Supporting Information

Discovery and optimization of small molecule ligands for the CBP/p300 bromodomains

Duncan A. Hay ${ }^{\dagger \ddagger}$, Oleg Fedorov ${ }^{\ddagger \#}$, Sarah Martin ${ }^{\ddagger \#}$, Dean C. Singleton ${ }^{\ddagger \#}$, Cynthia Tallant ${ }^{\ddagger \#}$, Christopher Wells ${ }^{\ddagger \#}$,Sarah Picaud ${ }^{\ddagger}$, Martin Philpott ${ }^{\ddagger \#}$, Octovia P. Monteiro ${ }^{\ddagger \#}$, Catherine M. Rogers ${ }^{\ddagger \#}$, Stuart J. Conway ${ }^{\dagger}$, Timothy P.C. Rooney ${ }^{\dagger}$, Anthony Tumber ${ }^{\ddagger \#}$, Clarence Yapp ${ }^{\ddagger \#}$, Panagis Filippakopoulos ${ }^{\ddagger}$, Mark E. Bunnage ${ }^{\dagger \dagger}$, SusanneMüller ${ }^{\ddagger \#}$, Stefan Knapp ${ }^{\ddagger \#}$, Christopher J. Schofield ${ }^{\dagger}$, Paul E. Brennan ${ }^{\ddagger \# *}$.${ }^{\dagger}$ Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3TA, UK.${ }^{\ddagger}$ Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, RooseveltDrive, Oxford, OX3 7DQ, UK."Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7LD,UK.${ }^{+\dagger}$ Worldwide Medicinal Chemistry, Pfizer, Cambridge, Massachusetts, Massachusetts.
Table of Contents
Synthetic procedures S3
General experimental for parallel synthesis compounds S56
Protein Expression and purification S86
Differential scanning fluorimetry S86
AlphaScreen S86
Isothermal Titration Calorimetry S87
Crystallization S87
Data Collection and Structure solution S87
Cell culture and reagents S88
Fluorescence Recovery After Photobleaching (FRAP) Assay S88
Luciferase assay S88
Cytotoxicity assay S88
Table S1. DSF vs AlphaScreen for compounds 14-20. S89
Table S2. SAR for additional C-2 analgoues. S90
Table S3. Dissociation constants and thermodynamic paramters from ITC assays S91
Table S4. DSF selectivity panel vs AlphaScreen S92
Table S5. X-ray crystallography data collection and refinement statistics S93
Table S6. Compound 58 ADME S94
Table S7. Compound 58 Cerep wide ligand profiling S95
FRAP with GFP-CBP N1168F mutant S98
Compound 58 cytotoxicity S98
References S99

Synthetic procedures

List of Abbreviations

```
Ac - Acetate
Aq. - Aqueous
Ar - Aryl
Boc - tert-Butoxycarbonyl
BINAP - 2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl
Bn-Benzyl
CDI-1,1'-Carbonyldiimidazole
CVs - Column volumes
DAD - Diode Array Detector
Dba - Dibenzylidineacetone
Dec - Decomposition (during melting point determination)
DMAP - 4-(Dimethylamino)pyridine
DME - 1,2-Dimethoxyethane
DMF - Dimethylformamide
DMSO - Dimethyl sulphoxide
EDCI - N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride
ELSD - Evaporative Light Scattering Detector
er - Enantiomeric ratio
ESI - Electrospray Ionisation
Et - Ethyl
EtOAc - Ethyl acetate
EtOH - Ethanol
h - hours
HBTU - N,N,N',N'-Tetramethyl-O-(1H-benzotriazol-1-yl)uronium hexafluorophosphate
LCMS - High Performance Liquid Chromatography
HRMS - High Resolution Mass Spectrometry
LRMS - Low Resolution Mass Spectrometry
Oxone - Potassium peroxymonosulfate
Ph - Phenyl
PyBOP - (Benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate
MeCN - Acetonitrile
min - Minutes
mp - Melting point
MS - Mass spectrometry
NMP - 1-Methyl-2-pyrrolidinone
NMR - Nuclear Magnetic Resonance
R
SCX - Strong cation exchange
T3P - Propane phosphonic acid anhydride
TEBAC - Benzyltriethylammonium chloride
THF - Tetrahydrofuran
```

TIPS - Triisopropylsilyl
TLC - Thin Layer Chromatography
t_{r} - Retention time
UV - Ultraviolet

General Experimental

All reactions involving organometallic or other moisture-sensitive reagents were carried out under a nitrogen atmosphere using standard vacuum line techniques and glassware that was oven dried and cooled under nitrogen before use. Commercial anhydrous solvents used in reactions and LCMS grade solvents were employed for work-up and chromatography. Water was purified using an Elix UV-10 system. All other reagents were used as supplied (analytical or LCMS grade) without prior purification. Parallel synthesis was carried out using a Radleys GreenHouse reactor. Parallel work-ups were carried out using a Radleys stacker and Isolute phase separation cartridges. Thin layer chromatography was performed on aluminium plates coated with $60 \mathrm{~F}_{254}$ silica. Plates were visualised using UV light (254 nm) or 1% aq. $\mathrm{KMnO}_{4} . R_{f}$ values are quoted to the nearest 0.05 . Flash column chromatography was performed either on Kieselgel 60 silica on a glass column, or on a Biotage SP4 automated flash column chromatography platform. Melting points were recorded on a Gallenkamp Hot Stage apparatus. Optical rotations were recorded on a Perkin-Elmer 241 polarimeter with a water-jacketed 10 cm cell. Specific rotations are reported in $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$ and concentrations in g/100 mL. IR spectra were recorded on a Bruker Tensor 27 FT-IR spectrometer; selected characteristic peaks are reported in cm^{-1}. NMR spectra were recorded on Bruker Avance spectrometers in the deuterated solvent stated. Spectra were recorded at room temperature unless otherwise stated. The field was locked by external referencing to the relevant deuteron resonance. Coupling constants (J) are quoted in Hz and are recorded to the nearest 0.5 Hz . Identical proton coupling constants are averaged in each spectrum and reported to the nearest 0.5 Hz . When peak multiplicities are reported, the following abbreviations are used: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broadened, $\mathrm{dd}=$ doublet of doublets, $\mathrm{dt}=$ doublet of triplets. m / z values are reported in Daltons. LRMS were recorded on a Waters LCT Premier, equipped with electrospray ionisation source and TOF analyser, acquiring in positive and negative ionisation modes or on and Agilent 6100 mass spectrometer operated with an electrospray ionisation source via flow injection analysis with an Agilent 1200 isocratic pump; data acquisition and processing was performed using Waters Masslynx 4.1 software or Agilent chemstation software. HRMS were run on either a Bruker MicroTOF internally calibrated with polyalanine, or a Micromass GCT instrument fitted with a Scientific Glass Instruments BPX5 column ($15 \mathrm{~m} \times 0.25 \mathrm{~mm}$) using amyl acetate as a lock mass. Elemental analyses were recorded by the elemental analysis service of the London Metropolitan University. Microwave experiments were carried out using a Biotage Initiator 8. Flash column chromatography was carried out using a Presearch Isco Combiflash Companion using Presearch columns or on a Biotage SP4 using Biotage SNAP columns. LCMS t_{r} are quoted to the nearest 0.1 min . LCMS were performed on the following systems: System A: WATERS sunfire C18 column ($150 \mathrm{~mm} \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$) using a linear gradient of solvent A (water $+0.01 \% \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$) and solvent B (acetonitrile $+0.01 \% \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$), eluting at a flow rate of $1 \mathrm{~mL} / \mathrm{min}$ and monitoring at 254 nm : 0\% B over $2 \mathrm{~min}, 0 \%$ B to 100% B over 16 min and 100% B over 2 min ; System B: Merk Millipore Chromolith Performance RP-18e column ($100 \mathrm{~mm} \times 2 \mathrm{~mm}, 1.6 \mu \mathrm{~m}$) using a linear gradient of solvent A (water $+0.01 \% \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$) and solvent B (acetonitrile $+0.01 \% \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$), eluting at a flow rate of 1 $\mathrm{mL} / \mathrm{min}$ and monitoring at $254 \mathrm{~nm}: 2 \%$ B over $2 \mathrm{~min}, 2 \%$ B to 100% B over 8 min and 100% B over 1 min.

4-(4-Fluoro-3-nitrophenyl)-3,5-dimethyl-1,2-oxazole (10)

$\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(1.81 \mathrm{~g}, 2.47 \mathrm{mmol})$ was added to a solution of 4-bromo-1-fluoro-2-nitrobenzene ($10.87 \mathrm{~g}, 49.4$ mmol) and 3,5-dimethylisoxazole-4-boronic acid pinacol ester ($12.68 \mathrm{~g}, 56.8 \mathrm{mmol}$) in DME (100 mL). The mixture was stirred then saturated aq. NaHCO_{3} solution (100 mL) was added. The mixture was degassed by evacuating and refilling with nitrogen ($\times 3$) then heated at $80^{\circ} \mathrm{C}$ for 3 h . The reaction was allowed to cool then partitioned between EtOAc (100 mL) and water (100 mL). The phases were separated then MgSO_{4} and activated charcoal was added. The solid was filtered then the filtrate was evaporated. The resultant residue was re-dissolved in the minimum of methylene chloride then purified by flash column chromatography on a silica column (330 g). The column was eluted with a gradient of EtOAc:c-hexane, which was increased linearly from 10:90 to 30:70 over 10 CVs (some product crystallised on the column but re-dissolved as the percentage of EtOAc increased). The desired fractions were combined and evaporated. $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ was added, resulting in crystallisation of the product. The supernatant was decanted off with a pipette then the process was repeated. The solid was dried under vacuum to yield the product as a beige solid ($8.57 \mathrm{~g}, 73 \%$); $R_{f} 0.25$ (EtOAc:n-hexane, 30:70); mp 128-131 ${ }^{\circ} \mathrm{C}$; $v_{\text {max }}$ (neat) 3063 (C-H), 2933 (C-H), 1538 (N-O), 1354 (N-O); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(7) \mathrm{H}_{3}\right), 2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(6) \mathrm{H}_{3}\right), 7.41(\mathrm{dd}, J=10.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}(10) \mathrm{H}$), 7.54 (ddd, J=8.5, $4.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(9) \mathrm{H}), 7.96$ (dd, J=7.0, $2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(13) \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}) $\delta \mathrm{ppm} 10.8(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(7)$), 11.8 ($\mathrm{s}, 1 \mathrm{C}, C(6)$), 114.2 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(1)$), 119.3 (d, J=21.5 Hz, $1 \mathrm{C}, C(10)$), 126.5 (d, J=2.5 Hz, 1 C, C(13)), 127.9 (d, J=5.0 Hz, 1 C, C(8)), 136.1 (d, J=8.0 Hz, $1 \mathrm{C}, C(9)$), 137.8 (d, J=6.5 Hz, 1 C , $C(12)), 154.9$ ($\mathrm{d}, \mathrm{J}=266.0 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C}(11)$), 158.2 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(2)$), $166.4\left(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(5)\right.$); ${ }^{19} \mathrm{~F} \mathrm{NMR}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ ppm -118.5 (s, 1 F); LRMS m/z (ESI ${ }^{+}$) $237\left[\mathrm{MH}^{+}\right]$; $\mathrm{HRMS}\left(E I^{+}\right)$found 259.0492, calculated for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{FN}_{2} \mathrm{NaO}_{3}{ }^{+}$ 259.0489; LCMS (System A) $t_{\mathrm{r}} 15.1 \mathrm{~min}$ (99\%).
N^{\prime}-[4-(3,5-Dimethyl-isoxazol-4-yl)-2-nitro-phenyl]- N, N-dimethylethane-1,2-diamine (11)

N, N-Dimethylenediamine ($0.694 \mathrm{~mL}, 6.35 \mathrm{mmol}$) was added drop-wise to a solution of compound 10 (1.00 g , $4.23 \mathrm{mmol})$ and $\operatorname{EtN}(i-\operatorname{Pr})_{2}(1.1 \mathrm{~mL}, 6.4 \mathrm{mmol})$ in $\mathrm{THF}(10 \mathrm{~mL})$. The mixture was left to stir at room temperature for 16 h then partitioned between EtOAc (20 mL) and water (20 mL). The phases were separated then the organic phase was washed with water (20 mL) and brine (20 mL) then dried over MgSO_{4} and evaporated to an orange solid. Ether (10 mL) was added then the resultant suspension was agitated then allowed to settle. The supernatant was decanted off with a pipette then more ether (10 mL) was added. This was again agitated, allowed to settle then decanted as before. The resultant solid was dried under vacuum to yield the product as an orange solid ($1.10 \mathrm{~g}, 86 \%$); $R_{f} 0.15$ ($\mathrm{EtOAc}: \mathrm{MeOH}: \mathrm{NEt}_{3}, 90: 10: 1$); mp 118$119{ }^{\circ} \mathrm{C}$; $v_{\max }$ (neat) 3355 (N-H), 2951 (C-H), 2876 (C-H), 2795 (C-H), 1554 (N-O), 1354 (N-O); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(6) \mathrm{H}_{3}\right), 2.33\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}(9) \mathrm{H}_{3}+\mathrm{C}(10) \mathrm{H}_{3}\right), 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(5) \mathrm{H}_{3}\right), 2.67(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2$ $\mathrm{H}, \mathrm{C}(8) \mathrm{H}_{2}$), $3.40\left(\mathrm{q}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(11) \mathrm{H}_{2}\right.$), 6.93 (d, J=9.0 Hz, $\left.1 \mathrm{H}, \mathrm{C}(18) \mathrm{H}\right), 7.34$ (dd, J=9.0, $2.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}(13) \mathrm{H}), 8.08(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(15) \mathrm{H}), 8.40(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 10.7$ (s, 1 C ,
$C(6)$), 11.5 ($\mathrm{s}, 1 \mathrm{C}, C(5)$), 40.8 ($\mathrm{s}, 1 \mathrm{C}, ~ C(11)$), 45.2 ($\mathrm{s}, 2 \mathrm{C}, C(9)+C(10)$), 57.3 (s, $1 \mathrm{C}, C(8)$), 114.6 ($\mathrm{s}, 1 \mathrm{C}, C(18)$),
 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(17)$), 158.6 ($\mathrm{s}, 1 \mathrm{C}, C(4)), 165.3$ ($\mathrm{s}, 1 \mathrm{C}, C(1)$); LCMS (System A) $t_{\mathrm{r}} 3.6 \mathrm{~min}, \mathrm{~m} / \mathrm{z} 305\left[\mathrm{MH}^{+}\right]$; LRMS (ESI $)$ $\left.m / z 631\left[(2 \mathrm{M}+\mathrm{Na})^{+}\right], 609\left[(2 \mathrm{M}+\mathrm{H})^{+}\right], 327\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 305 \mathrm{MMH}^{+}\right] ;\left(\mathrm{ESI}^{-}\right) 303\left[(\mathrm{M}-\mathrm{H})^{-}\right] ; \mathrm{HRMS}\left(\mathrm{ESI}^{+}\right)$found 305.1614, calculated for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{3}{ }^{+}$305.1608.

1-(2,2-Dimethoxyethyl)-5-(3,5-dimethyl-1,2-oxazol-4-yl)-2-(2-phenylethyl)-1H-benzimidazole (13)

Aminoacetaldehyde dimethyl acetal ($218 \mu \mathrm{~L}, 2.00 \mathrm{mmol}$) was added to a solution of compound 10 (472 mg , $2.00 \mathrm{mmol})$ in DMSO (1 mL). The solution was heated at $80^{\circ} \mathrm{C}$ for 2 h . The solution was removed from the heat then a solution of 3-phenylpropanal ($263 \mu \mathrm{~L}, 2.00 \mathrm{mmol}$) in $\mathrm{MeOH}(4 \mathrm{~mL})$ was added, followed by 1 M aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(3.0 \mathrm{~mL}, 3.0 \mathrm{mmol})$. The mixture was heated at $80^{\circ} \mathrm{C}$ for 4 h then allowed to cool. The mixture was partitioned between EtOAc (15 mL) and 10% aq. ammonia solution $(15 \mathrm{~mL})$. The phases were separated then the organic phase was washed with water (15 mL) and brine (15 mL) then dried over MgSO_{4} and evaporated. The crude material was purified by flash column chromatography on a silica column. The column was eluted with a gradient of EtOAc:c-hexane, which was increased linearly from 50:50 to 70:30 over 10 CVs. The desired fractions were combined and evaporated to yield the product as a white solid (525 mg , 65%); $R_{f} 0.50$ (EtOAc); mp $105-107{ }^{\circ} \mathrm{C}$; $v_{\max }$ (neat) $2396(\mathrm{C}-\mathrm{H}), 2825(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$ $2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(7) \mathrm{H}_{3}\right), 2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(6) \mathrm{H}_{3}\right), 3.20-3.32\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(19) \mathrm{H}_{2}+\mathrm{C}(20) \mathrm{H}_{3}\right), 3.36(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{C}(28) \mathrm{H}_{3}+\mathrm{C}(30) \mathrm{H}_{3}\right), 4.12\left(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{2}\right), 4.50(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(18) \mathrm{H}), 7.13$ (dd, J=8.5, 1.5 Hz, 1 H , $\mathrm{C}(9) \mathrm{H}), 7.23-7.35(\mathrm{~m}, 5 \mathrm{H}, 5 \times \mathrm{PhH}), 7.40(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(10) \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(13) \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 10.9$ ($\mathrm{s}, 1 \mathrm{C}, ~ C(7)$), 11.6 ($\left.\mathrm{s}, 1 \mathrm{C}, ~ C(6)\right), 29.5$ ($\left.\mathrm{s}, 1 \mathrm{C}, ~ C(19)\right), 33.9(\mathrm{~s}, 1 \mathrm{C}, C(20)$), 46.5 (s, 1

