 885.1511; found, 885.1496.
16. Littler, B. J.; Miller, M. A.; Hung, C.-H.; Wagner, R. W.; O’Shea, D. F.; Boyle, P. D.; Lindsey, J. S. J. Org. Chem. 1999, 64, 1391-1396.

Figure S1. UV-vis absorbance spectrum of $\mathbf{3 H}\left(\mathrm{Phl}^{\mathrm{CF3}}\right.$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (green). The red lines indicate the 30 most intense electronic transitions in that solvent as calculated by TD-DFT. The orbitals involved in these 30 transitions are illustrated above and listed in Table S5.

Figure S2. Changes in the UV-vis absorption profile of $3 \mathbf{H}\left(\mathrm{Phl}^{\mathrm{CF3}}\right)$ upon titration with TBAF in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. (b) Job plot for fluoride binding to $\mathbf{3 H}\left(\mathrm{Phl}^{\mathrm{CF3}}\right)$. (c) Hill plot confirming the allosteric formation of $\mathbf{3 H}\left(\mathrm{Phl}^{\mathrm{CF}}\right) \cdot \mathbf{2 F}^{-}$.

Figure S3. Changes in the UV-vis absorption profile of $\mathbf{3 H}\left(\mathrm{Phl}^{\mathrm{CF}}\right)$ upon titration with TBAF in $\mathrm{CH}_{3} \mathrm{CN}$. (b) Job plot for fluoride binding to $3 \mathbf{H}\left(\mathrm{Phl}^{\mathrm{CF} 3}\right)$. (c) Hill plot confirming the allosteric formation of $\mathbf{3 H}\left(\mathrm{Phl}^{\mathrm{CF3}}\right) \cdot \mathbf{2 F}^{-}$.

Figure S4. Changes in the UV-vis absorbance spectrum of $\mathbf{3 H}\left(\mathrm{Phl}^{\mathrm{CF3}}\right) \cdot \mathrm{OAc}^{-}$in MeCN upon addition of aliquots of MeOH .

Figure S5. Fully labeled solid-state structure of $\mathbf{3 H}\left(\mathrm{PhI}^{\mathrm{CF}}\right)$. Ellipsoids are shown at the 50% probability level and all non-nitrogen hydrogen atoms are omitted for clarity.

Table S1 Crystallographic Data for $\mathbf{3 H}\left(\mathrm{Phl}^{\mathrm{CF}}\right)$	
Formula	$\mathrm{C}_{42} \mathrm{H}_{24} \mathrm{~F}_{16} \mathrm{~N}_{4}$
F_{w}	884.62
Crystal System	Monoclinic
Space Group	P_{1} / n
a	$15.454(8) \AA$
b	$9.361(5) \AA$
c	$27.907(14) \AA$
α	90°
β	$96.211(8)^{\circ}$
γ	90°
V	$4014(3) \AA^{3}$
Z	4
Temp	$200(2) \mathrm{K}$
$\mathrm{D}_{\text {calcd }}$	$1.464 \mathrm{mg} / \mathrm{m}^{3}$
2θ range	$3.16-50.00^{\circ}$
$\mu($ Mo K α)	$0.139 \mathrm{~mm}^{-1}$
Relections	41796
Unique	7066
$R($ int $)$	0.0527
R_{1}	0.0826
w R_{2}	0.2360

Table S2 Bond Lengths (\AA) Determined for $\mathbf{3 H}\left(\mathrm{Phl}^{\mathrm{CF}}\right)$.

Bond	Length	Bond	Length
$\mathrm{C}(1)-\mathrm{F}(1)$	$1.340(10)$	$\mathrm{C}(22)-\mathrm{C}(23)$	$1.397(16)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.371(9)$	$\mathrm{C}(23)-\mathrm{F}(9)$	$1.344(11)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.387(12)$	$\mathrm{C}(23)-\mathrm{C}(24)$	$1.408(10)$
$\mathrm{C}(2)-\mathrm{F}(2)$	$1.326(12)$	$\mathrm{C}(24)-\mathrm{F}(10)$	$1.356(9)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.357(17)$	$\mathrm{C}(24)-\mathrm{C}(25)$	$1.356(9)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.347(17)$	$\mathrm{C}(26)-\mathrm{N}(3)$	$1.391(6)$
$\mathrm{C}(3)-\mathrm{F}(3)$	$1.355(9)$	$\mathrm{C}(26)-\mathrm{C}(27)$	$1.443(7)$
$\mathrm{C}(4)-\mathrm{F}(4)$	$1.343(11)$	$\mathrm{C}(27)-\mathrm{C}(28)$	$1.343(7)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.362(9)$	$\mathrm{C}(28)-\mathrm{C}(29)$	$1.447(7)$
$\mathrm{C}(5)-\mathrm{F}(5)$	$1.333(8)$	$\mathrm{C}(29)-\mathrm{N}(3)$	$1.350(6)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.377(8)$	$\mathrm{C}(29)-\mathrm{C}(30)$	$1.421(7)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.479(6)$	$\mathrm{C}(30)-\mathrm{C}(39)$	
$\mathrm{C}(7)-\mathrm{C}(42)$	$1.373(7)$	$\mathrm{C}(30)-\mathrm{C}(36)$	$1.394(7)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.442(6)$	$\mathrm{C}(31)-\mathrm{C}(36)$	$1.349(6)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.375(6)$	$\mathrm{C}(31)-\mathrm{C}(32)$	$1.391(8)$
$\mathrm{C}(8)-\mathrm{N}(1)$	$1.379(6)$	$\mathrm{C}(32)-\mathrm{C}(33)$	$1.377(16)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.397(7)$	$\mathrm{C}(32)-\mathrm{C}(37)$	$1.501(17)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.368(6)$	$\mathrm{C}(33)-\mathrm{C}(34)$	$1.353(16)$
$\mathrm{C}(11)-\mathrm{N}(1)$	$1.367(5)$	$\mathrm{C}(34)-\mathrm{C}(35)$	$1.362(9)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.513(6)$	$\mathrm{C}(34)-\mathrm{C}(38)$	$1.503(17)$
$\mathrm{C}(12)-\mathrm{C}(15)$	$1.511(6)$	$\mathrm{C}(35)-\mathrm{C}(36)$	$1.381(9)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.529(6)$	$\left.\mathrm{C}(37)-\mathrm{F}(11)^{\prime}\right)$	$0.99(3)$
$\mathrm{C}(12)-\mathrm{C}(14)$	$1.538(7)$	$\mathrm{C}(37)-\mathrm{F}(11)$	$1.249(13)$
$\mathrm{C}(15)-\mathrm{N}(2)$	$1.362(5)$	$\mathrm{C}(37)-\mathrm{F}(13)$	$1.271(18)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.380(6)$	$\mathrm{C}(37)-\mathrm{F}(12)$	$1.341(14)$
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.393(7)$	$\mathrm{C}(37)-\mathrm{F}(13)$	$1.37(4)$
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.387(6)$	$\left.\mathrm{C}(37)-\mathrm{F}(12)^{\prime}\right)$	$1.39(3)$
$\mathrm{C}(18)-\mathrm{N}(2)$	$1.363(6)$	$\mathrm{C}(38)-\mathrm{F}(16)$	$1.266(19)$
$\mathrm{C}(18)-\mathrm{C}(19)$	$1.419(6)$	$\mathrm{C}(38)-\mathrm{F}(15)$	$1.291(10)$
$\mathrm{C}(19)-\mathrm{C}(26)$	$1.382(6)$	$\mathrm{C}(38)-\mathrm{F}(14)$	$1.349(14)$
$\mathrm{C}(19)-\mathrm{C}(25)$	$1.499(6)$	$\mathrm{C}(39)-\mathrm{N}(4)$	$1.375(6)$
$\mathrm{C}(20)-\mathrm{F}(6)$	$1.318(8)$	$\mathrm{C}(39)-\mathrm{C}(40)$	$1.441(7)$
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.375(9)$	$\mathrm{C}(40)-\mathrm{C}(41)$	$1.356(7)$
$\mathrm{C}(20)-\mathrm{C}(25)$	$1.409(9)$	$\mathrm{C}(41)-\mathrm{C}(42)$	$1.429(7)$
$\mathrm{C}(21)-\mathrm{F}(7)$	$1.346(11)$	$\mathrm{C}(42)-\mathrm{N}(4)$	$1.388(6)$
$\mathrm{C}(21)-\mathrm{C}(22)$	$1.346(15)$	$\mathrm{C}(1)-\mathrm{F}(1)$	$1.340(10)$
$\mathrm{C}(22)-\mathrm{F}(8)$	$1.325(8)$	$\mathrm{C}(1)-\mathrm{C}(6)$	$1.371(9)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.371(9)$	$\mathrm{C}(26)-\mathrm{N}(3)$	$1.391(6)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.387(12)$	$\mathrm{C}(26)-\mathrm{C}(27)$	$1.443(7)$
$\mathrm{C}(2)-\mathrm{F}(2)$	$1.326(12)$	$\mathrm{C}(27)-\mathrm{C}(28)$	$1.343(7)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.357(17)$	$\mathrm{C}(28)-\mathrm{C}(29)$	$1.447(7)$