 $2 \mathrm{C}, C(22 / 23)+C(26 / 25)), 134.6$ (s, $1 \mathrm{C}, ~ C(11)$), 141.0 ($\mathrm{s}, 1 \mathrm{C}, C(21)), 142.9$ (s, $1 \mathrm{C}, C(12)$), 156.0 (s, $1 \mathrm{C}, C(15)$), 159.0 (s, $1 \mathrm{C}, \mathrm{C}(2))$, $165.0(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(5))$; LRMS $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right) 833\left[(2 \mathrm{M}+\mathrm{Na})^{+}\right], 811\left[(2 \mathrm{M}+\mathrm{H})^{+}\right], 428\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 406$ [MH^{+}], (ESI) $404\left[(\mathrm{M}-\mathrm{H})^{-}\right]$; HRMS (ESI ${ }^{+}$) found 406.2118, calculated for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{+} 406.2125$; LCMS (System A) $t_{r} 11.8 \mathrm{~min}$ (99\%).
[5-(3,5-Dimethyl-1,2-oxazol-4-yl)-2-(2-phenylethyl)-1H-benzimidazol-1-yl]acetaldehyde

A mixture of compound $13(1.15 \mathrm{~g}, 2.84 \mathrm{mmol})$, water (2.5 mL) $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\left(2.5 \mathrm{~mL}\right.$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was crimp-sealed in a microwave vial then heated under microwave irradiation for 20 min at $150{ }^{\circ} \mathrm{C}$ then for a further 30 min at $150^{\circ} \mathrm{C}$. The reaction mixture was added carefully to a conical flask containing saturated aq. NaHCO_{3} solution (50 mL) then transferred to a separating funnel. The phases were separated then the
organic phase was washed with $1: 1$ water:brine (50 mL) then brine (50 mL) then dried over MgSO_{4} and evaporated to yield the product as a cream-coloured solid (1.01 g, 99\%); 75-80 ${ }^{\circ} \mathrm{C} ; R_{f} 0.30$ (EtOAc); $v_{\max }$ (neat) $2928(\mathrm{C}-\mathrm{H}), 1733(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(7) \mathrm{H}_{3}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(6) \mathrm{H}_{3}\right)$, 3.05-3.15 (m, 2 H, C(19) H_{2}), 3.21-3.30 (m, $2 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{2}$), $4.69\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{2}\right), 7.07-7.35(\mathrm{~m}, 7 \mathrm{H}, 7 \times \mathrm{ArH}$), $7.67(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(13) \mathrm{H}), 9.48(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}))^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 10.8(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(7)), 11.5(\mathrm{~s}$,
 120.2 ($\mathrm{s}, 1 \mathrm{C}, ~ C(13)$), 124.0 ($\mathrm{s}, 1 \mathrm{C}, ~ C(9)$), 124.9 ($\mathrm{s}, 1 \mathrm{C}, ~ C(8)$), 126.7 ($\mathrm{s}, 1 \mathrm{C}, C(24)$), 128.4 ($\mathrm{s}, 2 \mathrm{C}$, $C(22 / 23)+C(26 / 25)), 128.8(\mathrm{~s}, 2 \mathrm{C}, ~ C(22 / 23)+C(26 / 25)), 134.3(\mathrm{~s}, 1 \mathrm{C}, ~ C(11)), 140.3$ (s, $1 \mathrm{C}, C(21)), 143.0(\mathrm{~s}, 1 \mathrm{C}$, $C(12)$), 155.2 (s, 1 C, $C(15)$), 158.9 (s, 1 C, C(2)), 165.1 (s, 1 C, $C(5)$), 194.5 (s, 1 C, CHO); LRMS m/z (ESI) 358 $\left[(\mathrm{M}-\mathrm{H})^{-}\right]$; HRMS (ESI) found 358.1563, calculated for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{-} 358.1561$; LCMS (System A) $t_{\mathrm{r}} 10.6 \mathrm{~min}$ (38\%, aldehyde/hydrate), 11.3 min (62%, MeOH hemiacetal).

General procedure A

$\mathrm{NaBH}(\mathrm{OAc})_{3}(42 \mathrm{mg}, 0.20 \mathrm{mmol})$ was added to a stirred solution of [5-(3,5-dimethyl-1,2-oxazol-4-yl)-2-(2-phenylethyl)- 1 H -benzimidazol-1-yl]acetaldehyde ($50 \mathrm{mg}, 0.14 \mathrm{mmol}$), the appropriate amine (0.20 mmol) and acetic acid ($10 \mu \mathrm{~L}$) in THF (1 mL). The mixture was left to stir at room temperature for 2 h then partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and $1 \mathrm{M} \mathrm{NaOH}(2 \mathrm{~mL})$. The phases were separated using a hydrophobic frit separation cartridge then the organic phase was evaporated by nitrogen blow-down. The crude material was purified by flash column chromatography on a silica column (10 g). The desired fractions were combined and evaporated to yield the product.

1-[2-(Azetidin-1-yl)ethyl]-5-(3,5-dimethyl-1,2-oxazol-4-yl)-2-(2-phenylethyl)-1H-benzimidazole (14)

Azetidine ($14 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$) was reacted with [5-(3,5-dimethyl-1,2-oxazol-4-yl)-2-(2-phenylethyl)-1H-benzimidazol-1-yl]acetaldehyde ($50 \mathrm{mg}, 0.14 \mathrm{mmol}$) according to general procedure A . Chromatography was carried out with a gradient of $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}$, which was increased linearly from 98:2:0.2 to 90:10:1 over 10 CVs . The product was obtained as a cream solid ($48 \mathrm{mg}, 86 \%$); mp $163-165{ }^{\circ} \mathrm{C} ; R_{f} 0.40$ ($\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}, 90: 10: 1$); $v_{\max } 2953$ (C-H), 2921 (C-H), 2857 (C-H), $2840(\mathrm{C}-\mathrm{H}), 2798(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 2.07$ (quin, J=7.0 Hz, $2 \mathrm{H}, \mathrm{C}(29) \mathrm{H}_{2}$), $2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{3}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{3}\right), 2.68$ ($\left.\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(11) \mathrm{H}_{2}\right), 3.16\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}(28) \mathrm{H}_{2}+\mathrm{C}(30) \mathrm{H}_{2}\right), 3.19-3.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(29) \mathrm{H}_{2}, \mathrm{C}(19) \mathrm{H}_{2}\right), 3.25$ $-3.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{2}\right), 3.98\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(10) \mathrm{H}_{2}\right), 7.12$ (dd, J=8.5, 1.5 Hz, $\left.1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}\right), 7.20-7.34(\mathrm{~m}, 5$ $\mathrm{H}, 5 \times \mathrm{PhH}$), $7.36(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 7.63(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 10.8$
 $C(10)$), 55.7 (s, $2 C, C(28)+C(30)$), 58.2 ($s, 1 C, C(11)$), 109.4 ($s, 1 C, C(3)$), 117.1 ($s, 1 \mathrm{C}, C(7)$), 119.8 (s, 1 C,
 $2 C, C(22 / 23)+C(26 / 25)$), 134.3 (s, 1 C, $C(4)$), 140.8 (s, 1 C, $C(21)$), 143.0 (s, $1 \mathrm{C}, C(5)$), 155.3 (s, $1 \mathrm{C}, C(18)$), 159.0 (s, $1 \mathrm{C}, \mathrm{C}(12)$), 165.0 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(15)$); LRMS m/z $823\left[(2 \mathrm{M}+\mathrm{Na})^{+}\right], 801\left[(2 \mathrm{M}+\mathrm{H})^{+}\right], 423\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 401$ [MH^{+}]; HRMS found 401.2334, calculated for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}^{+} 401.2336$); LCMS (System A) $t_{\mathrm{r}} 9.7$ min (98%).

Pyrrolidine ($16 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$) was reacted with [5-(3,5-dimethyl-1,2-oxazol-4-yl)-2-(2-phenylethyl)-1H-benzimidazol-1-yl]acetaldehyde ($50 \mathrm{mg}, 0.14 \mathrm{mmol}$) according to general procedure A. Chromatography was carried out with a gradient of EtOAc: $\mathrm{MeOH}: \mathrm{NEt}_{3}$, which was increased linearly from 92:8:0.8 to 90:10:1 over 10 CV . The product was obtained as a colourless gum ($39 \mathrm{mg}, 67 \%$); $R_{f} 0.15$ (EtOAc: $\mathrm{MeOH}: \mathrm{NEt}_{3}, 90: 10: 1$); $v_{\max } 2960(\mathrm{C}-\mathrm{H}), 2921(\mathrm{C}-\mathrm{H}), 2794(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.76-1.84(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{C}(29) \mathrm{H}_{2}+\mathrm{C}(30) \mathrm{H}_{2}\right), 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(7) \mathrm{H}_{3}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(6) \mathrm{H}_{3}\right), 2.53-2.61\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(28) \mathrm{H}_{2}+\mathrm{C}(31) \mathrm{H}_{2}\right), 2.69-2.77$ (m, 2 H, C(18) H_{2}), 3.16-3.23 (m, 2 H, C(19) H_{2}), 3.25-3.34 (m, $2 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{2}$), 4.11-4.21(m,2 H, C(17) H_{2}), 7.12 (dd, J=8.5, 1.5 Hz, 1 H, C(9)H), $7.20-7.27(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{Ph} H), 7.28-7.33(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{PhH}), 7.37(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{C}(10) \mathrm{H}), 7.63(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(13) \mathrm{H})$; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 10.8(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(7))$) 11.5 ($\mathrm{s}, 1 \mathrm{C}$, $C(6)), 23.5$ ($s, 2 C, C(29)+C(30)), 29.5(\mathrm{~s}, 1 \mathrm{C}, ~ C(19)), 33.9$ ($\mathrm{s}, 1 \mathrm{C}, ~ C(20)), 43.0(\mathrm{~s}, 1 \mathrm{C}, C(17)), 54.5(\mathrm{~s}, 2 \mathrm{C}, C(28)$),
 $1 \mathrm{C}, C(8)), 126.4$ (s, 1 C, $C(24)$), 128.3 (s, $2 \mathrm{C}, ~ C(22 / 23)+C(26 / 25)$), 128.6 (s, $2 \mathrm{C}, C(22 / 23)+C(26 / 25)), 134.3$ (s, 1 C, $C(11)$), 140.8 (s, $1 \mathrm{C}, C(21)$), 143.0 ($\mathrm{s}, 1 \mathrm{C}, C(11)$), 155.2 ($\mathrm{s}, 1 \mathrm{C}, C(15)$), 159.0 (s, $1 \mathrm{C}, C(2)$), 165.0 ($\mathrm{s}, 1 \mathrm{C}$, $C(5))$; LRMS $\mathrm{m} / \mathrm{z}\left(E \mathrm{El}^{+}\right) 851\left[(2 \mathrm{M}+\mathrm{Na})^{+}\right], 829\left[(2 \mathrm{M}+\mathrm{H})^{+}\right], 437\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 415\left[\mathrm{MH}^{+}\right] ; \mathrm{HRMS}\left(\mathrm{ESI}^{+}\right)$found 415.2491, calculated for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}^{+} 415.2492$; LCMS (System A) $t_{\mathrm{r}} 9.7$ min (99\%).

5-(3,5-Dimethyl-1,2-oxazol-4-yl)-2-(2-phenylethyl)-1-[2-(piperidin-1-yl)ethyl]-1H-benzimidazole (16)

Piperidine ($15 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$) was reacted with [5-(3,5-dimethyl-1,2-oxazol-4-yl)-2-(2-phenylethyl)-1H-benzimidazol-1-yl]acetaldehyde ($50 \mathrm{mg}, 0.14 \mathrm{mmol}$) according to general procedure A. Chromatography was carried out with a gradient of EtOAc: $\mathrm{MeOH}: \mathrm{NEt}_{3}$, which was increased linearly from 98:2:0.2 to 92:8:0.8 over 10 CVs. The product was obtained as a colourless gum ($21 \mathrm{mg}, 49 \%$); $R_{f} 0.15$ (EtOAc); $v_{\max } 2933$ (C-H), 2857 (C-H), 2842, (C-H); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 1.40-1.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(30) \mathrm{H}_{2}\right), 1.53-1.62(\mathrm{~m}, \mathrm{~J}=5.5 \mathrm{~Hz}, 4 \mathrm{H}$, $\left.\mathrm{C}(29) \mathrm{H}_{2}+\mathrm{C}(31) \mathrm{H}_{2}\right), 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(7) \mathrm{H}_{3}\right), 2.42-2.45\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{C}(6) \mathrm{H}_{3}+\mathrm{C}(28) \mathrm{H}_{2}+\mathrm{C}(32) \mathrm{H}_{2}\right), 2.57(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{C}(18) \mathrm{H}_{2}$), 3.17-3.26(m,2 H, C(19) H_{2}), 3.26-3.34(m,2H, C(20) H_{2}), $4.14\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{2}\right), 7.12(\mathrm{dd}$, $J=8.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(9) H$), $7.21-7.35(\mathrm{~m}, 5 \mathrm{H}, 5 \times \mathrm{PhH}), 7.37$ (d, J=8.5 Hz, $1 \mathrm{H}, \mathrm{C}(10) \mathrm{H}), 7.64(\mathrm{~d}, 1 \mathrm{H}, 1.0 \mathrm{~Hz}$, $\mathrm{C}(13) \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$) δ ppm 10.9 (s, $1 \mathrm{C}, \mathrm{C}(7)$), 11.5 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(6)$), 24.1 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(7)$), 25.9 ($\mathrm{s}, 2 \mathrm{C}$, $C(29)+C(31)), 29.5(\mathrm{~s}, 1 \mathrm{C}, ~ C(19)), 33.8(\mathrm{~s}, 1 \mathrm{C}, C(20)), 41.7(\mathrm{~s}, 1 \mathrm{C}, C(17)), 55.1(\mathrm{~s}, 2 \mathrm{C}, C(28)+C(32)), 57.9$ (s, 1 C , $C(18)$), 109.5 ($s, 1$ C, C(10)), 117.1 (s, 1 C, C(1)), 119.8 (s, 1 C, C(13)), 123.3 (s, 1 C, C(9)), 124.0 (s, 1 C, C(8)),
126.4 (s, 1 C, $C(24)$), 128.4 (s, $2 C, C(22 / 23)+C(26 / 25)$), 128.6 (s, $2 C, C(22 / 23)+C(26 / 25)$), 134.3 (s, $1 \mathrm{C}, C(11)$), 140.9 (s, 1 C, $C(21)$), 143.0 (s, $1 \mathrm{C}, C(12)$), 155.4 ($s, 1 \mathrm{C}, C(15)$), 159.0 ($\mathrm{s}, 1 \mathrm{C}, C(2)$), 165.0 ($\mathrm{s}, 1 \mathrm{C}, C(5)$); LRMS $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right) 879\left[(2 \mathrm{M}+\mathrm{Na})^{+}\right], 857\left[(2 \mathrm{M}+\mathrm{H})^{+}\right], 451\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 429\left[\mathrm{MH}^{+}\right]$; $\mathrm{HRMS}\left(\mathrm{ESI}^{+}\right)$found 429.2643, calculated for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}^{+} 429.2649$ LCMS (System A) $t_{\mathrm{r}} 9.9 \mathrm{~min}$ (99\%).

5-(3,5-Dimethyl-1,2-oxazol-4-yl)-1-[2-(morpholin-4-yl)ethyl]-2-(2-phenylethyl)-1H-benzimidazole (17)

Morpholine ($18 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$) was reacted with [5-(3,5-dimethyl-1,2-oxazol-4-yl)-2-(2-phenylethyl)-1H-benzimidazol-1-yl]acetaldehyde ($50 \mathrm{mg}, 0.14 \mathrm{mmol}$) according to general procedure A. Chromatography was carried out with a gradient of EtOAc: $\mathrm{MeOH}: \mathrm{NEt}_{3}$, which was increased linearly from 99:1:0.1 to 90:10:1 over 10 CVs. The product was obtained as a colourless gum ($21 \mathrm{mg}, 35 \%$); $R_{f} 0.40$ ($\mathrm{EtOAc}: \mathrm{MeOH}: \mathrm{NEt}_{3}, 90: 10: 1$); $v_{\text {max }}$ (neat) $2930(\mathrm{C}-\mathrm{H}), 29(\mathrm{C}-\mathrm{H}), 2855(\mathrm{C}-\mathrm{H}), 2814(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(7) \mathrm{H}_{3}\right)$, $2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(6) \mathrm{H}_{3}\right), 2.44-2.48\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(28) \mathrm{H}_{2}+\mathrm{C}(31) \mathrm{H}_{2}\right), 2.61\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(18) \mathrm{H}_{2}\right), 3.18-3.25(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{C}(19) \mathrm{H}_{2}\right), 3.27-3.34\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{2}\right), 3.64-3.71\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(29) \mathrm{H}_{2}+\mathrm{C}(30) \mathrm{H}_{2}\right), 4.12\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{2}\right)$, 7.13 (dd, J=8.0, 1.5 Hz, 1 H, C(9)H), 7.22-7.28 (m, 3 H, 3×PhH), 7.30-7.34 (m, 2 H, $2 \times \mathrm{PhH}$), 7.36 (d, J=8.5 Hz, $1 \mathrm{H}, \mathrm{C}(10) \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(13) \mathrm{H}))^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 10.9(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(7)), 11.6$ (s, 1 C ,
 66.8 (s, $2 C, C(29)+C(30)$), 109.4 (s, 1 C, $C(10)$), 117.1 (s, $1 \mathrm{C}, C(1)$), 119.9 (s, $1 \mathrm{C}, C(13)$), 123.4 (s, $1 \mathrm{C}, C(9)$), 124.2 (s, 1 C, $C(8)$), 126.5 (s, 1 C, $C(24)$), 128.4 (s, $2 C, C(22 / 23)+C(26 / 25)$), 128.7 (s, $2 C, C(22 / 23)+C(26 / 25)$), 134.3 (s, 1 C, C(11)), 140.9 (s, 1 C, C(21)), 143.0 (s, 1 C, C(11)), 155.3 (s, 1 C, C(15)), 159.0 (s, 1 C, C(2)), 165.0 (s, $1 \mathrm{C}, \mathrm{C}(5))$; LRMS $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right) 883\left[(2 \mathrm{M}+\mathrm{Na})^{+}\right], 861\left[(2 \mathrm{M}+\mathrm{H})^{+}\right], 453\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 431\left[\mathrm{MH}^{+}\right]$; HRMS (ESI $\left.{ }^{+}\right)$found 431.2434, calculated for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+} 431.2442$; LCMS (System B) $t_{\mathrm{r}} 3.4 \mathrm{~min}$ (93\%).

5-(3,5-Dimethyl-1,2-oxazol-4-yl)-1-[2-(4-methylpiperazin-1-yl)ethyl]-2-(2-phenylethyl)-1Hbenzimidazole (18)

1-Methylpiperazine ($14 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$) was reacted with [5-(3,5-dimethyl-1,2-oxazol-4-yl)-2-(2-phenylethyl)$1 H$-benzimidazol-1-yl]acetaldehyde ($50 \mathrm{mg}, 0.14 \mathrm{mmol}$) according to general procedure A . Chromatography was carried out with a gradient of $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}$, which was increased linearly from 95:5:0.5 to 90:10:1 over 10 CVs. The product was obtained as a colourless gum ($29 \mathrm{mg}, 47 \%$); $R_{f} 0.30$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}, 90: 10: 1\right) ; v_{\max }$ (neat) $2863(\mathrm{C}-\mathrm{H}), 2720(\mathrm{C}-\mathrm{H}), 2625(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
ppm $2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(33) H_{3}\right), 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(16) H_{3}\right), 2.36-2.56(\mathrm{~m}, 11 \mathrm{H}$, $\left.\mathrm{C}(17) \mathrm{H}_{3}+\mathrm{C}(28) \mathrm{H}_{2}+\mathrm{C}(29) \mathrm{H}_{2}+\mathrm{C}(31) \mathrm{H}_{2}+\mathrm{C}(32) \mathrm{H}_{2}\right), 2.61\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(11) \mathrm{H}_{2}\right), 3.17-3.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(19) \mathrm{H}_{2}\right)$, $3.26-3.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{2}\right), 4.11\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(10) \mathrm{H}_{2}\right), 7.12$ (dd, J=8.0, 1.0 Hz, $\left.1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}\right), 7.21-7.34$ (m, 5 H, 5×PhH), $7.35(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 7.63(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$
 $C(33)$), 53.5 (s, $2 C, C(29)+C(31)), 54.9$ (s, $2 C, C(28)+C(32)$), 57.1 (s, 1 C, $C(11)$), 109.4 ($s, 1 C, C(3)), 117.1$ ($s, 1$ C, C(7)), 119.8 (s, 1 C, C(6)), 123.4 (s, 1 C, C(2)), 124.1 (s, 1 C, C(1)), 126.4 (s, $1 \mathrm{C}, C(24)$), 128.4 (s, $2 C$, $C(22 / 23)+C(26 / 25)$), 128.6 (s, $2 \mathrm{C}, ~ C(22 / 23)+C(26 / 25)$), 134.3 (s, $1 \mathrm{C}, C(4)$), 140.9 (s, $1 \mathrm{C}, C(21)$), 143.0 (s, 1 C ,
 $\left[(2 \mathrm{M}+\mathrm{H})^{+}\right], 466\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 444\left[\mathrm{MH}^{+}\right]$; HRMS (ESI ${ }^{+}$) found 444.2743, calculated for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{~N}_{5} \mathrm{O}^{+} 444.2758$; LCMS $t_{r} 9.8 \mathrm{~min}$ (>99\%); LCMS (System A) $t_{r} 9.7 \mathrm{~min}(98 \%)$.
tert-Butyl
4-\{2-[5-(3,5-dimethyl-1,2-oxazol-4-yl)-2-(2-phenylethyl)-1H-benzimidazol-1-yl]ethyl\}piperazine-1-carboxylate

1-Boc-piperazine ($37 \mathrm{mg}, 0.20 \mathrm{mmol}$) was reacted with [5-(3,5-dimethyl-1,2-oxazol-4-yl)-2-(2-phenylethyl)$1 H$-benzimidazol-1-yl]acetaldehyde ($50 \mathrm{mg}, 0.14 \mathrm{mmol}$) according to general procedure A. Chromatography was carried out with an isocratic gradient of EtOAc. The product was obtained as a colourless gum (52 mg , 70\%); $R_{f} 0.15$ ($\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}, 90: 10: 1$); $\mathrm{v}_{\max }$ (neat) 2975 (C-H), 2930 (C-H), 2917 (C-H), 1688 (C=O); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 1.45\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{3}\right), 2.35-2.45(\mathrm{~m}, 7 \mathrm{H}$, $\left.\mathrm{C}(17) \mathrm{H}_{3}+\mathrm{C}(28) \mathrm{H}_{2}+\mathrm{C}(32) \mathrm{H}_{2}\right), 2.61\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(11) \mathrm{H}_{2}\right), 3.15-3.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(19) \mathrm{H}_{2}\right), 3.26-3.34(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{C}(20) \mathrm{H}_{2}$), 3.35-3.44(m,4 H, C(29) $\left.\mathrm{H}_{2}+\mathrm{C}(31) \mathrm{H}_{2}\right), 4.11\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(10) \mathrm{H}_{2}\right), 7.12(\mathrm{dd}, \mathrm{J}=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}(2) H), 7.21-7.33(\mathrm{~m}, 5 \mathrm{H}, 5 \times \mathrm{Ph} H), 7.35(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 7.64(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 10.9$ (s, $1 \mathrm{C}, \mathrm{C}(16)$), 11.6 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(17)$), 28.4 ($\mathrm{s}, 3 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$) 29.7 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(19)$), 33.8 ($\mathrm{s}, 1$ $C, C(20)$), 41.6 (s, $1 \mathrm{C}, C(10)$), 43.2 (s, $2 C, C(29)+C(31)), 53.4(\mathrm{~s}, 2 \mathrm{C}, C(28)+C(32)), 57.2(\mathrm{~s}, 1 \mathrm{C}, C(11)), 79.8(\mathrm{~s}, 1$ $\left.\mathrm{C} C\left(\mathrm{CH}_{3}\right)_{3}\right) 109.4$ ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(3)$), 117.1 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(7)$), 119.9 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(6)$), 123.4 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(2)$), 124.2 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(1)$), 126.5 (s, 1 C, $C(24)$), 128.3 (s, 2 C, $C(22 / 23)+C(26 / 25)$), 128.7 (s, $2 C, C(22 / 23)+C(26 / 25)), 134.2(s, 1 C, C(4))$, 140.8 (s, $1 \mathrm{C}, ~ C(21)$), 143.0 ($\mathrm{s}, 1 \mathrm{C}, ~ C(5)), 154.6$ (s, $1 \mathrm{C}, C(33)$), 155.3 ($\mathrm{s}, 1 \mathrm{C}, C(18)$), 159.0 (s, $1 \mathrm{C}, C(12)$), 165.0 (s, $1 \mathrm{C}, \mathrm{C}(15)$); LRMS $\mathrm{m} / \mathrm{z}\left(E \mathrm{EI}^{+}\right) 552\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 530\left[\mathrm{MH}^{+}\right]$; HRMS (ESI ${ }^{+}$) found 530.3122 , calculated for $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{~N}_{5} \mathrm{O}_{3}{ }^{+} 530.3126$; LCMS (System B) $t_{\mathrm{r}} 4.2 \mathrm{~min}$ (89\%).

tert-Butyl 4-\{2-[5-(3,5-dimethyl-1,2-oxazol-4-yl)-2-(2-phenylethyl)-1H-benzimidazol-1-yl]ethyl\}piperazine-1carboxylate ($50 \mathrm{mg}, 0.094 \mathrm{mmol}$) was dissolved in $\mathrm{F}_{3} \mathrm{CCOOH}(2 \mathrm{~mL})$ then stirred for 1 h . The excess $\mathrm{F}_{3} \mathrm{CCOOH}$ was evaporated then the residue purified by flash column chromatography on a silica column (4 g). Eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}$, which was increased linearly from 95:5:0.5 to 90:10:1 over 5 CV . The desired fractions were combined and evaporated to a golden-yellow gum. This material was dissolved in MeOH then loaded onto a pre-wetted SCX cartridge (1 g). The cartridge was eluted with MeOH then with $10 \% \mathrm{NEt}_{3}$ in MeOH . The basic eluent was evaporated then dried under high vacuum to yield the product as a colourless gum ($27 \mathrm{mg}, 67 \%$); $R_{f} 0.20,\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}, 90: 10: 1\right.$); $v_{\max }$ (neat) $3373(\mathrm{~N}-\mathrm{H}), 2937(\mathrm{C}-\mathrm{H}), 2811(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 2.29-2.31\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{3}\right), 2.41-2.49\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{3}+\mathrm{C}(28) \mathrm{H}_{2}+\mathrm{C}(32) \mathrm{H}_{2}\right)$, $2.59\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(11) \mathrm{H}_{2}\right), 2.83-2.91\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(29) \mathrm{H}_{2}+\mathrm{C}(31) \mathrm{H}_{3}\right), 3.17-3.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(19) \mathrm{H}_{2}\right), 3.25-3.33$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{2}$), $4.11\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(10) \mathrm{H}_{2}\right.$), 7.12 (dd, J=8.0, $\left.1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}\right), 7.19-7.34(\mathrm{~m}, 5 \mathrm{H}$, $5 \times \mathrm{PhH}), 7.35(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 7.63(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 10.8(\mathrm{~s}$,
 $C(29)+C(31)), 54.5(\mathrm{~s}, 2 C, C(28)+C(32)), 57.7(\mathrm{~s}, 1 \mathrm{C}, C(11)), 109.4(\mathrm{~s}, 1 \mathrm{C}, C(3)), 117.1(\mathrm{~s}, 1 \mathrm{C}, C(7)), 119.8$ (s, 1 C, $C(6)$), 123.4 (s, 1 C, $C(2)$), 124.1 (s, 1 C, $C(1)$), 126.4 (s, $1 \mathrm{C}, C(24)$), $128.3(\mathrm{~s}, 2 \mathrm{C}, C(22 / 23)+C(26 / 25)), 128.6$ (s, $2 \mathrm{C}, C(22 / 23)+C(26 / 25)$), 134.3 (s, $1 \mathrm{C}, ~ C(4)), 140.8$ (s, $1 \mathrm{C}, ~ C(21)$), $143.0(\mathrm{~s}, 1 \mathrm{C}, C(5)$), 155.3 (s, $1 \mathrm{C}, C(18)$), 159.0 (s, $1 \mathrm{C}, \mathrm{C}(12)$), $165.0(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(15))$; LRMS $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right) 859\left[(2 \mathrm{M}+\mathrm{H})^{+}\right], 430\left[\mathrm{MH}^{+}\right] ; \mathrm{HRMS}\left(E S I^{+}\right)$found 430.2592, calculated for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{5} \mathrm{O}^{+} 430.2601$; LCMS (System B) $t_{\mathrm{r}} 3.4 \mathrm{~min}$ (92%).

5-(3,5-Dimethyl-1,2-oxazol-4-yl)-2-(2-phenylethyl)-1-[2-(thiomorpholin-4-yl)ethyl]-1H-benzimidazole (20)

Thiomorpholine ($20 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$) was reacted with [5-(3,5-dimethyl-1,2-oxazol-4-yl)-2-(2-phenylethyl)-1H-benzimidazol-1-yl]acetaldehyde ($50 \mathrm{mg}, 0.14 \mathrm{mmol}$) according to general procedure A . Chromatography was carried out with a gradient of $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}$, which was increased linearly from 99:1:0.1 to 92:8:0.8 over 30 CVs . The desired fractions were combined and evaporated to yield the product as a colourless gum ($37 \mathrm{mg}, 59 \%$); $R_{f} 0.45\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}, 90: 10: 1\right.$); $v_{\max }$ (neat) $2926(\mathrm{C}-\mathrm{H}), 2813(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(7) \mathrm{H}_{3}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(6) \mathrm{H}_{3}\right), 2.64\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}(7) \mathrm{H}_{3}+\mathrm{C}(29) \mathrm{H}_{2}+\mathrm{C}(31) \mathrm{H}_{2}\right), 2.69-2.75(\mathrm{~m}$, $\left.4 \mathrm{H}, \mathrm{C}(28) \mathrm{H}_{2}+\mathrm{C}(32) \mathrm{H}_{2}\right), 3.17-3.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(19) \mathrm{H}_{2}\right), 3.26-3.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{2}\right), 4.09(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{C}(17) \mathrm{H}_{2}\right), 7.12(\mathrm{dd}, \mathrm{J}=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(9) \mathrm{H}), 7.23-7.28(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{Ph} H), 7.28-7.37(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}(10) \mathrm{H}+2 \times \mathrm{PhH})$,
$7.64(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(13) \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 10.8(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(7))$, $11.5(\mathrm{~s}, 1 \mathrm{C}, C(6)$), 27.8 (s , $2 \mathrm{C}, C(29)+C(31)$), 29.7 ($\mathrm{s}, 1 \mathrm{C}, C(19)$), 33.8 ($\mathrm{s}, 1 \mathrm{C}, C(20)$), 41.6 ($\mathrm{s}, 1 \mathrm{C}, C(17)$), 55.4 ($\mathrm{s}, 2 \mathrm{C}, C(28)+C(32)$), 57.8 (s, 1 C, C(18)), 109.4 (s, 1 C, C(10)), 117.0 (s, 1 C, C(1)), 119.9 (s, 1 C, C(10)), 123.3 (s, 1 C, C(9)), 124.1 (s, 1 C, $C(8)), 126.5$ (s, 1 C, $C(24)$), 128.3 (s, $2 C, C(22 / 23)+C(26 / 25)$), 128.7 (s, $2 C, C(22 / 23)+C(26 / 25)), 134.2$ (s, 1 C,
 LRMS $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right) 915\left[(2 \mathrm{M}+\mathrm{Na})^{+}\right], 893\left[(2 \mathrm{M}+\mathrm{H})^{+}\right], 447\left[\mathrm{MH}^{+}\right]$; HRMS found 447.2204, calculated for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{OS}^{+} 447.2213$; LCMS (System B) $t_{\mathrm{r}} 3.6 \mathrm{~min}$ (86%).

1-\{2-[(cis-2,6-Dimethylmorpholin-4-yl]ethyl\}-5-(3,5-dimethyl-1,2-oxazol-4-yl)-2-(2-phenylethyl)-1Hbenzimidazoledimethylmorpholine (21)

cis-2,6-Dimethylmorpholine ($25 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$) was reacted with [5-(3,5-dimethyl-1,2-oxazol-4-yl)-2-(2-phenylethyl)-1H-benzimidazol-1-yl]acetaldehyde ($50 \mathrm{mg}, 0.14 \mathrm{mmol}$) according to general procedure A . Chromatography was carried out with a gradient of $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}$, which was increased linearly from 99:1:0.1 to 92:8:0.8 over 30 CVs . The desired fractions were combined and evaporated to yield the product as a colourless gum ($29 \mathrm{mg}, 45 \%$); $R_{f} 0.45\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}, 90: 10: 1\right.$); $\mathrm{v}_{\max }$ (neat) 2973 (C-H), 2934 (C-H), $2870(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.13\left(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{C}(33) \mathrm{H}_{3}+\mathrm{C}(34) \mathrm{H}_{3}\right), 1.83(\mathrm{t}, \mathrm{J}=10.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{C}(28) \mathrm{H}+\mathrm{C}(32) \mathrm{H}), 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(7) \mathrm{H}_{3}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(6) \mathrm{H}_{3}\right), 2.58\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(18) \mathrm{H}_{2}\right), 2.65(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{C}(28) \mathrm{H}+\mathrm{C}(32) \mathrm{H}), 3.16-3.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(19) \mathrm{H}_{2}\right), 3.26-3.33$ (m, $\left.2 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{2}\right), 3.56-3.67$ (m, 2 H , $\mathrm{C}(29) \mathrm{H}+\mathrm{C}(31) \mathrm{H}), 4.12\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{2}\right), 7.13(\mathrm{dd}, J=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(9) \mathrm{H}), 7.22-7.27(\mathrm{~m}, 3 \mathrm{H}$, $3 \times \mathrm{PhH}$), $7.29-7.38(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}(9) \mathrm{H}+2 \times \mathrm{PhH}), 7.64(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(13) \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$
 $1 \mathrm{C}, C(17)), 57.2(\mathrm{~s}, 1 \mathrm{C}, C(18)), 59.7(\mathrm{~s}, 2 \mathrm{C}, C(28)+C(32)), 71.5(\mathrm{~s}, 2 \mathrm{C}, C(29)+C(31)), 109.4(\mathrm{~s}, 1 \mathrm{C}, C(10)), 117.1$ (s, 1 C, C(1)), 119.9 (s, 1 C, C(13)), 123.4 (s, 1 C, C(9)), 124.1 (s, 1 C, C(8)), 126.5 (s, 1 C, C(24)), 128.3 (s, 2 C, $C(22 / 23)+C(26 / 25)$), 128.7 (s, $2 C, C(22 / 23)+C(26 / 25)$), 134.3 (s, 1 C, $C(11)$), 140.9 (s, $1 \mathrm{C}, C(21)$), 143.0 ($\mathrm{s}, 1 \mathrm{C}$, $C(12)), 155.3$ (s, $1 \mathrm{C}, C(15)$), 159.0 (s, $1 \mathrm{C}, C(2)$), 165.0 (s, $1 \mathrm{C}, C(5)$); LRMS m/z (ESI ${ }^{+} 939\left[(2 \mathrm{M}+\mathrm{Na})^{+}\right], 917$ $\left[(2 \mathrm{M}+\mathrm{H})^{+}\right], 459\left[\mathrm{MH}^{+}\right]$; HRMS (ESI ${ }^{+}$) found 459.2756, calculated for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+} 459.2755$; LCMS (System B) t_{r} 3.7 min (81\%).