Bond	Length	Bond	Length
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.347(17)$	$\mathrm{C}(22)-\mathrm{C}(23)$	$1.397(16)$
$\mathrm{C}(3)-\mathrm{F}(3)$	$1.355(9)$	$\mathrm{C}(23)-\mathrm{F}(9)$	$1.344(11)$
$\mathrm{C}(4)-\mathrm{F}(4)$	$1.343(11)$	$\mathrm{C}(23)-\mathrm{C}(24)$	$1.408(10)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.362(9)$	$\mathrm{C}(24)-\mathrm{F}(10)$	$1.356(9)$
$\mathrm{C}(5)-\mathrm{F}(5)$	$1.333(8)$	$\mathrm{C}(24)-\mathrm{C}(25)$	$1.356(9)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.377(8)$	$\mathrm{C}(29)-\mathrm{N}(3)$	$1.350(6)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.479(6)$	$\mathrm{C}(29)-\mathrm{C}(30)$	$1.421(7)$
$\mathrm{C}(7)-\mathrm{C}(42)$	$1.373(7)$	$\mathrm{C}(30)-\mathrm{C}(39)$	$1.394(7)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.442(6)$	$\mathrm{C}(30)-\mathrm{C}(36)$	$1.493(6)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.375(6)$	$\mathrm{C}(31)-\mathrm{C}(36)$	$1.349(9)$
$\mathrm{C}(8)-\mathrm{N}(1)$	$1.379(6)$	$\mathrm{C}(31)-\mathrm{C}(32)$	$1.391(8)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.397(7)$	$\mathrm{C}(32)-\mathrm{C}(33)$	$1.377(16)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.368(6)$	$\mathrm{C}(32)-\mathrm{C}(37)$	$1.501(17)$
$\mathrm{C}(11)-\mathrm{N}(1)$	$1.367(5)$	$\mathrm{C}(33)-\mathrm{C}(34)$	$1.353(16)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.513(6)$	$\mathrm{C}(34)-\mathrm{C}(35)$	$1.362(9)$
$\mathrm{C}(12)-\mathrm{C}(15)$	$1.511(6)$	$\mathrm{C}(34)-\mathrm{C}(38)$	$1.503(17)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.529(6)$	$\mathrm{C}(35)-\mathrm{C}(36)$	$1.381(9)$
$\mathrm{C}(12)-\mathrm{C}(14)$	$1.538(7)$	$\mathrm{C}(37)-\mathrm{F}(11)$	$0.99(3)$
$\mathrm{C}(15)-\mathrm{N}(2)$	$1.362(5)$	$\mathrm{C}(37)-\mathrm{F}(11)$	$1.249(13)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.380(6)$	$\mathrm{C}(37)-\mathrm{F}(13)$	$1.271(18)$
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.393(7)$	$\mathrm{C}(37)-\mathrm{F}(12)$	$1.341(14)$
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.387(6)$	$\mathrm{C}(37)-\mathrm{F}(13)$	$1.37(4)$
$\mathrm{C}(18)-\mathrm{N}(2)$	$1.363(6)$	$\mathrm{C}(37)-\mathrm{F}(12 ')$	$1.39(3)$
$\mathrm{C}(18)-\mathrm{C}(19)$	$1.419(6)$	$\mathrm{C}(38)-\mathrm{F}(16)$	$1.266(19)$
$\mathrm{C}(19)-\mathrm{C}(26)$	$1.382(6)$	$\mathrm{C}(38)-\mathrm{F}(15)$	$1.291(10)$
$\mathrm{C}(19)-\mathrm{C}(25)$	$1.499(6)$	$\mathrm{C}(38)-\mathrm{F}(14)$	$1.349(14)$
$\mathrm{C}(20)-\mathrm{F}(6)$	$1.318(8)$	$\mathrm{C}(39)-\mathrm{N}(4)$	$1.375(6)$
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.375(9)$	$\mathrm{C}(39)-\mathrm{C}(40)$	$1.441(7)$
$\mathrm{C}(20)-\mathrm{C}(25)$	$1.409(9)$	$\mathrm{C}(40)-\mathrm{C}(41)$	$1.356(7)$
$\mathrm{C}(21)-\mathrm{F}(7)$	$1.346(11)$	$\mathrm{C}(41)-\mathrm{C}(42)$	$1.429(7)$
$\mathrm{C}(21)-\mathrm{C}(22)$	$1.346(15)$	$\mathrm{C}(42)-\mathrm{N}(4)$	$1.388(6)$
$\mathrm{C}(22)-\mathrm{F}(8)$	$1.325(8)$		

Table S3 Bond Angles $\left({ }^{\circ}\right)$ Determined for $\mathbf{3 H}\left(\mathrm{Phl}^{\mathrm{CF}}\right)$.