4-(3,5-Dimethyl-1,2-oxazol-4-yl)- N-[2-(morpholin-4-yl)ethyl]-2-nitroaniline

4-(2-Aminoethyl)morpholine ($0.787 \mathrm{~mL}, 6.00 \mathrm{mmol}$) was added to a solution of compound 10 ($1.18 \mathrm{~g}, 5.00$ $\mathrm{mmol})$ and $\operatorname{EtN}(i-\operatorname{Pr})_{2}(1.05 \mathrm{~mL}, 6.00 \mathrm{mmol})$ in THF (25 mL). The mixture was left to stir for 16 h at room temperature then more 4-(2-aminoethyl)morpholine ($0.262 \mathrm{~mL}, 2.00 \mathrm{mmol}$) was added and the reaction was
left to stir for a further 5 h . The mixture was partitioned between EtOAc (20 mL) and water (20 mL). The phases were separated then the organic phase was washed with water $(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$ then dried over MgSO_{4} and evaporated to yield the product as an orange solid (1.63 g, 94\%); $R_{f} 0.15$ (EtOAc); mp 131$133{ }^{\circ} \mathrm{C}$; $v_{\max }$ (neat) 3343 (N-H), 2967 (C-H), 2941 (C-H), 2856 (C-H), 2811 (C-H), 1526 (N-O), 1352 (N-O); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(14) \mathrm{H}_{3}\right), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right), 2.50-2.60(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{C}(19) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 2.76\left(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{2}\right), 3.35-3.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{2}\right), 3.73-3.81(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{C}(20) \mathrm{H}_{2}+\mathrm{C}(22) \mathrm{H}_{2}$), $6.92(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 7.34(\mathrm{dd}, J=9.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}), 8.09(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}(6) \mathrm{H})$, 8.55-8.64 (m, $1 \mathrm{H}, \mathrm{NH}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 10.7(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(14)$), $11.5(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(15))$, 39.4

 C, $C(4)$), 158.6 (s, $1 \mathrm{C}, C(10)), 165.3$ ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(13)$); LRMS $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right) 715\left[(2 \mathrm{M}+\mathrm{Na})^{+}\right], 693\left[(2 \mathrm{M}+\mathrm{H})^{+}\right], 369$ $\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 347\left[\mathrm{MH}^{+}\right]$; $\mathrm{HRMS}\left(\mathrm{ESI}^{+}\right)$found 347.1714, calculated for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{+}$347.1714; LCMS (System A) t_{r} 10.0 min (99\%).

4-(3,5-Dimethyl-1,2-oxazol-4-yl)- N^{1}-[2-(morpholin-4-yl)ethyl]benzene-1,2-diamine (22)

1.0 M aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(50 \mathrm{~mL}, 50 \mathrm{mmol})$ was added to a suspension of 4-(3,5-dimethylisoxazol-4-yl)- N -(2-morpholinoethyl)-2-nitroaniline ($3.43 \mathrm{~g}, 3.43 \mathrm{mmol}$) in $\mathrm{EtOH}(50 \mathrm{~mL})$. The reaction was heated under reflux for 1 hour then allowed to cool. The mixture was partitioned between 10% aq. $\mathrm{NH}_{3}(50 \mathrm{~mL})$ and EtOAc (50 mL). The phases were separated then the aqueous phase was extracted with more EtOAc (50 mL). The combined organic phases were washed with brine (50 mL) then dried over MgSO_{4} and evaporated to yield the product as a pale yellow gum ($2.737 \mathrm{~g}, 87 \%$); $R_{f} 0.40\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}, 90: 10: 1\right.$); $\mathrm{v}_{\text {max }}$ (neat) 3339 (N $\mathrm{H}), 2957(\mathrm{C}-\mathrm{H}), 2854(\mathrm{C}-\mathrm{H}), 2816(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(10) \mathrm{H}_{3}\right), 2.39(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{C}(13) \mathrm{H}_{3}$), $2.47-2.55\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(19) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 2.72\left(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{2}\right), 3.21(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{C}(16) \mathrm{H}_{2}$), 3.48 (br. s., $2 \mathrm{H}, \mathrm{NH}_{2}$), $3.70-3.78$ (m, $4 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{2}+\mathrm{C}(22) \mathrm{H}_{2}$), 4.08 (br. s., $1 \mathrm{H}, \mathrm{NH}$), 6.60 (s, 1 H , $\mathrm{C}(2) \mathrm{H}), 6.69(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}(3) \mathrm{H}+\mathrm{C}(6) \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 10.8(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(14)), 11.5(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(15)$), 40.2 (s, 1 C, $C(17)$), 53.4 (s, $2 C, C(19)+C(23)$), 57.2 (s, $2 C, C(20)+C(22)), 67.0(\mathrm{~s}, 1 \mathrm{C}, C(16)), 111.7$ (s, $1 \mathrm{C}, C(3)$), 116.6 (s, $1 \mathrm{C}, C(6)$), 116.7 ($s, 1 \mathrm{C}, C(7)$), 120.3 ($\mathrm{s}, 1 \mathrm{C}, C(1)), 121.3$ ($\mathrm{s}, 1 \mathrm{C}, C(2)$), $134.5(\mathrm{~s}, 1 \mathrm{C}, C(5)$), $137.0(\mathrm{~s}, 1$ C, $C(4)$), 159.0 (s, $1 \mathrm{C}, C(10)), 164.5$ (s, $1 \mathrm{C}, \mathrm{C}(13))$; LRMS $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right) 655\left[(2 \mathrm{M}+\mathrm{Na})^{+}\right], 339\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 317\left[\mathrm{MH}^{+}\right]$; HRMS (ESI ${ }^{+}$) found 317.1971, calculated for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{NaO}_{2}{ }^{+} 317.1972$; LCMS (System B) $t_{r} 2.6 \mathrm{~min}$ (97\%).

General procedure B

A solution of compound 22 ($50 \mathrm{mg}, 0.16 \mathrm{mmol}$), T3P ($50 \mathrm{wt} . \%$ in EtOAc, $0.50 \mathrm{~mL}, 0.79 \mathrm{mmol}$), EtN $(i-\mathrm{Pr})_{2}$ (31 $\mu \mathrm{L}, 0.18 \mathrm{mmol})$ and a carboxylic acid (0.18 mmol) in EtOAc (0.5 mL) was crimp-sealed in a microwave vial then heated under microwave irradiation for 10 min at $150^{\circ} \mathrm{C}$. The reaction mixture was basified by addition of 1 M aq. NaOH solution then extracted with EtOAc (3 mL). The organic phase was washed with water (3 mL) and brine (3 mL) then the organic phase was passed through a hydrophobic frit then evaporated by nitrogen blow-down. The crude material was purified by flash column chromatography on silica (10 g). The desired fractions were combined and evaporated to yield the product.

General procedure C

A solution of compound $\mathbf{2 2}$ in EtOAc ($0.25 \mathrm{M}, 0.50 \mathrm{~mL}, 0.13 \mathrm{mmol}$) was added to a Radley's GreenHouse tube containing the appropriate carboxylic acid (0.14 mmol$)$. $\operatorname{EtN}(i-\operatorname{Pr})_{2}(25 \mu \mathrm{~L}, 0.14 \mathrm{mmol})$ was added, followed by T3P (50 wt . \% in EtOAc, $0.39 \mathrm{~mL}, 0.65 \mathrm{mmol}$). The reaction tube was placed in a Radley's GreenHouse reactor with a reflux head and under a nitrogen atmosphere. The reaction was heated under reflux for 16 h then allowed to cool. The reaction mixture was partitioned between 1 M aq. $\mathrm{NaOH}(2 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. The phases were separated by passing the organic phase through a hydrophobic frit with a small amount of MgSO_{4} on the frit. The collected organic phase was evaporated by nitrogen blow-down then the crude material was purified by flash column chromatography on silica (4 g). The column was eluted with a gradient of EtOAc: $\mathrm{MeOH}: \mathrm{NEt}_{3}$, which was increased linearly from 99:1:0.1 to 95:5:0.5 over 20 CVs. The desired fractions were combined and evaporated to yield the product.

General procedure D

A mixture of compound $22(40 \mathrm{mg}, 0.13 \mathrm{mmol})$ and a carboxylic acid (0.26 mmol) in $6 \mathrm{M} \mathrm{aq} . \mathrm{HCl}(0.5 \mathrm{~mL})$ was crimp-sealed in a microwave vial then heated under microwave irradiation for 15 min at $210^{\circ} \mathrm{C}$. The mixture was neutralised by careful addition of saturated aq. NaHCO_{3} solution then extracted with EtOAc (5 mL). The organic phase was dried by passing through a hydrophobic frit with a small amount of MgSO_{4} on top. The crude material was purified by flash column chromatography on silica (4 g). The desired fractions were combined and evaporated to yield the product.

5-(3,5-Dimethyl-1,2-oxazol-4-yl)-2-[2-(2-methylphenyl)ethyl]-1-[2-(morpholin-4-yl)ethyl]-1Hbenzimidazole (23)

2-Methylhydrocinnamic acid ($30 \mathrm{mg}, 0.18 \mathrm{mmol}$) was reacted with compound 22 according to general procedure B. Chromatography was carried out with a gradient of $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH} 4 \mathrm{OH}$, which was increased linearly from 99:1:0.1 to 90:10:1 over 10 CVs . The product was obtained as a beige solid ($44 \mathrm{mg}, 62 \%$); mp $121-123{ }^{\circ} \mathrm{C} ; v_{\max }$ (neat) $2956(\mathrm{C}-\mathrm{H}), 2930(\mathrm{C}-\mathrm{H}), 2867(\mathrm{C}-\mathrm{H}), 2826(\mathrm{C}-\mathrm{H}) ; R_{f} 0.40\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}\right.$, 90:10:1); $v_{\max }$ (neat) $2956(\mathrm{C}-\mathrm{H}), 2931(\mathrm{C}-\mathrm{H}), 2857(\mathrm{C}-\mathrm{H}), 2826(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 2.30(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right), 2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(33) \mathrm{H}_{3}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{3}\right), 2.44-2.48\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(28) \mathrm{H}_{2}+\mathrm{C}(32) \mathrm{H}_{2}\right), 2.62(\mathrm{t}, \mathrm{J}=7.0$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{C}(26) \mathrm{H}_{2}\right), 3.09-3.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(18) \mathrm{H}_{2}\right), 3.25-3.34\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(19) \mathrm{H}_{2}\right), 3.58-3.70(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{C}(29) \mathrm{H}_{2}+\mathrm{C}(31) \mathrm{H}_{2}\right), 4.11\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(10) \mathrm{H}_{2}\right), 7.00-7.23(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}(2) \mathrm{H}+4 \times \mathrm{ArH}$), $7.36(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}(3) \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta \mathrm{ppm} 10.8(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(15)), 11.5(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(16)$), 19.3 ($\mathrm{s}, 1$ C, $C(33)$), 28.3 (s, 1 C, C(18)), 31.1 (s, 1 C, C(19)), 41.4 (s, 1 C, $C(10)$), 54.0 (s, $2 C, C(28)+C(32)$), 57.5 (s, 1 C, $C(26)$), 66.7 (s, $2 C, C(29)+C(31)$), 109.4 ($s, 1 C, C(3)$), 117.0 ($s, 1 \mathrm{C}, C(7)$), 119.9 ($s, 1 \mathrm{C}, C(6)$), 123.4 ($\mathrm{s}, 1 \mathrm{C}$, $C(2)), 124.1$ ($s, 1 \mathrm{C}, ~ C(1)), 126.3$ ($\mathrm{s}, 1 \mathrm{C}, ~ C(23 / 24)$), 126.6 ($\mathrm{s}, 1 \mathrm{C}, ~ C(23 / 24)$), 128.8 ($\mathrm{s}, 1 \mathrm{C}, C(25)$), 130.4 ($\mathrm{s}, 1 \mathrm{C}$, $C(22)$), 134.2 (s, 1 C, C(4)), 135.9 (s, 1 C, C(21)), 139.0 (s, 1 C, C(20)), 143.0 (s, 1 C, C(5)), 155.4 (s, 1 C, C(17)), 158.9 (s, $1 \mathrm{C}, \mathrm{C}(11))$, 164.9 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(14))$; LRMS $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right) 911\left[(2 \mathrm{M}+\mathrm{Na})^{+}\right], 889\left[(2 \mathrm{M}+\mathrm{H})^{+}\right], 467\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 445$ $\left[\mathrm{MH}^{+}\right],\left(\mathrm{ESI}^{-}\right) 443\left[(\mathrm{M}-\mathrm{H})^{-}\right]$; HRMS (ESI $)$found 445.2595, calculated for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+} 445.2598$; LCMS (System B) $t_{\mathrm{r}} 3.7 \mathrm{~min}$ (96\%).

5-(3,5-Dimethyl-1,2-oxazol-4-yl)-2-[2-(3-methylphenyl)ethyl]-1-[2-(morpholin-4-yl)ethyl]-1Hbenzimidazole (24)

3-(3-Methylphenyl)propionic acid ($30 \mathrm{mg}, 0.18 \mathrm{mmol}$) was reacted with compound 22 according to general procedure B . Chromatography was carried out with a gradient of $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}$, which was increased linearly from 99:1:0.1 to 92:8:0.8 over 10 CVs . The product was obtained as a pale brown solid ($22 \mathrm{mg}, 31 \%$); $R_{f} 0.40\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}, 90: 10: 1\right) ; \mathrm{mp} 68-70^{\circ} \mathrm{C} ; v_{\max }$ (neat) $2925(\mathrm{C}-\mathrm{H}), 2815(\mathrm{C}-\mathrm{H}), 2816(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right.$), $2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(33) \mathrm{H}_{3}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{3}\right), 2.45-2.51(\mathrm{~m}, 4$ $\left.\mathrm{H}, \mathrm{C}(28) \mathrm{H}_{2}+\mathrm{C}(32) \mathrm{H}_{2}\right), 2.62\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(26) \mathrm{H}_{2}\right), 3.16-3.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(18) \mathrm{H}_{2}\right), 3.24-3.31(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{C}(19) \mathrm{H}_{2}\right), 3.63-3.73\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(29) \mathrm{H}_{2}+\mathrm{C}(31) \mathrm{H}_{2}\right), 4.14\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(10) \mathrm{H}_{2}\right), 7.00-7.10(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{C}(21) H+C(23) H+C(25) H), 7.13(d d, J=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(2) H), 7.18-7.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(22) H), 7.36(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{C}(3) \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 10.9$ (s, $1 \mathrm{C}, \mathrm{C}(15)$), 11.5 (s, 1 C , $C(16)$), 21.4 (s, 1 C, $C(33)$), 29.7 (s, 1 C, $C(18)$), 33.7 (s, $1 C, C(19)$), 41.4 (s, $1 C, C(10)$), 54.0 (s, $2 C$,
 C, C(6)), 123.4 (s, 1 C, C(2)), 124.2 ($s, 1$ C, C(1)), 125.3 (s, 1 C, C(21)), 127.2 (s, 1 C, C(23)), 128.6 (s, 1 C, C(22)), 129.2 ($\mathrm{s}, 1 \mathrm{C}, ~ C(25)$), 134.3 ($\mathrm{s}, 1 \mathrm{C}, ~ C(4)$), 138.3 ($\mathrm{s}, 1 \mathrm{C}, ~ C(20)$), 140.8 ($\mathrm{s}, 1 \mathrm{C}, ~ C(24)$), $143.0(\mathrm{~s}, 1 \mathrm{C}, C(5)$), 155.4 (s , $1 \mathrm{C}, C(17)), 159.0(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(11)), 165.0(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(14))$; LRMS m/z(ESI+ $911\left[(2 \mathrm{M}+\mathrm{Na})^{+}\right], 889\left[(2 \mathrm{M}+\mathrm{H})^{+}\right], 467$ $\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 445\left[\mathrm{MH}^{+}\right]$; HRMS (ESI ${ }^{+}$) found 445.2587, calculated for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+} 445.2598$; LCMS (System B) t_{r} 3.7 min (99\%).

5-(3,5-Dimethyl-1,2-oxazol-4-yl)-2-[2-(4-methylphenyl)ethyl]-1-[2-(morpholin-4-yl)ethyl]-1Hbenzimidazole (25)

3-(p-Tolyl)propionic acid ($30 \mathrm{mg}, 0.18 \mathrm{mmol}$) was reacted with compound $\mathbf{2 2}$ according to general procedure B. Chromatography was carried out with a gradient of $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}$, which was increased linearly from 99:1:0.1 to 90:10:1 over 10 CVs . The product was obtained as a white solid ($25 \mathrm{mg}, 35 \%$); $R_{f} 0.40$; ($\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}, 90: 10: 1$); mp 131-133 ${ }^{\circ} \mathrm{C}$; $\mathrm{v}_{\text {max }}$ (neat) $2962(\mathrm{C}-\mathrm{H}), 2922(\mathrm{C}-\mathrm{H}), 2860(\mathrm{C}-\mathrm{H}), 2824(\mathrm{C}-\mathrm{H})$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right), 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(33) \mathrm{H}_{3}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{3}\right), 2.44$ $2.49\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(28) \mathrm{H}_{2}+\mathrm{C}(32) \mathrm{H}_{2}\right), 2.60\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(26) \mathrm{H}_{2}\right), 3.14-3.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(18) \mathrm{H}_{2}\right), 3.23$ - 3.31 (m, 2 $\mathrm{H}, \mathrm{C}(19) \mathrm{H}_{2}$), $3.65-3.71\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(29) \mathrm{H}_{2}+\mathrm{C}(31) \mathrm{H}_{2}\right), 4.13\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(10) \mathrm{H}_{2}\right), 7.10-7.17$ (m,5 H, $\mathrm{C}(2) \mathrm{H}+4 \times \mathrm{ArH}$), $7.36(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 7.64(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$ 10.9 (s, 1 C, C(15)), 11.5 (s, 1 C, C(16)), 21.0 (s, 1 C, C(33)), 29.8 (s, 1 C, C(18)), 33.4 (s, 1 C, C(19)), 41.4 (s, 1 C,

 $2 \mathrm{C}, C(21 / 22)+C(25 / 24)$), 134.2 (s, $1 \mathrm{C}, C(4)), 136.0$ ($s, 1 \mathrm{C}, C(23)$), 137.8 (s, $1 \mathrm{C}, C(20)$), 143.0 (s, $1 \mathrm{C}, C(5)$), 155.4 (s, $1 \mathrm{C}, C(17)$), $159.0(\mathrm{~s}, 1 \mathrm{C}, ~ C(11)), 165.0(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(14))$; LRMS m/z (ESI $\left.{ }^{+}\right) 911\left[(2 \mathrm{M}+\mathrm{Na})^{+}\right], 889$ $\left[(2 \mathrm{M}+\mathrm{H})^{+}\right], 467\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 445\left[\mathrm{MH}^{+}\right], 443\left[(\mathrm{M}-\mathrm{H})^{-}\right]$; HRMS (ESI ${ }^{+}$) found 445.2590 , calculated for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+}$ 445.2598; LCMS (System B) $t_{\mathrm{r}} 3.7 \mathrm{~min}$ (99\%).