Atoms	Angle	Atoms	Angle
$\mathrm{F}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	120.3(6)	F(6)-C(20)-C(21)	118.1(7)
$F(1)-C(1)-C(2)$	118.4(8)	$F(6)-C(20)-C(25)$	120.6(5)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	121.3(9)	$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(25)$	121.2(8)
$\mathrm{F}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	119.5(10)	$F(7)-C(21)-C(22)$	119.2(8)
$\mathrm{F}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	120.7(13)	$F(7)-C(21)-C(20)$	120.0(10)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	119.7(9)	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(20)$	120.8(9)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{F}(3)$	121.5(14)	$F(8)-C(22)-C(21)$	122.9(12)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	120.5(7)	$F(8)-C(22)-C(23)$	116.8(11)
$F(3)-C(3)-C(2)$	117.7(13)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	120.3(7)
$F(4)-C(4)-C(3)$	120.3(8)	F(9)-C(23)-C(22)	123.2(8)
$\mathrm{F}(4)-\mathrm{C}(4)-\mathrm{C}(5)$	120.8(10)	$F(9)-C(23)-C(24)$	118.7(10)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	118.9(10)	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	118.0(8)
F(5)-C(5)-C(4)	117.0(7)	$\mathrm{F}(10)-\mathrm{C}(24)-\mathrm{C}(25)$	119.5(6)
$F(5)-C(5)-C(6)$	119.4(5)	$\mathrm{F}(10)-\mathrm{C}(24)-\mathrm{C}(23)$	117.9(7)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	123.6(8)	$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(23)$	122.6(8)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	115.9(6)	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(20)$	117.1(6)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	122.3(6)	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(19)$	122.8(6)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	121.8(5)	$\mathrm{C}(20)-\mathrm{C}(25)-\mathrm{C}(19)$	120.1(5)
$\mathrm{C}(42)-\mathrm{C}(7)-\mathrm{C}(8)$	124.6(4)	$\mathrm{C}(19)-\mathrm{C}(26)-\mathrm{N}(3)$	125.3(4)
$\mathrm{C}(42)-\mathrm{C}(7)-\mathrm{C}(6)$	120.0(4)	C(19)-C(26)-C(27)	125.3(4)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	115.3(4)	$\mathrm{N}(3)-\mathrm{C}(26)-\mathrm{C}(27)$	109.4(4)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{N}(1)$	106.7(4)	$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(26)$	107.1(4)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	130.7(4)	C(27)-C(28)-C(29)	107.0(4)
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(7)$	122.6(4)	$\mathrm{N}(3)-\mathrm{C}(29)-\mathrm{C}(30)$	125.3(4)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	107.8(4)	$\mathrm{N}(3)-\mathrm{C}(29)-\mathrm{C}(28)$	110.5(4)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	108.3(4)	$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{C}(28)$	124.0(4)
$\mathrm{N}(1)-\mathrm{C}(11)-\mathrm{C}(10)$	107.1(4)	C(39)-C(30)-C(29)	124.0(4)
$\mathrm{N}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	121.3(4)	C(39)-C(30)-C(36)	119.0(4)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	131.3(4)	C(29)-C(30)-C(36)	117.0(4)
$\mathrm{C}(15)-\mathrm{C}(12)-\mathrm{C}(11)$	105.6(3)	C(36)-C(31)-C(32)	122.4(8)
$\mathrm{C}(15)-\mathrm{C}(12)-\mathrm{C}(13)$	110.0(4)	C(33)-C(32)-C(31)	119.8(10)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	109.9(4)	C(33)-C(32)-C(37)	120.6(8)
$\mathrm{C}(15)-\mathrm{C}(12)-\mathrm{C}(14)$	110.4(4)	C(31)-C(32)-C(37)	119.6(10)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(14)$	111.6(4)	C(34)-C(33)-C(32)	119.5(7)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(14)$	109.1(4)	C(33)-C(34)-C(35)	118.2(9)
$\mathrm{N}(2)-\mathrm{C}(15)-\mathrm{C}(16)$	106.5(4)	C(33)-C(34)-C(38)	123.3(10)
$\mathrm{N}(2)-\mathrm{C}(15)-\mathrm{C}(12)$	122.2(4)	C(35)-C(34)-C(38)	118.5(12)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(12)$	131.2(4)	C(34)-C(35)-C(36)	125.2(8)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	108.4(4)	$\mathrm{C}(31)-\mathrm{C}(36)-\mathrm{C}(35)$	114.9(5)
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	107.4(4)	$\mathrm{C}(31)-\mathrm{C}(36)-\mathrm{C}(30)$	123.5(5)
$\mathrm{N}(2)-\mathrm{C}(18)-\mathrm{C}(17)$	106.8(4)	C(35)-C(36)-C(30)	121.6(6)

Atoms	Angle	Atoms	Angle
$\mathrm{N}(2)-\mathrm{C}(18)-\mathrm{C}(19)$	$122.6(4)$	$\mathrm{F}\left(11^{\prime}\right)-\mathrm{C}(37)-\mathrm{F}(11)$	$137(2)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$130.4(4)$	$\mathrm{F}\left(11^{\prime}\right)-\mathrm{C}(37)-\mathrm{F}(13)$	$46(3)$
$\mathrm{C}(26)-\mathrm{C}(19)-\mathrm{C}(18)$	$126.0(4)$	$\mathrm{F}(11)-\mathrm{C}(37)-\mathrm{F}(13)$	$111.5(16)$
$\mathrm{C}(26)-\mathrm{C}(19)-\mathrm{C}(25)$	$119.0(4)$	$\mathrm{F}\left(11^{\prime}\right)-\mathrm{C}(37)-\mathrm{F}(12)$	$62(4)$
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(25)$	$114.9(4)$	$\mathrm{F}(11)-\mathrm{C}(37)-\mathrm{F}(12)$	$106.0(8)$
$\mathrm{F}(13)-\mathrm{C}(37)-\mathrm{F}(12)$	$105.4(12)$	$\mathrm{F}(16)-\mathrm{C}(38)-\mathrm{F}(14)$	$102.2(9)$
$\mathrm{F}\left(11^{\prime}\right)-\mathrm{C}(37)-\mathrm{F}\left(13^{\prime}\right)$	$121(2)$	$\mathrm{F}(15)-\mathrm{C}(38)-\mathrm{F}(14)$	$102.2(9)$
$\mathrm{F}(11)-\mathrm{C}(37)-\mathrm{F}\left(13^{\prime}\right)$	$46(3)$	$\mathrm{F}(16)-\mathrm{C}(38)-\mathrm{C}(34)$	$119.5(10)$
$\mathrm{F}(13)-\mathrm{C}(37)-\mathrm{F}\left(13^{\prime}\right)$	$139(3)$	$\mathrm{F}(15)-\mathrm{C}(38)-\mathrm{C}(34)$	$112.6(9)$
$\mathrm{F}(12)-\mathrm{C}(37)-\mathrm{F}\left(13^{\prime}\right)$	$64(3)$	$\mathrm{F}(14)-\mathrm{C}(38)-\mathrm{C}(34)$	$109.6(14)$
$\mathrm{F}\left(11^{\prime}\right)-\mathrm{C}(37)-\mathrm{F}\left(12^{\prime}\right)$	$118(3)$	$\mathrm{N}(4)-\mathrm{C}(39)-\mathrm{C}(30)$	$125.0(4)$
$\mathrm{F}(11)-\mathrm{C}(37)-\mathrm{F}\left(12^{\prime}\right)$	$51(3)$	$\mathrm{N}(4)-\mathrm{C}(39)-\mathrm{C}(40)$	$105.9(4)$
$\mathrm{F}(13)-\mathrm{C}(37)-\mathrm{F}\left(12^{\prime}\right)$	$73(3)$	$\mathrm{C}(30)-\mathrm{C}(39)-\mathrm{C}(40)$	$129.0(4)$
$\mathrm{F}(12)-\mathrm{C}(37)-\mathrm{F}\left(12^{\prime}\right)$	$149.5(16)$	$\mathrm{C}(41)-\mathrm{C}(40)-\mathrm{C}(39)$	$108.3(4)$
$\mathrm{F}\left(13^{\prime}\right)-\mathrm{C}(37)-\mathrm{F}\left(12^{\prime}\right)$	$97(2)$	$\mathrm{C}(40)-\mathrm{C}(41)-\mathrm{C}(42)$	$109.0(4)$
$\mathrm{F}\left(11^{\prime}\right)-\mathrm{C}(37)-\mathrm{C}(32)$	$111.0(17)$	$\mathrm{C}(7)-\mathrm{C}(42)-\mathrm{N}(4)$	$126.3(4)$
$\mathrm{F}(11)-\mathrm{C}(37)-\mathrm{C}(32)$	$112.1(11)$	$\mathrm{C}(7)-\mathrm{C}(42)-\mathrm{C}(41)$	$127.9(4)$
$\mathrm{F}(13)-\mathrm{C}(37)-\mathrm{C}(32)$	$113.6(8)$	$\mathrm{N}(4)-\mathrm{C}(42)-\mathrm{C}(41)$	$105.8(4)$
$\mathrm{F}(12)-\mathrm{C}(37)-\mathrm{C}(32)$	$107.7(13)$	$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{C}(8)$	$109.9(4)$
$\mathrm{F}\left(13^{\prime}\right)-\mathrm{C}(37)-\mathrm{C}(32)$	$107(2)$	$\mathrm{C}(18)-\mathrm{N}(2)-\mathrm{C}(15)$	$110.8(3)$
$\mathrm{F}\left(12^{\prime}\right)-\mathrm{C}(37)-\mathrm{C}(32)$	$100.5(11)$	$\mathrm{C}(29)-\mathrm{N}(3)-\mathrm{C}(26)$	$106.0(3)$
$\mathrm{F}(16)-\mathrm{C}(38)-\mathrm{F}(15)$	$108.8(16)$	$\mathrm{C}(39)-\mathrm{N}(4)-\mathrm{C}(42)$	$110.8(4)$

Table S4 Cartesian coordinates for DFT optimized structure of $3 \mathrm{H}\left(\mathrm{Phl}^{\mathrm{CF}_{3}}\right)$.