5-(3,5-Dimethyl-1,2-oxazol-4-yl)-2-[2-(4-methoxyphenyl)ethyl]-1-[2-(morpholin-4-yl)ethyl]-1Hbenzimidazole (26)

3-(4-Methoxyphenyl)propionic acid ($32 \mathrm{mg}, 0.18 \mathrm{mmol}$) was reacted with compound $\mathbf{2 2}$ according to general procedure B. Chromatography was carried out with a gradient of $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}$, which was increased linearly from 99:1:0.1 to 92:8:0.8 over 10 CVs . The product was obtained as a pale yellow gum ($27 \mathrm{mg}, 37 \%$); $R_{f} 0.50\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}, 90: 10: 1\right)$; $\mathrm{v}_{\max }$ (neat) $2956(\mathrm{C}-\mathrm{H}), 2926(\mathrm{C}-\mathrm{H}), 2854(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{3}\right), 2.44-2.49\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(19) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 2.60(\mathrm{t}, \mathrm{J}=7.0$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{2}\right), 3.13-3.21\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(25) \mathrm{H}_{2}\right), 3.21-3.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(26) \mathrm{H}_{2}\right), 3.65-3.70(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{C}(20) \mathrm{H}_{2}+\mathrm{C}(22) \mathrm{H}_{2}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.12\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{2}\right), 6.81-6.88(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(29) \mathrm{H}+\mathrm{C}(31) \mathrm{H})$, 7.12 (dd, J=8.5, 1.5 Hz, $1 \mathrm{H}, \mathrm{C}(2) \mathrm{H})$, $7.14-7.18$ (m, $2 \mathrm{H}, \mathrm{C}(28) \mathrm{H}+\mathrm{C}(32) \mathrm{H}), 7.35$ (d, J=8.5 Hz, $1 \mathrm{H}, \mathrm{C}(3) \mathrm{H})$, 7.63 (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 10.9$ (s, $1 \mathrm{C}, \mathrm{C}(14)$), 11.5 (s, $1 \mathrm{C}, \mathrm{C}(15)$), 29.9 (s, 1 C , $C(25)$), 33.0 ($s, 1 \mathrm{C}, \mathrm{C}(26)$), 41.4 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(16))$, 54.0 ($\mathrm{s}, 2 \mathrm{C}, \mathrm{C}(19)+\mathrm{C}(23)$), 55.2 ($\left.\mathrm{s}, 1 \mathrm{C}, 0 \mathrm{OH}_{3}\right) 57.5$ ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(17)$), 66.8 (s, 2 C, $C(20)+C(22)$), 109.4 (s, 1 C, $C(3)$), 114.0 (s, $2 C, C(29)+C(31)$), 117.1 (s, $1 \mathrm{C}, C(7)$), 119.9 (s, 1 C, $C(6)), 123.3$ ($s, 1 \mathrm{C}, ~ C(2)), 124.1$ ($\mathrm{s}, 1 \mathrm{C}, ~ C(1)$), 129.3 ($\mathrm{s}, 2 \mathrm{C}, C(28)+C(32)$), 132.9 ($\mathrm{s}, 1 \mathrm{C}, C(27)$), 134.2 ($\mathrm{s}, 1 \mathrm{C}$, $C(4)), 143.0$ (s, 1 C, C(5)), 155.4 (s, 1 C, C(24)), 158.2 (s, 1 C, C(30)), 159.0 (s, $1 \mathrm{C}, C(10)$), 165.0 (s, $1 \mathrm{C}, C(13)$); LRMS $m / z\left(E S I^{+}\right) 943\left[(2 \mathrm{M}+\mathrm{Na})^{+}\right], 921\left[(2 \mathrm{M}+\mathrm{H})^{+}\right], 483\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 461\left[\mathrm{MH}^{+}\right] ; \mathrm{HRMS}\left(\mathrm{ESI}^{+}\right)$found 461.2543, calculated for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{3}{ }^{+} 461.2547$; LCMS (System B) $t_{\mathrm{r}} 3.5 \mathrm{~min}$ (91\%).

5-(3,5-Dimethyl-1,2-oxazol-4-yl)-1-[2-(morpholin-4-yl)ethyl]-2-[2-(3-nitrophenyl)ethyl]-1Hbenzimidazole (27)

3-(3-Nitrophenyl)propanoic acid ($27 \mathrm{mg}, 0.14 \mathrm{mmol}$) was reacted with compound $\mathbf{2 2}$ (0.13 mmol) according to general procedure C . The product was obtained as a brown gum ($23 \mathrm{mg}, 37 \%$); $R_{f} 0.20$ (EtOAc:MeOH: NEt_{3}, 95:5:0.5); $v_{\max }$ (neat) 2960 (C-H), 2931 (C-H), 2855 (C-H), 2816 (C-H), 1582 (N-O), 1350 (N-O); ${ }^{1} \mathrm{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(14) \mathrm{H}_{3}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right), 2.45-2.52\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(19) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 2.68(\mathrm{t}$, $\left.J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{2}\right), 3.28\left(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(25) \mathrm{H}_{2}\right), 3.47\left(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(26) \mathrm{H}_{2}\right), 3.62-3.69(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{C}(20) \mathrm{H}_{2}+\mathrm{C}(22) \mathrm{H}_{2}\right), 4.21\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{2}\right), 7.15(\mathrm{dd}, \mathrm{J}=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}), 7.38(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}(3) \mathrm{H}), 7.49(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(29) \mathrm{H})$, $7.59-7.67(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(4) \mathrm{H}+\mathrm{C}(28) \mathrm{H})$), $8.11(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(30) \mathrm{H}), 8.17$ (s, $1 \mathrm{H}, \mathrm{C}(32) \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 10.9$ (s, $1 \mathrm{C}, \mathrm{C}(14)$), 11.6 (s, $1 \mathrm{C}, \mathrm{C}(15)$), 28.8 (s, $1 \mathrm{C}, \mathrm{C}(25)$), 32.7 (s, 1 C, $C(26)$), 41.6 (s, 1 C, $C(10)$), 54.1 (s, $2 C, C(19)+C(23)$), $57.7(\mathrm{~s}, 1 \mathrm{C}, C(17)$), $66.8(\mathrm{~s}, 2 \mathrm{C}, C(20)+C(22)$), 109.4 (s, 1 C, C(3)), 117.0 (s, 1 C, C(7)), 120.0 (s, 1 C, C(6)), 121.6 (s, 1 C, C(30)), 123.1 (s, 1 C, C(32)), 123.7 (s,
 $C(5 / 27)$), 142.9 (s, 1 C, $C(5 / 27)$), 148.4 (s, $1 \mathrm{C}, ~ C(31)$), 154.2 ($s, 1 \mathrm{C}, ~ C(24)$), 158.9 (s, $1 \mathrm{C}, C(10)$), 165.0 ($\mathrm{s}, 1 \mathrm{C}$, $C(13)) ;$ LRMS $m / z\left(E S I^{+}\right) 498\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 476\left[\mathrm{MH}^{+}\right]$; HRMS (ESI ${ }^{+}$) found 476.2277, calculated for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{5} \mathrm{O}_{4}{ }^{+}$ 476.2292; LCMS (System B) $t_{\mathrm{r}} 3.8 \mathrm{~min}$ (95\%).

5-(3,5-Dimethyl-1,2-oxazol-4-yl)-1-[2-(morpholin-4-yl)ethyl]-2-[2-(4-nitrophenyl)ethyl]-1Hbenzimidazole (28)

3-(4-Nitrophenyl)propanoic acid ($27 \mathrm{mg}, 0.14 \mathrm{mmol}$) was reacted with compound $\mathbf{2 2}$ (0.13 mmol) according to general procedure C. The product was obtained as a brown/orange gum (18 mg, 29\%); $R_{f} 0.15$ (EtOAc:MeOH:NEt ${ }_{3}$, 95:5:0.5); $v_{\max }$ (neat) 2934 (C-H), 2854 (C-H), 1516 (N-O), 1344 (N-O); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(14) \mathrm{H}_{3}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right), 2.45-2.53\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(19) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 2.66(\mathrm{t}, \mathrm{J}=6.5$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{2}\right), 3.26\left(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(25) \mathrm{H}_{2}\right), 3.47\left(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(26) \mathrm{H}_{2}\right), 3.62-3.72(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{C}(20) \mathrm{H}_{2}+\mathrm{C}(22) \mathrm{H}_{2}\right), 4.18\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{2}\right), 7.15(\mathrm{dd}, \mathrm{J}=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}(2) H$), $7.45(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(28) \mathrm{H}+\mathrm{C}(32) H), 7.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}), 8.18(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(29) \mathrm{H}+\mathrm{C}(31) \mathrm{H}) ;{ }^{13} \mathrm{C}$

 117.0 ($\mathrm{s}, 1 \mathrm{C}, C(7)$), 119.9 ($\mathrm{s}, 1 \mathrm{C}, ~ C(2)$), 123.7 ($\mathrm{s}, 1 \mathrm{C}, C(6)$), 123.9 ($\mathrm{s}, 2 \mathrm{C}, C(29)+C(31)$), 124.5 ($\mathrm{s}, 1 \mathrm{C}, C(1)$), 129.3 (s, 2 C, C(28) $+C(32)$), 134.2 (s, 1 C, C(4)), 142.8 (s, 1 C, C(5)), 146.7 (s, 1 C, C(30)), 148.5 (s, 1 C, C(27)),
 HRMS (ESI ${ }^{+}$) found 476.2282, calculated for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{5} \mathrm{O}_{4}{ }^{+} 476.2292$; LCMS (System B) $t_{\mathrm{r}} 3.8 \mathrm{~min}$ (97%).

5-(3,5-Dimethyl-1,2-oxazol-4-yl)-2-[2-(2-fluorophenyl)ethyl]-1-[2-(morpholin-4-yl)ethyl]-1Hbenzimidazole (29)

3-(2-Fluorophenyl)propanoic acid ($23 \mathrm{mg}, 0.14 \mathrm{mmol}$) was reacted with compound $22(0.13 \mathrm{mmol})$ according to general procedure C. The product was obtained as a pale yellow gum (11 mg, 19\%); $R_{f} 0.35$ (EtOAc:MeOH: $\mathrm{NEt}_{3}, ~ 95: 5: 0.5$); $\mathrm{v}_{\max }$ (neat) $2933(\mathrm{C}-\mathrm{H}), 2856(\mathrm{C}-\mathrm{H}), 2819(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ ppm $2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(14) \mathrm{H}_{3}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right), 2.47-2.53\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(19) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 2.68(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{C}(17) \mathrm{H}_{2}\right)$, $3.19-3.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(26) \mathrm{H}_{2}\right), 3.27-3.34\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(25) \mathrm{H}_{2}\right), 3.65-3.71\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right)$, $4.21\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{2}\right), 7.02-7.11(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(29) \mathrm{H}+\mathrm{C}(31) \mathrm{H}), 7.14$ (dd, J=8.0, $\left.1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}\right), 7.20-$ 7.31 (m, $2 \mathrm{H}, \mathrm{C}(30) \mathrm{H}+\mathrm{C}(32) \mathrm{H}), 7.38(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H} \mathrm{C}(6) \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz ,
 $1 \mathrm{C}, C(16)$), 54.0 (s, $2 \mathrm{C}, C(19)+C(22)$), 57.6 (s, 1 C, $C(17)$), 66.7 (s, $2 C, C(20)+C(22)$), 109.5 (s, 1 C, C(3)), 115.4
 (d, J=4.0 Hz, 1 C, C(31)), 127.5 (d, J=15.5 Hz, 1 C, C(27)), 128.4 (d, J=8.6 Hz, 1 C, C(30)), 130.9 (d, J=5.0 Hz, 1 C , $C(32)$), 134.2 (s, 1 C, C(4)), 142.8 (s, 1 C, C(5)), 155.1 (s, 1 C, C(24)), 159.0 (s, 1 C, C(10)), 161.2 (d, J=244.0 Hz, $1 \mathrm{C}, \mathrm{C}(28)), 165.0(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(13)) ;{ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}-118.8$ (s, 1 F); LRMS m/z (ESI $) 449\left[\mathrm{MH}^{+}\right]$; HRMS (ESI ${ }^{+}$) found 449.2337, calculated for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{FN}_{4} \mathrm{O}_{2}{ }^{+} 449.2347$; LCMS (System A) $t_{r} 9.4 \mathrm{~min}$ (92%).

5-(3,5-Dimethyl-1,2-oxazol-4-yl)-2-[2-(3-fluorophenyl)ethyl]-1-[2-(morpholin-4-yl)ethyl]-1Hbenzimidazole (30)

3-(3-Fluorophenyl)propanoic acid ($23 \mathrm{mg}, 0.14 \mathrm{mmol}$) was reacted with compound $\mathbf{2 2}$ (0.13 mmol) according to general procedure C. The product was obtained as a pale yellow gum ($21 \mathrm{mg}, 37 \%$); $R_{f} 0.25$ (EtOAc:MeOH:NEt ${ }_{3}$, 95:5:0.5); $v_{\max }$ (neat) $2962(\mathrm{C}-\mathrm{H}), 2929(\mathrm{C}-\mathrm{H}), 2854(\mathrm{C}-\mathrm{H}), 2825(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(14) \mathrm{H}_{3}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right), 2.44-2.52\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(19) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 2.63(\mathrm{t}, \mathrm{J}=7.0$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{2}\right), 3.18-3.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(25) \mathrm{H}_{2}\right), 3.29-3.37\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(26) \mathrm{H}_{2}\right), 3.61-3.72(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{C}(20) \mathrm{H}_{2}+\mathrm{C}(22) \mathrm{H}_{2}\right), 4.15\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{2}\right), 6.90-6.95(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(30) \mathrm{H}), 6.95-7.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(28) \mathrm{H})$, $7.04(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(32) \mathrm{H}), 7.13$ (dd, J=8.5, $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}), 7.24-7.31(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(23) \mathrm{H}), 7.36$ (d, J=8.5 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 10.9$ (s, $1 \mathrm{C}, \mathrm{C}(14)$), 11.5 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(15)$),
 (s, 2 C, C(20) $+C(22)$), $109.4(\mathrm{~s}, 1 \mathrm{C}, C(3)), 113.4(\mathrm{~d}, J=21.5 \mathrm{~Hz}, 1 \mathrm{C}, C(30)), 115.2(\mathrm{~d}, J=21.0 \mathrm{~Hz}, 1 \mathrm{C}, C(28)), 117.0$

 $C(24)$), 159.0 (s, $1 \mathrm{C}, C(10)$), 162.9 (d, J=246.0 Hz, $1 \mathrm{C}, C(29)$), $\left.165.0(\mathrm{~s}, 1 \mathrm{C}, C(13)) ;{ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{(377MHz,CDCl}_{3}\right) \delta$ ppm -113.0 (s, 1 F); LRMS $m / z\left(E S I^{+}\right) 449\left[\mathrm{MH}^{+}\right]$; HRMS (ESI $)$found 449.2335, calculated for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{FN}_{4} \mathrm{O}_{2}{ }^{+}$ 449.2347; LCMS (System A) $t_{\mathrm{r}} 9.6 \mathrm{~min}$ (94\%).

5-(3,5-Dimethyl-1,2-oxazol-4-yl)-2-[2-(4-fluorophenyl)ethyl]-1-[2-(morpholin-4-yl)ethyl]-1Hbenzimidazole (31)

3 -(4-Fluorophenyl)propanoic acid ($23 \mathrm{mg}, 0.14 \mathrm{mmol}$) was reacted with compound $\mathbf{2 2}$ (0.13 mmol) according to general procedure C. The product was obtained as an orange gum ($22 \mathrm{mg}, 39 \%$); $R_{f} 0.20$ (EtOAc:MeOH:NEt ${ }_{3}, 95: 5: 0.5$); $v_{\max }$ (neat) $2926(\mathrm{C}-\mathrm{H}), 2854(\mathrm{C}-\mathrm{H}), 2815(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ ppm $2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(14) \mathrm{H}_{3}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right), 2.44-2.49\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(19) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 2.61(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{C}(17) \mathrm{H}_{2}\right), 3.15-3.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(25) \mathrm{H}_{2}\right), 3.25-3.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(26) \mathrm{H}_{2}\right), 3.60-3.71\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{2}+\mathrm{C}(22) \mathrm{H}_{2}\right)$, $4.13\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{2}\right), 6.99(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(29) \mathrm{H}+\mathrm{C}(31) \mathrm{H}), 7.13$ (dd, J=8.0,1.5Hz,1 H, C(2)H), 7.20 (dd, J=8.5, 5.5 Hz, 2 H, C(28)H+C(32)H), 7.36 (d, J=8.0 Hz, $1 \mathrm{H}, \mathrm{C}(3) H$), $7.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz ,

 $\mathrm{Hz}, 2 \mathrm{C}, \mathrm{C}(29)+C(31)$), 117.0 ($\mathrm{s}, 1 \mathrm{C}, ~ C(7)), 119.9$ ($\mathrm{s}, 1 \mathrm{C}, ~ C(6)), 123.4(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(2)), 124.2(\mathrm{~s}, 1 \mathrm{C}, C(1)$), $129.8(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{C}, ~ C(28)+C(32)$), 134.2 ($\mathrm{s}, 1 \mathrm{C}, ~ C(4)$), 136.5 ($\mathrm{s}, 1 \mathrm{C}, ~ C(27)$), $143.0(\mathrm{~s}, 1 \mathrm{C}, C(5)), 155.0(\mathrm{~s}, 1 \mathrm{C}, C(24)$), 158.9 (s, $1 \mathrm{C}, C(10)$), 161.5 (d, J=253.0 Hz, $1 \mathrm{C}, \mathrm{C}(30)$), $165.0(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(13))$; ${ }^{19} \mathrm{~F} \operatorname{NMR}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}-$ 116.5 (s, 1 F); LRMS $\mathrm{m} / \mathrm{z}\left(E I^{+}\right) 449\left[\mathrm{MH}^{+}\right]$; $\mathrm{HRMS}\left(E I^{+}\right)$found 449.2334, calculated for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{FN}_{4} \mathrm{O}_{2}{ }^{+} 449.2347$; LCMS (System A) $t_{\mathrm{r}} 9.5 \mathrm{~min}$ (91\%).

2-[2-(3-Chloro-4-methoxyphenyl)ethyl]-5-(3,5-dimethyl-1,2-oxazol-4-yl)-1-[2-(morpholin-4-yl)ethyl]-1Hbenzimidazole (32)

3-(3-Chloro-4-methoxyphenyl)propanoic acid ($30 \mathrm{mg}, 0.14 \mathrm{mmol}$) was reacted with compound 22 (0.13 mmol) according to general procedure C . The product was obtained as a pale orange gum ($27 \mathrm{mg}, 43 \%$); R_{f} 0.25 (EtOAc:MeOH:NEt ${ }_{3}, 95: 5: 0.5$); $v_{\max }$ (neat) $2955(\mathrm{C}-\mathrm{H}), 2934(\mathrm{C}-\mathrm{H}), 2851(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm $2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(14) \mathrm{H}_{3}\right), 2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right), 2.44-2.50\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(19) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 2.62(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{C}(17) \mathrm{H}_{3}\right), 3.13-3.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(25) \mathrm{H}_{2}\right), 3.20-3.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(26) \mathrm{H}_{2}\right), 3.65-3.70\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{2}+\mathrm{C}(22) \mathrm{H}_{2}\right)$, $3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(34) \mathrm{H}_{3}\right), 4.15\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{2}\right), 6.86(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(31) \mathrm{H}), 7.09$ (dd, J=8.5, 2.0 Hz, 1 H, C(32)H), 7.13 (dd, J=8.0, 1.0 Hz, $1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}), 7.27$ (d, J=2.0 Hz, $1 \mathrm{H}, \mathrm{C}(28) \mathrm{H}), 7.36$ (d, J=8.0 Hz, $1 \mathrm{H}, \mathrm{C}(3) \mathrm{H})$, 7.62 (d, J=1.0 Hz, $1 \mathrm{H}, \mathrm{C}(6) \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$) δ ppm 10.8 (s, $1 \mathrm{C}, \mathrm{C}(14)$), 11.5 (s, $1 \mathrm{C}, \mathrm{C}(15)$), 29.5 (s,

 $C(6)$), 122.3 (s, 1 C, C(29)), 123.5 (s, 1 C, C(2)), 124.2 (s, 1 C, C(1)), 127.6 (s, 1 C, C(32)), 130.0 (s, 1 C, C(28)), 133.9 (s, 1 C, $C(4 / 27$)), 134.2 (s, 1 C, $C(4 / 27$)), 142.9 (s, 1 C, $C(5)$), 153.6 (s, 1 C, C(30)), 154.9 (s, 1 C, C(24)),
159.0 (s, $1 \mathrm{C}, \mathrm{C}(10)$), 165.0 (s, $1 \mathrm{C}, \mathrm{C}(13)$); LRMS (ESI^{+}) $\mathrm{m} / \mathrm{z} 497\left[\mathrm{M}\left({ }^{37} \mathrm{CI}\right) \mathrm{H}^{+}\right], 495\left[\mathrm{M}\left({ }^{35} \mathrm{Cl}\right) \mathrm{H}^{+}\right]$; HRMS (ESI $)$found 495.2138, calculated for $\mathrm{C}_{27} \mathrm{H}_{32}{ }^{35} \mathrm{CIN}_{4} \mathrm{O}_{3}{ }^{+}$495.2157; LCMS (System A) $t_{\mathrm{r}} 9.9 \mathrm{~min}$ (92\%).

5-(3,5-Dimethyl-1,2-oxazol-4-yl)-2-[2-(3-fluoro-4-methoxyphenyl)ethyl]-1-[2-(morpholin-4-yl)ethyl]-1Hbenzimidazole (33)

3-(3-Fluoro-4-methoxyphenyl)propanoic acid ($28 \mathrm{mg}, 0.14 \mathrm{mmol}$) was reacted with compound 22 (0.13 mmol) according to general procedure C . The product was obtained as an off-white solid ($19 \mathrm{mg}, 31 \%$); R_{f} 0.25 (EtOAc:MeOH: $\mathrm{NEt}_{3}, ~ 90: 10: 1$); mp 119-122 ${ }^{\circ} \mathrm{C}$; $\mathrm{v}_{\max }$ (neat) 2956 (C-H), 2928 (C-H), 2856 (C-H); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(14) \mathrm{H}_{3}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right), 2.45-2.51\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(19) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right)$, $2.63\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{2}\right), 3.11-3.21\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(25) \mathrm{H}_{2}\right), 3.21-3.29\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(26) \mathrm{H}_{2}\right), 3.63-3.71(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{C}(20) \mathrm{H}_{2}+\mathrm{C}(22) \mathrm{H}_{2}\right), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(34) \mathrm{H}_{3}\right), 4.15\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{2}\right), 6.85-7.02(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{ArH}), 7.13(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$) $\delta \mathrm{ppm} 10.9$ (s, 1 C, C(14)), 11.6 (s, 1 C, C(15)), 29.5 (s, 1 C, C(25)), 32.7 (s, $1 \mathrm{C}, C(26)$), 41.5 (s, $1 \mathrm{C}, C(16)$), 54.0 (s, 2 C , $C(19)+C(23)), 56.3$ (s, 1 C, $C(34)$), 57.6 (s, $1 C, C(17)$), 66.8 (s, $2 C, C(20)+C(22)$), 109.4 (s, $1 C, C(3)), 113.6$ (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{C}, ~ C(29)$), 116.0 ($\mathrm{d}, \mathrm{J}=17.5 \mathrm{~Hz}, 1 \mathrm{C}, C(32)$), 117.0 ($\mathrm{s}, 1 \mathrm{C}, C(7)$), 119.9 ($\mathrm{s}, 1 \mathrm{C}, C(6)$), 123.5 ($\mathrm{s}, 1 \mathrm{C}$,
 142.9 (s, $1 \mathrm{C}, ~ C(5)), 146.1$ (d, J=10.5 Hz, $1 \mathrm{C}, ~ C(30)$), 152.3 (d, J=246.0 Hz, $1 \mathrm{C}, ~ C(21)$), 155.0 ($\mathrm{s}, 1 \mathrm{C}, C(24)$), 159.0 (s, $1 \mathrm{C}, C(10)$), 165.0 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(13)$); ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}-135.0$ ($\mathrm{s}, 1 \mathrm{~F}$); LRMS m/z (ESI $)$ $479\left[\mathrm{MH}^{+}\right]$; $\mathrm{HRMS}\left(E I^{+}\right)$found 479.2445, calculated for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{FN}_{4} \mathrm{O}_{3}{ }^{+} 479.2453$; LCMS (System A) $t_{\mathrm{r}} 9.5 \mathrm{~min}$ (96\%).

5-(3,5-Dimethyl-1,2-oxazol-4-yl)-1-[2-(morpholin-4-yl)ethyl]-2-[2-(thiophen-2-yl)ethyl]-1H-

benzimidazole (34)

2-Thiophenepropionic acid ($28 \mathrm{mg}, 0.18 \mathrm{mmol}$) was reacted with compound 22 ($50 \mathrm{mg}, 0.16 \mathrm{mmol}$) according to general procedure B . Chromatography was carried out with a gradient of $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}$, which was increased linearly from 99:1:0.1 to 92:8:0.8 over 30 CVs . The product was obtained as a colourless gum (31 mg, 44\%); $R_{f} 0.45\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}, 90: 10: 1\right.$); $\mathrm{v}_{\max }$ (neat) 2964 (C-H), 2924 (C-H), 2847, (C-H), 2817 (C-H); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(7) \mathrm{H}_{3}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(6) \mathrm{H}_{3}\right), 2.45-2.51(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{C}(23) \mathrm{H}_{2}+\mathrm{C}(37) \mathrm{H}_{2}\right), 2.63\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(18) \mathrm{H}_{2}\right), 3.24-3.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(19) \mathrm{H}_{2}\right), 3.51-3.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{2}\right)$, 3.64-3.71(m, 4 H, C(24) $\left.H_{2}+\mathrm{C}(26) \mathrm{H}_{2}\right), 4.17\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{2}\right), 6.86(\mathrm{~d}, \mathrm{~J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(28) \mathrm{H})$, 6.93 (dd,
$J=5.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(29) \mathrm{H}$), $7.10-7.19$ (m, $2 \mathrm{H}, \mathrm{C}(9) \mathrm{H}+\mathrm{C}(30) \mathrm{H})$, 7.36 (d, J=8.0 Hz, $1 \mathrm{H}, \mathrm{C}(10) \mathrm{H})$, 7.63 (d, J=1.0 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C}(13) \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$) $\delta \mathrm{ppm} 10.9$ (s, $1 \mathrm{C}, \mathrm{C}(7)$), $11.5(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(6)), 27.8(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(20)$), 29.9 (s, 1 C, C(19)), 41.4 (s, 1 C, C(17)), 54.0 (s, 2 C, C(23) $+C(27)$), 57.6 (s, 1 C) 66.8 (s, $2 C, C(24)+C(26)$), 109.4 ($s, 1 \mathrm{C}, ~ C(10)$), 117.0 ($\mathrm{s}, 1 \mathrm{C}, ~ C(1)), 119.9$ ($\mathrm{s}, 1 \mathrm{C}, ~ C(13)$), 123.5 ($\mathrm{s}, 1 \mathrm{C}, C(9)$), 123.6 ($\mathrm{s}, 1 \mathrm{C}, C(28)$), 124.2 ($\mathrm{s}, 1 \mathrm{C}$,
 C(12/21)), 154.7 (s, 1 C, C(15)), 159.0 (s, 1 C, C(2)), 165.0 (s, $1 \mathrm{C}, \mathrm{C}(5)$); LRMS m/z (ESI ${ }^{+} 895$ [(2M+Na) $\left.{ }^{+}\right], 873$ $\left[(2 \mathrm{M}+\mathrm{H})^{+}\right], 459\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 437\left[\mathrm{MH}^{+}\right]$; HRMS (ESI') found 437.2011, calculated for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}^{+} 437.2006$; LCMS (System B) $t_{\mathrm{r}} 3.4 \mathrm{~min}$ (94\%).

2-(2-\{5-(3,5-Dimethyl-1,2-oxazol-4-yl)-1-[2-(morpholin-4-yl)ethyl]-1H-benzimidazol-2-yl\}ethyl)-1,3benzothiazole (35)

3-(1,3-Benzothiazol-2-yl)propanoic acid ($37 \mathrm{mg}, 0.14 \mathrm{mmol}$) was reacted with compound 22 ($50 \mathrm{mg}, 0.16$ mmol) according to general procedure B . Chromatography was carried out with a gradient of $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}$, which was increased linearly from 99:1:0.1 to 92:8:0.8 over 30 CVs . The product was obtained as a light brown gum ($30 \mathrm{mg}, 38 \%$); $R_{f} 0.40\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}, 90: 10: 1\right.$); $\mathrm{v}_{\text {max }}$ (neat) 2926 (C-H), 2854 (C-H), $2816(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(7) \mathrm{H}_{3}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(6) \mathrm{H}_{3}\right), 2.46$ - 2.54 ($\left.\mathrm{m}, 4 \mathrm{H}, \mathrm{C}(23) \mathrm{H}_{2}+\mathrm{C}(27) \mathrm{H}_{2}\right), 2.71\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(18) \mathrm{H}_{2}\right), 3.52-3.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(19) \mathrm{H}_{2}\right), 3.63-3.73(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{C}(24) \mathrm{H}_{2}+\mathrm{C}(26) \mathrm{H}_{2}\right), 3.82-3.93\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{2}\right), 4.30\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{2}\right), 7.13(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(9) \mathrm{H})$, 7.33-7.40 (m, 2 H, C(10) H+C(33/34)H), $7.47(t, J=8.0 ~ H z, 1 ~ H, ~ C(33 / 34) H), ~ 7.63(s, 1 H, C(13) H), 7.84 ~(d, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C}(32 / 35) \mathrm{H}), 7.97(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(32 / 35) \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 10.8(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(7))$, 11.5 ($\mathrm{s}, 1 \mathrm{C}, C(6)$), 26.3 ($\mathrm{s}, 1 \mathrm{C}, C(19)$), 31.5 ($\mathrm{s}, 1 \mathrm{C}, C(20)$), 41.5 ($\mathrm{s}, 1 \mathrm{C}, C(17)$), $54.0(\mathrm{~s}, 2 \mathrm{C}, C(23)+C(27)$), 57.8 (s , 1 C, C(18)), 66.8 (s, 2 C, C(24)+C(26)), 109.4 (s, 1 C, C(10)), 117.0 (s, 1 C, C(1)), 119.9 (s, 1 C, C(10)), 121.6 (s, 1 C, $C(32 / 35)$), 122.5 ($s, 1 C, C(32 / 35)$), 123.5 ($s, 1 C, C(9)), 124.3(\mathrm{~s}, 1 \mathrm{C}, ~ C(8)), 124.9(\mathrm{~s}, 1 \mathrm{C}, C(33 / 34)$), 126.0 (s , $1 \mathrm{C}, C(33 / 34)$), 134.4 ($\mathrm{s}, 1 \mathrm{C}, ~ C(11)), 135.2$ ($\mathrm{s}, 1 \mathrm{C}, C(30)$), 142.9 ($\mathrm{s}, 1 \mathrm{C}, C(12)$), $153.1(\mathrm{~s}, 1 \mathrm{C}, C(29)$), 154.3 ($\mathrm{s}, 1$ C, $C(15)$), 159.0 (s, $1 \mathrm{C}, C(7)), 165.0(\mathrm{~s}, 1 \mathrm{C}, C(6)), 169.7(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(21))$, LRMS m/z (ESI ${ }^{+} 997\left[(2 \mathrm{M}+\mathrm{Na})^{+}\right], 975$ $\left[(2 \mathrm{M}+\mathrm{H})^{+}\right], 510\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 488\left[\mathrm{MH}^{+}\right]$; HRMS (ESI $)$found 488.2103, calculated for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}^{+} 488.2115$; LCMS (System B) $t_{\mathrm{r}} 3.7 \mathrm{~min}$ (93\%).

5-(3,5-Dimethyl-1,2-oxazol-4-yl)-2-[2-(1H-indol-1-yl)ethyl]-1-[2-(morpholin-4-yl)ethyl]-1Hbenzimidazole (36)

$3-(1 \mathrm{H}$-Indol-1-yl)propanoic acid ($26 \mathrm{mg}, 0.14 \mathrm{mmol}$) was reacted with compound 22 (0.13 mmol) according to general procedure C. The product was obtained as a pale brown gum ($25 \mathrm{mg}, 41 \%$); $R_{f} 0.20$ (EtOAc:MeOH:NEt ${ }_{3}, 90: 10: 1$); $v_{\text {max }}$ (neat) $2965(\mathrm{C}-\mathrm{H}), 2846(\mathrm{C}-\mathrm{H}), 2813(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$ 2.14-2.18(m, 4 H, C(19) $\left.H_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 2.26-2.34\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{2}+\mathrm{C}(14) \mathrm{H}_{3}\right), 2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right), 3.40(\mathrm{t}$, $\left.J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(25) \mathrm{H}_{2}\right), 3.53-3.58\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{2}+\mathrm{C}(22) \mathrm{H}_{2}\right), 3.61\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{2}\right), 4.80(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{C}(26) \mathrm{H}_{2}\right), 6.43(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(30) \mathrm{H}), 6.91(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(31) \mathrm{H}), 7.08-7.15(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{C}(2) \mathrm{H}+\mathrm{C}(34) H$), $7.19(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(33) \mathrm{H}), 7.26-7.31(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H})$, $7.56-$ $7.66(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(6) \mathrm{H}+\mathrm{C}(35) \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 10.9(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(14)), 11.6(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(15))$, 28.4 (s, $1 \mathrm{C}, ~ C(25)$), 40.9 ($\mathrm{s}, 1 \mathrm{C}, C(16)$), 45.0 ($\mathrm{s}, 1 \mathrm{C}, ~ C(26)$), 53.6 (s, $2 \mathrm{C}, C(19)+C(23)$), 57.2 (s, $1 \mathrm{C}, C(17)$), 66.7 (s, 2 C , $C(20)+C(22)$), 101.8 ($s, 1$ C, $C(30)$), 108.9 ($s, 1$ C, C(32)), 109.6 (s, 1 C, C(3)), 117.0 (s, 1 C, C(7)), 119.7 (s, 1 C, $C(6 / 34)$), 119.8 (s, 1 C, $C(6 / 34)$), 121.3 (s, 1 C, C(35)), 121.8 (s, 1 C, C(33)), 123.7 (s, $1 \mathrm{C}, C(2)$), 124.5 (s, 1 C, $C(1)$), 127.9 (s, 1 C, C(31)), 128.8 (s, 1 C, C(29)), 134.1 (s, 1 C, C(4)), 135.4 (s, 1 C, C(28)), 142.9 (s, 1 C, C(5)), 153.2 (s, $1 \mathrm{C}, \mathrm{C}(24)$), 158.9 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(10)), 165.0$ ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(13))$; LRMS m/z (ESI $\left.{ }^{+}\right) 492\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 470\left[\mathrm{MH}^{+}\right]$; HRMS (ESI ${ }^{+}$) found 470.2540, calculated for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{FN}_{4} \mathrm{O}_{3}{ }^{+} 470.2551$; LCMS (System A) $t_{r} 10.1 \mathrm{~min}$ (93\%).