Atom	x-coordinate	y-coordinate	z-coordinate
C	5.316298	-0.89153	1.564584
C	6.639974	-0.9655	1.987412
C	7.577042	-1.63523	1.207088
C	7.181295	-2.22081	0.007552
C	5.855101	-2.12958	-0.39994
C	4.879532	-1.46621	0.361121
C	3.462565	-1.4046	-0.0693
C	2.801457	-2.64307	-0.36661
C	3.048611	-3.9501	0.063831
H	3.796975	-4.23657	0.790118
C	2.132932	-4.80186	-0.58428
H	2.044617	-5.86985	-0.44444
C	1.344437	-4.02484	-1.43141
C	0.161935	-4.38969	-2.31074
C	0.235111	-5.8799	-2.69082
H	0.247833	-6.5265	-1.80895
H	1.143291	-6.07218	-3.26956
H	-0.62985	-6.1551	-3.30206
C	0.141025	-3.55288	-3.6132
H	0.038071	-2.47745	-3.43188
H	-0.70984	-3.85524	-4.2317
H	1.061635	-3.71586	-4.18329
C	-1.08143	-4.12254	-1.48213
C	-2.03343	-5.00861	-0.95678
H	-2.03387	-6.08072	-1.09039
C	-2.98228	-4.25665	-0.25413
H	-3.85239	-4.63413	0.264516
C	-2.60128	-2.90308	-0.33292
C	-3.2303	-1.73051	0.169049
C	-5.67719	-2.33109	-0.02043
C	-6.94702	-2.51081	0.519255
C	-7.16059	-2.26516	1.872586
C	-6.10318	-1.84279	2.672339
C	-4.84095	-1.672	2.111117
C	-4.59053	-1.90756	0.754116
C	-2.68093	-0.44747	0.129576
C	-3.41044	0.770348	0.431161
H	-4.44548	0.830574	0.739582
C	-2.55268	1.801148	0.213065
H	-2.74805	2.856145	0.344977
C	-1.28119	1.20785	-0.18524

C	-0.07799	1.969939	-0.35349
C	-0.94038	4.068578	-1.4295
H	-1.41668	3.451862	-2.18459
C	-1.06667	5.457752	-1.48944
C	-0.44556	6.270156	-0.54167
H	-0.54258	7.347818	-0.5916
C	0.299628	5.670254	0.473818
C	0.418257	4.281305	0.545397
H	0.976061	3.832098	1.359693
C	-0.19451	3.45642	-0.41077
C	-1.92276	6.068625	-2.56638
C	1.024376	6.528933	1.475525
C	1.199871	1.409095	-0.37948
C	2.482637	2.072128	-0.41481
H	2.624347	3.135176	-0.54316
C	3.460304	1.132598	-0.25796
H	4.528127	1.301606	-0.25295
C	2.843948	-0.16602	-0.17809
F	4.447553	-0.25831	2.367097
F	7.01205	-0.40968	3.147837
F	8.850448	-1.71351	1.604242
F	8.083358	-2.85139	-0.75603
F	5.530987	-2.68239	-1.57792
F	-5.51966	-2.5616	-1.33241
F	-7.9646	-2.90723	-0.25642
F	-8.37655	-2.43238	2.401199
F	-6.30321	-1.61188	3.976366
F	-3.84782	-1.2778	2.921548
F	-3.24061	5.981851	-2.26417
F	-1.64802	7.376805	-2.7581
F	-1.75694	5.441445	-3.7532
F	0.410335	7.717573	1.664176
F	2.289893	6.801848	1.073967
F	1.12068	5.926036	2.681103
N	1.739989	-2.72109	-1.26096
H	1.50223	-1.96388	-1.88699
N	-1.44198	-2.86659	-1.08586
H	-0.96312	-1.98298	-1.23636
N	-1.37774	-0.14275	-0.24667
N	1.472914	0.057512	-0.29805
H	0.725177	-0.59908	-0.08814