5-(3,5-Dimethyl-1,2-oxazol-4-yl)-2-[2-(3-methoxyphenyl)ethyl]-1-[2-(morpholin-4-yl)ethyl]-1Hbenzimidazole (s 101)

3-(Methoxyphenyl)propionic acid ($32 \mathrm{mg}, 0.18 \mathrm{mmol}$) was reacted with compound 22 according to general procedure B . Chromatography was carried out with a gradient of $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}$, which was increased linearly from 99:1:0.1 to 90:10:1 over 10 CV . The product was obtained as a pale yellow gum ($38 \mathrm{mg}, 52 \%$); $R_{f} 0.40\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}, 90: 10: 1\right)$; $v_{\max }$ (neat) $2957(\mathrm{C}-\mathrm{H}), 2931(\mathrm{C}-\mathrm{H}), 2854(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{3}\right), 2.44-2.49\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(28) \mathrm{H}_{2}+\mathrm{C}(32) \mathrm{H}_{2}\right), 2.60(\mathrm{t}, \mathrm{J}=7.0$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{C}(26) \mathrm{H}_{2}\right), 3.17-3.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(18) \mathrm{H}_{2}\right), 3.25-3.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(19) \mathrm{H}_{2}\right), 3.64-3.70(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{C}(29) \mathrm{H}_{2}+\mathrm{C}(31) \mathrm{H}_{2}\right), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(34) \mathrm{H}_{3}\right), 4.12\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(10) \mathrm{H}_{2}\right), 6.75-6.81(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(23) \mathrm{H}+\mathrm{C}(25) \mathrm{H})$, 6.85 (d, J=7.5 Hz, $1 \mathrm{H}, \mathrm{C}(21) \mathrm{H}$), 7.13 (dd, J=8.5, 1.5 Hz, $1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}), 7.20-7.26(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(22) \mathrm{H}), 7.35$ (d, J=8.5 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 7.63(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl 3) $\delta \mathrm{ppm} 10.8(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(15)), 11.5(\mathrm{~s}, 1$ C, $C(16)$), 29.5 (s, 1 C, $C(18)$), 33.9 (s, 1 C, C(19)), 41.4 (s, 1 C, $C(10)$), 54.0 (s, $2 \mathrm{C}, C(28)+C(32)$), 55.1 (s, 1 C,

 $1 \mathrm{C}, C(11)$), 159.8 (s, $1 \mathrm{C}, C(34)), 165.0(\mathrm{~s}, 1 \mathrm{C}, C(14))$; LRMS m/z (ESI ${ }^{+} 943\left[(2 \mathrm{M}+\mathrm{Na})^{+}\right], 921\left[(2 \mathrm{M}+\mathrm{H})^{+}\right], 483$ $\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 461\left[\mathrm{MH}^{+}\right]$; HRMS (ESI $)$found 461.2550, calculated for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{3}{ }^{+} 461.2547$; LCMS (System B) t_{r} 3.5 min (99\%).

5-(3,5-Dimethyl-1,2-oxazol-4-yl)-1-[2-(morpholin-4-yl)ethyl]-2-\{2-[4-(trifluoromethoxy)phenyl]ethyl\}-1H-benzimidazole (s102)

3-[4-(Trifluoromethoxy)phenyl]propanoic acid ($33 \mathrm{mg}, 0.14 \mathrm{mmol}$) was reacted with compound 22 (0.13 mmol) according to general procedure C. The product was obtained as a pale orange resin ($32 \mathrm{mg}, 51 \%$); R_{f} 0.15 (EtOAc:MeOH:NEt ${ }_{3}$, 95:5:0.5); $v_{\max }$ (neat) $2926(\mathrm{C}-\mathrm{H}), 2854(\mathrm{C}-\mathrm{H}), 2815(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm $2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(14) \mathrm{H}_{3}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right), 2.44-2.49\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(19) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{3}\right), 2.62(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{C}(25) \mathrm{H}_{2}$), $3.17-3.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(26) \mathrm{H}_{2}\right)$, $3.29-3.37\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{2}\right), 3.63-3.70\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{2}+\mathrm{C}(22) \mathrm{H}_{2}\right)$, 4.13 (t, J=7.0 Hz, $\left.2 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{2}\right), 7.10-7.19(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}(3) \mathrm{H}+\mathrm{C}(29) \mathrm{H}+\mathrm{C}(31) \mathrm{H}), 7.24-7.31$ (m, 2 H , $\mathrm{C}(28) \mathrm{H}+\mathrm{C}(32) \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 10.8(\mathrm{~s}, 1$ C, $C(14)$), 11.5 (s, 1 C, C(15)), 29.4 (s, 1 C, C(25)), 32.9 (s, 1 C, C(26)), 41.5 (s, $1 \mathrm{C}, C(16)$), 54.0 (s, 2 C, $C(19)+C(23)$), 57.6 (s, $1 C, C(17)$), 66.8 (s, $2 C, C(20)+C(22)$), 109.4 (s, $1 C, C(3)), 117.0(\mathrm{~s}, 1 \mathrm{C}, C(7)), 119.9$ (s, 1 $\mathrm{C}, C(6)$), 120.4 ($\mathrm{q}, \mathrm{J}=257.0 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{CF}_{3}$) 121.2 ($\mathrm{s}, 2 \mathrm{C}, C(29)+C(31)$), $123.5(\mathrm{~s}, 1 \mathrm{C}, C(2)$), 124.3 (s, $1 \mathrm{C}, C(1)$),
 $C(30)$), 154.8 (s, $1 \mathrm{C}, C(24)$), 158.9 (s, $1 \mathrm{C}, \mathrm{C}(10)$), $165.0(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(13))$; ${ }^{19} \mathrm{~F} \mathrm{NMR}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}-57.9$ (s, 3 F); LRMS (ESI ${ }^{+}$) $\mathrm{m} / \mathrm{z} 515\left[\mathrm{MH}^{+}\right]$; HRMS (ESI ${ }^{+}$) found 515.2251, calculated for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{3}{ }^{+} 515.2265$ LCMS (System A) $t_{r} 10.7 \mathrm{~min}$ (94\%).

2-(2-\{5-(3,5-Dimethyl-1,2-oxazol-4-yl)-1-[2-(morpholin-4-yl)ethyl]-1H-benzimidazol-2-yl\}ethyl)phenol (s103)

3 -(2-Hydroxyphenyl)propionic acid ($44 \mathrm{mg}, 0.26 \mathrm{mmol}$) was reacted with compound 22 ($40 \mathrm{mg}, 0.13 \mathrm{mmol}$) according to general procedure D. Chromatography was carried out with a gradient of EtOAc:MeOH:NEt ${ }_{3}$, which was increased linearly from 99:1:0.1 to 90:10:1 over 20 CVs. The product was obtained as a pale orange solid ($32 \mathrm{mg}, 55 \%$); $R_{f} 0.45$ (EtOAc: $\mathrm{MeOH}: \mathrm{NEt}_{3}, 90: 10: 1$); mp $172-174{ }^{\circ} \mathrm{C}$; $\mathrm{v}_{\text {max }}$ (neat) $3198(\mathrm{O}-\mathrm{H}), 2954$ (C-H), $2859(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(14) \mathrm{H}_{3}\right), 2.41$ (s, $\left.3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right)$, $2.44-2.51$ ($\left.\mathrm{m}, 4 \mathrm{H}, \mathrm{C}(19) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 2.69\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{2}\right), 3.34\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{C}(25) \mathrm{H}_{2}+\mathrm{C}(26) \mathrm{H}_{2}\right), 3.59-3.69(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{C}(20) \mathrm{H}_{2}+\mathrm{C}(22) \mathrm{H}_{2}\right), 4.20\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{2}\right), 6.86$ (td, J=7.5, 1.0 Hz, $\left.1 \mathrm{H}, \mathrm{C}(31) \mathrm{H}\right), 6.94$ (dd, J=8.0, 1.0 Hz, 1 H, C(29)H), 7.07-7.16 (m, 2 H, C(2)H+C(30)H), 7.20 (dd, J=7.5, $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(32) \mathrm{H}), 7.35(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}(3) \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}) 11.59$ (br. s., $1 \mathrm{H}, \mathrm{OH}$); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 10.8(\mathrm{~s}, 1 \mathrm{C}$, $C(14)$), 11.5 (s, 1 C, $C(15)$), 25.5 (s, 1 C, $C(26)$), 29.9 (s, 1 C, $C(25)$), 41.6 (s, $1 \mathrm{C}, C(16)$), 54.0 (s, 2 C, $C(19)+C(23)), 57.3$ (s, 1 C, $C(17)$), 66.7 (s, $2 C, C(20)+C(22)$), 109.4 (s, 1 C, $C(3)$), 116.8 (s, $1 C, C(7)$), 119.1 (s, 1
 128.7 (s, $1 \mathrm{C}, ~ C(27)$), 130.5 ($\mathrm{s}, 1 \mathrm{C}, ~ C(32)$), 134.3 ($\mathrm{s}, 1 \mathrm{C}, ~ C(4)), 140.9(\mathrm{~s}, 1 \mathrm{C}, C(5)), 155.4(\mathrm{~s}, 1 \mathrm{C}, C(24 / 28)$), 155.7 (s, $1 \mathrm{C}, \mathrm{C}(24 / 28)$), 158.8 (s, $1 \mathrm{C}, \mathrm{C}(10)$), 165.1 (s, $1 \mathrm{C}, \mathrm{C}(13)$); LRMS m/z (ESI^{+}) 447 [$\left.\mathrm{MH}^{+}\right], 445[(\mathrm{M}-\mathrm{H})]$; HRMS (ESI ${ }^{+}$) found 447.2387, calculated for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{3}{ }^{+} 447.2391$; LCMS $t_{\mathrm{r}} 3.3$ min (System B) (96%).

4-(2-\{5-(3,5-Dimethyl-1,2-oxazol-4-yl)-1-[2-(morpholin-4-yl)ethyl]-1H-benzimidazol-2-yl\}ethyl)phenol (s104)

3-(2-Hydroxyphenyl)propionic acid ($44 \mathrm{mg}, 0.26 \mathrm{mmol}$) was reacted with compound 22 ($40 \mathrm{mg}, 0.13 \mathrm{mmol}$) according to general procedure D. Chromatography was carried out with a gradient of EtOAc:MeOH: NEt_{3}, which was increased linearly from 99:1:0.1 to 90:10:1 over 30 CVs . The product was obtained as a brown gum (26 mg , 45\%); $R_{f} 0.35$ (EtOAc:MeOH:NEt ${ }_{3}$, 90:10:1); $v_{\max }$ (neat) $3438(\mathrm{O}-\mathrm{H}), 2952(\mathrm{C}-\mathrm{H}), 2929$ (C-H), 2850 $(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta \mathrm{ppm} 2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(14) \mathrm{H}_{3}\right), 2.40\left(\mathrm{~s}, 7 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}+\mathrm{C}(19) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 2.53$ ($\left.\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{2}\right), 3.00-3.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(26) \mathrm{H}_{2}\right), 3.10-3.18\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(25) \mathrm{H}_{2}\right), 3.47-3.57(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{C}(20) \mathrm{H}_{2}+\mathrm{C}(22) \mathrm{H}_{2}\right), 4.25\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{2}\right), 6.68(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(29) \mathrm{H}+\mathrm{C}(31) \mathrm{H}), 7.08(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2$ $\mathrm{H}, \mathrm{C}(28) \mathrm{H}+\mathrm{C}(32) \mathrm{H}), 7.16(\mathrm{dd}, \mathrm{J}=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}), 7.51-7.61(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(3) \mathrm{H}+\mathrm{C}(6) \mathrm{H}), 9.23(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }_{6}$) δ ppm 10.6 (s, 1 C, C(14)), 11.4 (s, $1 \mathrm{C}, \mathrm{C}(15)$), 28.8 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(25)$), 32.0 ($\mathrm{s}, 1 \mathrm{C}$, $C(26)$), 40.5 (s, 1 C, $C(16)$), 53.6 (s, $2 C, C(19)+C(23)$), 57.5 (s, $1 C, C(17)$), 66.2 (s, $2 C, C(20)+C(22)$), 110.4 ($s, 1$ $C, C(3)), 115.2$ ($s, 2 C, C(29)+C(31)), 116.8(\mathrm{~s}, 1 \mathrm{C}, ~ C(7)), 118.9(\mathrm{~s}, 1 \mathrm{C}, C(6)), 122.7(\mathrm{~s}, 1 \mathrm{C}, C(1 / 2)), 122.8$ ($\mathrm{s}, 1 \mathrm{C}$, $C(1 / 2)$), 129.3 (s, 2 C, $C(28)+C(32)$), 131.3 (s, 1 C, C(27)), 134.5 (s, 1 C, C(4)), 142.6 (s, 1 C, C(5)), 155.7 (s, 1 C, $C(24 / 30)$), 155.7 (s, 1 C, $C(24 / 30)$), 158.5 (s, 1 C, $C(10)$), 164.6 (s, 1 C, $C(13)$); LRMS m/z (ESI $) 445$ [(M-H)]; HRMS (ESI ${ }^{+}$) found 447.2397, calculated for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{3}{ }^{+} 447.2391$; LCMS (System A) $t_{r} 8.5 \mathrm{~min}$ (96%).

5-(3,5-Dimethyl-1,2-oxazol-4-yl)-2-\{2-[4-(methylsulfonyl)phenyl]ethyl\}-1-[2-(morpholin-4-yl)ethyl]-1Hbenzimidazole (s 105)

3-[4-(Methylsulfonyl)phenyl]propanoic acid ($32 \mathrm{mg}, 0.14 \mathrm{mmol}$) was reacted with compound 22 (0.13 mmol) according to general procedure C. The product was obtained as a pale-orange gum ($19 \mathrm{mg}, 29 \%$); $R_{f} 0.05$ (EtOAc:MeOH:NEt ${ }_{3}, ~ 95: 5: 0.5$); $v_{\max }$ (neat) $2918(\mathrm{C}-\mathrm{H}), 2850(\mathrm{C}-\mathrm{H}), 1301(\mathrm{~S}=\mathrm{O}), 1147(\mathrm{~S}=\mathrm{O}) ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(14) \mathrm{H}_{3}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right), 2.45-2.50\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(19) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 2.65(\mathrm{t}, \mathrm{J}=6.5$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{2}\right), 3.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(36) \mathrm{H}_{3}\right), 3.25\left(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(25) \mathrm{H}_{2}\right), 3.45\left(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(26) \mathrm{H}_{2}\right)$, $3.63-$ $3.70\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{2}+\mathrm{C}(22) \mathrm{H}_{2}\right), 4.17\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{2}\right), 7.15(\mathrm{dd}, J=8.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H})$, $7.37(\mathrm{~d}$,
$J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 7.48(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(28) \mathrm{H}+\mathrm{C}(32) \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}), 7.89(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{C}(29) \mathrm{H}+\mathrm{C}(31) \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 10.9$ (s, $1 \mathrm{C}, \mathrm{C}(14)$), 11.6 (s, $1 \mathrm{C}, \mathrm{C}(15)$), 28.8 (s, $1 \mathrm{C}, \mathrm{C}(25)$),

 C, $C(1)$), 127.8 (s, $2 \mathrm{C}, C(29)+C(31)), 129.4$ (s, $2 \mathrm{C}, C(28)+C(32)$), $134.2(\mathrm{~s}, 1 \mathrm{C}, C(4)$), $138.8(\mathrm{~s}, 1 \mathrm{C}, C(30)), 142.8$ ($\mathrm{s}, 1 \mathrm{C}, ~ C(5)$), 147.4 ($\mathrm{s}, 1 \mathrm{C}, ~ C(27)$), 154.3 ($\mathrm{s}, 1 \mathrm{C}, ~ C(24)$), 158.9 ($\mathrm{s}, 1 \mathrm{C}, ~ C(10)$), 165.0 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(13)$); LRMS m/z $\left(\mathrm{ESI}^{+}\right) 531\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 509\left[\mathrm{MH}^{+}\right]$; HRMS (ESI $)$found 509.2205, calculated for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}^{+}$509.2217; LCMS (System B) $t_{\mathrm{r}} 3.4 \mathrm{~min}$ (92\%).

4-(2-\{5-(3,5-Dimethyl-1,2-oxazol-4-yl)-1-[2-(morpholin-4-yl)ethyl]-1H-benzimidazol-2-yl\}ethyl)-N,Ndimethylaniline (s106)

3-[4-(Dimethylamino)phenyl]propanoic acid ($27 \mathrm{mg}, 0.14 \mathrm{mmol}$) was reacted with compound 22 (0.13 mmol) according to general procedure C. The product was obtained as a colourless gum ($29 \mathrm{mg}, 47 \%$); $R_{f} 0.40$ (EtOAc:MeOH: $\mathrm{NEt}_{3}, 90: 10: 1$); $\mathrm{v}_{\max }$ (neat) $2962(\mathrm{C}-\mathrm{H}), 2851(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 2.30(\mathrm{~s}, 3$ $\left.\mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{3}\right), 2.45-2.52\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{2}+\mathrm{C}(24) \mathrm{H}_{2}\right), 2.58\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(18) \mathrm{H}_{2}\right), 2.93$ ($\left.\mathrm{s}, 6 \mathrm{H}, \mathrm{C}(34) \mathrm{H}_{3}+\mathrm{C}(35) \mathrm{H}_{3}\right), 3.05-3.27\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(25) \mathrm{H}_{2}+\mathrm{C}(26) \mathrm{H}_{2}\right), 3.63-3.80\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(21) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 4.14(\mathrm{t}$, $\left.J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{2}\right)$, $6.62-6.77(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(29) \mathrm{H}+\mathrm{C}(31) \mathrm{H}), 7.02-7.17(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}(2) \mathrm{H}+\mathrm{C}(28) \mathrm{H}+\mathrm{C}(32) \mathrm{H})$, 7.38 (d, J=8.5 Hz, $1 \mathrm{H}, \mathrm{C}(3) H$), $7.64(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }^{2}$) $\delta \mathrm{ppm} 10.9(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(15)$), 11.5 (s, $1 \mathrm{C}, C(16)$), 30.0 ($\mathrm{s}, 1 \mathrm{C}, C(25)$), 33.1 ($\mathrm{s}, 1 \mathrm{C}, C(26)$), 40.7 (s, $2 \mathrm{C}, C(34)+C(35)$), 41.2 ($\mathrm{s}, 1 \mathrm{C}, C(17)), 53.9$ (s, 2 C, $C(20)+C(24)$), 57.3 (s, 1 C, C(18)), 66.6 (s, 2 C, C(21)+C(23)), 109.4 (s, 1 C, C(3)), 113.0 (s, 2 C, $C(29)+C(31)$), 117.0 ($\mathrm{s}, 1 \mathrm{C}, ~ C(10)$), 119.7 ($\mathrm{s}, 1 \mathrm{C}, ~ C(6)$), 123.4 ($\mathrm{s}, 1 \mathrm{C}, ~ C(2)$), 124.3 ($\mathrm{s}, 1 \mathrm{C}, C(1)$), 128.7 ($\mathrm{s}, 1 \mathrm{C}$,
 $C(8)), 159.0$ (s, $1 \mathrm{C}, \mathrm{C}(11)$), 165.0 (s, $1 \mathrm{C}, \mathrm{C}(14)$); LRMS $\mathrm{m} / \mathrm{z}\left(E I^{+}\right), 474\left[\mathrm{MH}^{+}\right]$; HRMS (ESI ${ }^{+}$) found 474.2851, calculated for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~N}_{5} \mathrm{O}_{2}{ }^{+} 474.2864$; LCMS (System A) $t_{\mathrm{r}} 8.3 \mathrm{~min}$ (99\%).