Table S5 MOs Involved in the 30 Most Intense Electronic Transitions for $\mathbf{3 H}\left(\mathrm{Phl}^{\mathrm{CF}}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Excited State	Molecular Orbitals	Energy	f value
Excited State 1	$222 \rightarrow 223$	$\begin{aligned} & 1.9058 \mathrm{eV} \\ & 650.56 \mathrm{~nm} \end{aligned}$	$f=0.4962$
Excited State 2	$\begin{aligned} & 221 \rightarrow 223 \\ & 222 \rightarrow 224 \end{aligned}$	$\begin{aligned} & 2.9548 \mathrm{eV} \\ & 419.60 \mathrm{~nm} \end{aligned}$	$f=0.0166$
Excited State 3	$\begin{aligned} & 221 \rightarrow 223 \\ & 222 \rightarrow 224 \\ & 222 \rightarrow 226 \\ & 222 \rightarrow 228 \end{aligned}$	$\begin{aligned} & 2.9548 \mathrm{eV} \\ & 419.60 \mathrm{~nm} \end{aligned}$	$f=1.1573$
Excited State 4	$222 \rightarrow 225$	$\begin{aligned} & 3.0961 \mathrm{eV} \\ & 400.45 \mathrm{~nm} \end{aligned}$	$f=0.0088$
Excited State 5	$\begin{aligned} & 220 \rightarrow 223 \\ & 221 \rightarrow 224 \end{aligned}$	$\begin{aligned} & 3.2528 \mathrm{eV} \\ & 381.16 \mathrm{~nm} \end{aligned}$	$f=0.0057$
Excited State 6	$\begin{aligned} & 219 \rightarrow 223 \\ & 220 \rightarrow 223 \\ & 221 \rightarrow 224 \\ & 222 \rightarrow 228 \end{aligned}$	$\begin{aligned} & 3.3236 \mathrm{eV} \\ & 373.04 \mathrm{~nm} \end{aligned}$	$f=0.2324$
Excited State 7	$222 \rightarrow 226$	$\begin{aligned} & 3.3991 \mathrm{eV} \\ & 364.76 \mathrm{~nm} \end{aligned}$	$f=0.0005$
Excited State 8	$\begin{aligned} & 222 \rightarrow 227 \\ & 222 \rightarrow 228 \end{aligned}$	$\begin{aligned} & 3.5837 \mathrm{eV} \\ & 345.96 \mathrm{~nm} \end{aligned}$	$f=0.0083$
Excited State 9	$\begin{aligned} & 219 \rightarrow 223 \\ & 221 \rightarrow 223 \\ & 222 \rightarrow 227 \\ & 222 \rightarrow 228 \end{aligned}$	$\begin{aligned} & 3.6266 \mathrm{eV} \\ & 341.88 \mathrm{~nm} \end{aligned}$	$f=0.1875$
Excited State 10	$\begin{aligned} & 216 \rightarrow 223 \\ & 219 \rightarrow 223 \\ & 221 \rightarrow 224 \end{aligned}$	$\begin{aligned} & 3.6500 \mathrm{eV} \\ & 339.68 \mathrm{~nm} \end{aligned}$	$f=0.2639$
Excited State 11	$\begin{aligned} & 216 \rightarrow 223 \\ & 218 \rightarrow 223 \\ & 219 \rightarrow 223 \end{aligned}$	$\begin{aligned} & 3.7232 \mathrm{eV} \\ & 333.00 \mathrm{~nm} \end{aligned}$	$f=0.0270$
Excited State 12	$\begin{aligned} & 216 \rightarrow 223 \\ & 218 \rightarrow 223 \\ & 222 \rightarrow 229 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.7580 \mathrm{eV} \\ & 329.92 \mathrm{~nm} \end{aligned}$	$f=0.0177$
Excited State 13	$\begin{aligned} & 217 \rightarrow 223 \\ & 218 \rightarrow 223 \\ & 222 \rightarrow 229 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.7620 \mathrm{eV} \\ & 329.57 \mathrm{~nm} \end{aligned}$	$f=0.0217$

Excited State	Molecular Orbitals	Energy	f value
Excited State 14	$\begin{aligned} & 214 \rightarrow 223 \\ & 215 \rightarrow 223 \\ & 217 \rightarrow 223 \\ & 222 \rightarrow 229 \\ & 222 \rightarrow 230 \end{aligned}$	$\begin{aligned} & 3.8552 \mathrm{eV} \\ & 321.61 \mathrm{~nm} \end{aligned}$	$f=0.0031$
Excited State 15	$\begin{aligned} & 214 \rightarrow 223 \\ & 215 \rightarrow 223 \\ & 217 \rightarrow 223 \\ & 222 \rightarrow 229 \end{aligned}$	$\begin{aligned} & 3.8676 \mathrm{eV} \\ & 320.57 \mathrm{~nm} \end{aligned}$	$\mathrm{f}=0.0102$
Excited State 16	$\begin{aligned} & 214 \rightarrow 223 \\ & 215 \rightarrow 223 \\ & 222 \rightarrow 229 \\ & 222 \rightarrow 230 \end{aligned}$	$\begin{aligned} & 3.8955 \mathrm{eV} \\ & 318.28 \mathrm{~nm} \end{aligned}$	$f=0.0007$
Excited State 17	$\begin{aligned} & 214 \rightarrow 223 \\ & 215 \rightarrow 223 \\ & 221 \rightarrow 225 \\ & 222 \rightarrow 230 \end{aligned}$	$\begin{aligned} & 3.9147 \mathrm{eV} \\ & 316.72 \mathrm{~nm} \end{aligned}$	$\mathrm{f}=0.0574$
Excited State 18	$\begin{aligned} & 214 \rightarrow 223 \\ & 215 \rightarrow 223 \\ & 221 \rightarrow 225 \\ & 222 \rightarrow 230 \end{aligned}$	$\begin{aligned} & 3.9328 \mathrm{eV} \\ & 315.25 \mathrm{~nm} \end{aligned}$	$f=0.0031$
Excited State 19	$\begin{aligned} & 210 \rightarrow 223 \\ & 211 \rightarrow 223 \\ & 212 \rightarrow 223 \\ & 213 \rightarrow 223 \\ & 214 \rightarrow 223 \end{aligned}$	$\begin{aligned} & 4.0019 \mathrm{eV} \\ & 309.82 \mathrm{~nm} \end{aligned}$	$f=0.0277$
Excited State 20	$\begin{aligned} & 219 \rightarrow 224 \\ & 220 \rightarrow 224 \end{aligned}$	$\begin{aligned} & 4.0323 \mathrm{eV} \\ & 307.47 \mathrm{~nm} \end{aligned}$	$f=0.0380$
Excited State 21	$\begin{aligned} & 221 \rightarrow 223 \\ & 213 \rightarrow 223 \end{aligned}$	$\begin{aligned} & 4.0942 \mathrm{eV} \\ & 302.83 \mathrm{~nm} \end{aligned}$	$f=0.0335$
Excited State 22	$\begin{aligned} & 211 \rightarrow 223 \\ & 212 \rightarrow 223 \\ & 221 \rightarrow 226 \end{aligned}$	$\begin{aligned} & 4.1689 \mathrm{eV} \\ & 297.40 \mathrm{~nm} \end{aligned}$	$\mathrm{f}=0.0177$
Excited State 23	$\begin{aligned} & 212 \rightarrow 223 \\ & 221 \rightarrow 226 \end{aligned}$	$\begin{aligned} & 4.1905 \mathrm{eV} \\ & 295.87 \mathrm{~nm} \end{aligned}$	$\mathrm{f}=0.0480$
Excited State 24	$221 \rightarrow 227$	$\begin{aligned} & 4.3321 \mathrm{eV} \\ & 286.20 \mathrm{~nm} \end{aligned}$	$\mathrm{f}=0.0440$
Excited State 25	$\begin{aligned} & 210 \rightarrow 223 \\ & 221 \rightarrow 228 \\ & 222 \rightarrow 233 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.3794 \mathrm{eV} \\ & 283.11 \mathrm{~nm} \end{aligned}$	$\mathrm{f}=0.0612$

Excited State	Molecular Orbitals	Energy	f value
Excited State 26	$\begin{aligned} & 210 \rightarrow 223 \\ & 219 \rightarrow 224 \\ & 220 \rightarrow 224 \\ & 222 \rightarrow 231 \\ & 222 \rightarrow 233 \end{aligned}$	$\begin{aligned} & 4.4532 \mathrm{eV} \\ & 278.42 \mathrm{~nm} \end{aligned}$	$\mathrm{f}=0.0274$
Excited State 27	$\begin{aligned} & 209 \rightarrow 223 \\ & 210 \rightarrow 223 \\ & 219 \rightarrow 224 \\ & 222 \rightarrow 231 \end{aligned}$	$\begin{aligned} & 4.4860 \mathrm{eV} \\ & 276.38 \mathrm{~nm} \end{aligned}$	$f=0.0376$
Excited State 28	$\begin{aligned} & 209 \rightarrow 223 \\ & 210 \rightarrow 223 \\ & 211 \rightarrow 223 \\ & 222 \rightarrow 231 \end{aligned}$	$\begin{aligned} & 4.5081 \mathrm{eV} \\ & 275.03 \mathrm{~nm} \end{aligned}$	$\mathrm{f}=0.0197$
Excited State 29	$\begin{aligned} & 209 \rightarrow 223 \\ & 219 \rightarrow 224 \\ & 211 \rightarrow 228 \\ & 222 \rightarrow 231 \end{aligned}$	$\begin{aligned} & 4.5449 \mathrm{eV} \\ & 272.80 \mathrm{~nm} \end{aligned}$	$f=0.0430$
Excited State 30	$\begin{aligned} & 216 \rightarrow 224 \\ & 218 \rightarrow 224 \\ & 221 \rightarrow 230 \end{aligned}$	$\begin{aligned} & 4.6380 \mathrm{eV} \\ & 267.32 \mathrm{~nm} \end{aligned}$	$\mathrm{f}=0.0062$