2-[2-(3,4-Dimethoxyphenyl)ethyl]-5-(3,5-dimethyl-1,2-oxazol-4-yl)-1-[2-(morpholin-4-yl)ethyl]-1Hbenzimidazole (s107)

3-(3,4-Dimethoxyphenyl)propionic acid ($38 \mathrm{mg}, 0.18 \mathrm{mmol}$) was reacted with compound 22 according to general procedure B . Chromatography was carried out with a gradient of $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}$, which was increased linearly from 99:1:0.1 to 92:8:0.8 over 30 CVs . The product was obtained as a pale yellow gum (45 $\mathrm{mg}, 57 \%) ; R_{f} 0.35\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}, 90: 10: 1\right.$); $\mathrm{v}_{\max }$ (neat) 2958 (C-H), 2934 (C-H), 2855 (C-H), 2834 (C-H);
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(7) \mathrm{H}_{3}\right)$, $2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(6) \mathrm{H}_{3}\right), 2.43$ - $2.48(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{C}(28) \mathrm{H}_{2}+\mathrm{C}(32) \mathrm{H}_{2}\right), 2.57\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(18) \mathrm{H}_{2}\right), 3.14-3.28\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(19) \mathrm{H}_{2}+\mathrm{C}(20) \mathrm{H}_{2}\right), 3.64-3.69(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{C}(29) \mathrm{H}_{2}+\mathrm{C}(31) \mathrm{H}_{2}\right), 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(34 / 36) \mathrm{H}_{3}\right), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(34 / 36) \mathrm{H}_{3}\right), 4.08\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{2}\right), 6.67(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(26) H$) . 78 (dd, J=8.0, $2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(22) \mathrm{H}$), 6.81 (d, J=8.0 Hz, $1 \mathrm{H}, \mathrm{C}(23) \mathrm{H}$), 7.12 (dd, J=8.0, 1.5 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C}(9) \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(10) \mathrm{H}), 7.63(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(13) \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ ppm 10.8 (s, 1 C, C(7)), 11.5 (s, 1 C, C(6)), 29.9 (s, 1 C, C(19)), 33.6 (s, 1 C, C(20)), 41.4 (s, 1 C, C(17)), 54.0 (s, 2 C, $C(28)+C(32)$), 55.6 (s, 1 C, $C(34 / 36)$), 55.9 (s, $1 C, C(34 / 36)$), 57.5 (s, $1 \mathrm{C}, C(18)$), $66.8(\mathrm{~s}, 2 \mathrm{C}, C(29)+C(31)$),
 ($\mathrm{s}, 1 \mathrm{C}, ~ C(22)$), 123.4 ($\mathrm{s}, 1 \mathrm{C}, ~ C(9)$), 124.2 ($\mathrm{s}, 1 \mathrm{C}, ~ C(8)), 133.4$ ($\mathrm{s}, 1 \mathrm{C}, ~ C(21)$), 134.2 ($\mathrm{s}, 1 \mathrm{C}, ~ C(11)$), 143.0 ($\mathrm{s}, 1 \mathrm{C}$,
 $C(5))$; LRMS $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right) 981\left[(2 \mathrm{M}+\mathrm{Na})^{+}\right], 513\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 491\left[\mathrm{MH}^{+}\right]$; HRMS (ESI ${ }^{+}$) found 491.2648, calculated for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{+} 491.2653$; LCMS (System B) $t_{\mathrm{r}} 3.3 \mathrm{~min}$ (88\%).

2-[2-(3,4-Difluorophenyl)ethyl]-5-(3,5-dimethyl-1,2-oxazol-4-yl)-1-[2-(morpholin-4-yl)ethyl]-1Hbenzimidazole (s108)

3-(3,4-Difluorophenyl)propanoic acid ($26 \mathrm{mg}, 0.14 \mathrm{mmol}$) was reacted with compound 22 (0.13 mmol) according to general procedure C . The product was obtained as a pale pink solid ($24 \mathrm{mg}, 41 \%$); $R_{f} 0.20$ (EtOAc:MeOH:NEt ${ }_{3}, 95: 5: 0.5$); mp $77-80^{\circ} \mathrm{C}$; $v_{\text {max }}$ (neat) $2941(\mathrm{C}-\mathrm{H}), 2829(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ ppm $2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(14) \mathrm{H}_{3}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right), 2.44-2.50\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(19) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 2.64(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{C}(17) \mathrm{H}_{2}\right), 3.14-3.22(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(25))$, $3.24-3.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(26) \mathrm{H}_{2}\right), 3.63-3.71\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{2}+\mathrm{C}(22) \mathrm{H}_{2}\right), 4.17$ ($\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{2}$), 6.93-6.99 (m, $\left.1 \mathrm{H}, \mathrm{C}(28) \mathrm{H}\right), 7.03-7.11(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(29) \mathrm{H}+\mathrm{C}(32) \mathrm{H}), 7.14$ (dd, J=8.0, $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$) $\delta \mathrm{ppm} 10.8$
 $C(19)+C(23)), 57.6$ (s, $1 C, C(17)$), $66.8(\mathrm{~s}, 2 \mathrm{C}, C(20)+C(22)$), 109.4 ($s, 1 \mathrm{C}, C(3)), 117.0(\mathrm{~s}, 1 \mathrm{C}, C(7)), 117.2$ (t, $J=17.0 \mathrm{~Hz}, 2 \mathrm{C}, ~ C(29)+C(32)), 119.9(\mathrm{~s}, 1 \mathrm{C}, ~ C(6)), 123.6(\mathrm{~s}, 1 \mathrm{C}, ~ C(2)), 124.2-124.3(\mathrm{~m}, 1 \mathrm{C}, C(28)), 124.3$ (s, 1 C , $C(1)), 134.2(\mathrm{~s}, 1 \mathrm{C}, ~ C(4)), 137.7-137.8(\mathrm{~m}, 1 \mathrm{C}, ~ C(27)), 142.9(\mathrm{~s}, 1 \mathrm{C}, ~ C(5))$, 147.6-149.2(m,2C,C(30)+C(31)), 154.6 (s, $1 \mathrm{C}, \mathrm{C}(24)$), 158.9 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(10)$), 165.0 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(13)$); ${ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{(} 377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}-141.1(\mathrm{~d}$, $J=21.5 \mathrm{~Hz}, 1 \mathrm{~F})-137.62(\mathrm{~d}, \mathrm{~J}=21.5 \mathrm{~Hz}, 1 \mathrm{~F})$; LRMS $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right) 467\left[\mathrm{MH}^{+}\right], 465\left[(\mathrm{M}-\mathrm{H})^{-}\right]$; HRMS (ESI ${ }^{+}$) found 467.2235, calculated for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+} 467.2253$; LCMS (System A) $t_{\mathrm{r}} 9.9 \mathrm{~min}$ (91%).

2-[2-(2-Chloro-3-methoxyphenyl)ethyl]-5-(3,5-dimethyl-1,2-oxazol-4-yl)-1-[2-(morpholin-4-yl)ethyl]-1Hbenzimidazole (s109)

3-(2-Chloro-3-methoxyphenyl)propanoic acid ($30 \mathrm{mg}, 0.14 \mathrm{mmol}$) was reacted with compound 22 (0.13 mmol) according to general procedure C. The product was obtained as a pale yellow gum ($22 \mathrm{mg}, 35 \%$); R_{f} 0.25 (EtOAc:MeOH:NEt ${ }_{3}, ~ 95: 5: 0.5$); $v_{\text {max }}$ (neat) $2936(\mathrm{C}-\mathrm{H}), 2854(\mathrm{C}-\mathrm{H}), 2815(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm $2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(14) \mathrm{H}_{3}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right), 2.45-2.53\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(19) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 2.64(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{C}(17) \mathrm{H}_{2}\right)$, $3.20-3.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(25) \mathrm{H}_{2}\right), 3.35-3.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(26) \mathrm{H}_{2}\right)$, $3.64-3.69\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{2}+\mathrm{C}(22) \mathrm{H}_{2}\right)$,
 $\mathrm{C}(32) H$), 7.13 (dd, J=8.5, 1.5 Hz, $1 \mathrm{H}, \mathrm{C}(2) H), 7.17(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(31) \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 7.63$ (s, $1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 10.8$ (s, $1 \mathrm{C}, \mathrm{C}(14)$), 11.5 (s, $1 \mathrm{C}, \mathrm{C}(15)$), 27.6 (s, $1 \mathrm{C}, \mathrm{C}(25)$), 32.5 (s, 1 C, C(26)), 41.5 (s, 1 C, C(16)), 54.0 (s, 2 C, C(19) $+C(23)$), 56.2 (s, 1 C, C(34)), 57.5 (s, 1 C, C(17)), 66.8 ($\mathrm{s}, 2 \mathrm{C}, C(20)+C(22)$), 109.4 ($\mathrm{s}, 1 \mathrm{C}, ~ C(3)), 110.3$ ($\mathrm{s}, 1 \mathrm{C}, C(30)$), 117.1 ($\mathrm{s}, 1 \mathrm{C}, C(7)$), 119.9 ($\mathrm{s}, 1 \mathrm{C}, C(6)$), 122.0 (s , 1 C, C(28)), 122.5 (s, 1 C, C(32)), 123.4 (s, 1 C, $C(2)$), 124.2 (s, 1 C, C(1)), 127.4 (s, $1 \mathrm{C}, C(31)$), 134.2 (s, 1 C, $C(4)$), 139.9 (s, 1 C, C(27)), 143.0 (s, 1 C, C(5)), 155.1 (s, 1 C, C(24/29)), 155.3 (s, 1 C, C(24/29)), 159.0 (s, 1 C, $C(10)$), $165.0(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(13))$; LRMS $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right) 497\left[\mathrm{M}\left({ }^{37} \mathrm{Cl}\right) \mathrm{H}^{+}\right] 495\left[\mathrm{M}\left({ }^{35} \mathrm{CI}\right) \mathrm{H}^{+}\right]$; HRMS (ESI $)$found 495.2147, calculated for $\mathrm{C}_{27} \mathrm{H}_{32}{ }^{35} \mathrm{ClN}_{4} \mathrm{O}_{3}{ }^{+} 495.2157$; LCMS (System A) $t_{\mathrm{r}} 9.7 \mathrm{~min}$ (95\%).

5-(3,5-Dimethyl-1,2-oxazol-4-yl)-2-[2-(2-fluoro-4-methoxyphenyl)ethyl]-1-[2-(morpholin-4-yl)ethyl]-1Hbenzimidazole (s110)

3-(2-Fluoro-4-methoxyphenyl)propanoic acid ($28 \mathrm{mg}, 0.14 \mathrm{mmol}$) was reacted with compound 22 (0.13 mmol) according to general procedure C. The product was obtained as a colourless gum ($39 \mathrm{mg}, 63 \%$); R_{f} 0.50 (EtOAc:MeOH:NEt ${ }_{3}, 90: 10: 1$); $v_{\text {max }}$ (neat) $2943(\mathrm{C}-\mathrm{H}), 1739 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 2.29(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{C}(15) \mathrm{H}_{3}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{3}\right), 2.48-2.59\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{2}+\mathrm{C}(24) \mathrm{H}_{2}\right), 2.68\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(18) \mathrm{H}_{2}\right), 3.14-$ $3.34\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(25) \mathrm{H}_{2}+\mathrm{C}(26) \mathrm{H}_{2}\right), 3.57-3.75\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(21) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(34) \mathrm{H}_{3}\right), 4.22(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{2}\right), 6.59-6.70(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(29) \mathrm{H}+\mathrm{C}(31) \mathrm{H}), 7.11-7.20(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(2) \mathrm{H}+\mathrm{C}(32) \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}(3) \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 10.8(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(14)), 11.5(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(16))$, 27.3 (s, 1 C, C(26)), 28.3 (s, 1 C, $C(25)$), 41.3 (s, 1 C, C(17)), 53.9 (s, $2 C, C(20)+C(24)$), 55.5 (s, 1 C, C(34)), 57.4 (s, 1 C, C(18)), 66.6 (s, 2 C, C(21)+C(23)), 101.8 (d, J=25.5 Hz, 1 C, C(29)), 109.5 (s, 1 C, C(3)), 109.8 (d, J=3.0 Hz, 1 C, C(31)), 116.9 (s, 1 C, C(10)), 119.1 (d, J=16.0 Hz, 1 C, C(27)), 119.7 (s, $1 \mathrm{C}, ~ C(6)), 123.7$ (s, $1 \mathrm{C}, \mathrm{C}(2)$), 124.5 (s, 1 C, C(1)), 131.1 (d, J=7.0 Hz, 1 C, C(32)), 134.0 (s, 1 C, C(4)), 142.3 (s, 1 C, C(5)), 155.1 (s, 1 C, C(8)),
158.9 ($s, 1 \mathrm{C}, \mathrm{C}(11)$), 159.7 ($\mathrm{d}, \mathrm{J}=11.0 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C}(30)$), 161.5 ($\mathrm{d}, \mathrm{J}=244.0 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C}(28)$), $165.0\left(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(14)\right.$); ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}-116.8(\mathrm{~s}, 1 \mathrm{~F})$; LRMS $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right) 501\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 479\left[\mathrm{MH}^{+}\right]$; HRMS (ESI $)$found 479.2442, calculated for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{FN}_{4} \mathrm{O}_{3}{ }^{+} 479.2453$; LCMS (System A) $t_{r} 9.8 \mathrm{~min}$ (>99\%).

2-[2-(1,3-Benzodioxol-5-yl)ethyl]-5-(3,5-dimethyl-1,2-oxazol-4-yl)-1-[2-(morpholin-4-yl)ethyl]-1Hbenzimidazole (s111)

3 -(1,3-Benzodioxol-5-yl)propanoic acid ($27 \mathrm{mg}, 0.14 \mathrm{mmol}$) was reacted with compound 22 (0.13 mmol) according to general procedure C. The product was obtained as a pale-yellow gum ($9 \mathrm{mg}, 15 \%$); $R_{f} 0.25$ (EtOAc:MeOH:NEt $\left.{ }_{3}, 95: 5: 0.5\right) ; v_{\max }$ (neat) $2922(\mathrm{C}-\mathrm{H}), 2852(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 2.31(\mathrm{~s}, 3$ $\mathrm{H}, \mathrm{C}(14) \mathrm{H}_{3}$), $2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right), 2.46-2.54\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(19) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 2.63\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{2}\right)$, 3.14 $3.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(25) \mathrm{H}_{2}\right), 3.20-3.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(26) \mathrm{H}_{2}\right), 3.65-3.75\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{2}+\mathrm{C}(22) \mathrm{H}_{2}\right), 4.16(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2$ $\mathrm{H}, \mathrm{C}(16) \mathrm{H}_{2}$), $5.94\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}(34) \mathrm{H}_{2}\right), 6.70$ (dd, J=8.0, $\left.1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(28) \mathrm{H}\right), 6.73-6.78(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(29) \mathrm{H}+\mathrm{C}(32) \mathrm{H})$, $7.14(\mathrm{dd}, \mathrm{J}=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(2) H), 7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 7.64(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm 10.9 (s, $1 \mathrm{C}, ~ C(14)$), 11.6 ($\mathrm{s}, 1 \mathrm{C}, ~ C(15)$), 29.9 ($\mathrm{s}, 1 \mathrm{C}, ~ C(25)$), 33.6 ($\mathrm{s}, 1 \mathrm{C}, C(26)$), 41.5 ($\mathrm{s}, 1 \mathrm{C}$, $C(16)), 54.0(\mathrm{~s}, 2 \mathrm{C}, ~ C(19)+C(23)), 57.6$ (s, $1 \mathrm{C}, C(17)$), 66.8 ($\mathrm{s}, 2 \mathrm{C}, C(20)+C(22)$), 100.9 ($\mathrm{s}, 1 \mathrm{C}, C(34)$), 108.4 ($\mathrm{s}, 1$ C, C(32)), 108.8 (s, 1 C, C(29)), 109.4 (s, 1 C, C(3)), 117.0 (s, 1 C, C(7)), 119.9 (s, 1 C, C(6)), 121.2 (s, 1 C, C(28)),
 C, C(30)), 147.8 (s, 1 C, C(31)), 155.2 (s, 1 C, C(24)), 159.0 (s, 1 C, C(10)), 165.0 (s, 1 C, C(13)); $R_{f} 0.25$ (EtOAc:MeOH:NEt ${ }_{3}$, 95:5:0.5); LRMS m/z (ESI ${ }^{+}$) $475\left[\mathrm{MH}^{+}\right]$; HRMS (ESI ${ }^{+}$) found 475.2325, calculated for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{4}^{+} 475.2340$; LCMS (System B) $t_{\mathrm{r}} 3.6 \mathrm{~min}$ (88\%).

2-[2-(2,3-Dihydro-1-benzofuran-5-yl)ethyl]-5-(3,5-dimethyl-1,2-oxazol-4-yl)-1-[2-(morpholin-4-yl)ethyl]$1 H$-benzimidazole (s112)

3-(2,3-Dihydro-1-benzofuran-5-yl)propanoic acid ($27 \mathrm{mg}, 0.14 \mathrm{mmol}$) was reacted with compound 22 (0.13 mmol) according to general procedure C . The product was obtained as an orange/brown gum ($17 \mathrm{mg}, 28 \%$); $R_{f} 0.25$ (EtOAc:MeOH:NEt ${ }_{3}$, 95:5:0.5); $v_{\max }$ (neat) $2926(\mathrm{C}-\mathrm{H}), 2855(\mathrm{C}-\mathrm{H}), 2817(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(14) \mathrm{H}_{3}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right), 2.49\left(\mathrm{~m}, \mathrm{~J}=4.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}(19) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 2.63(\mathrm{t}$, $\left.J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{2}\right), 3.13-3.27\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C}(25) \mathrm{H}_{2}+\mathrm{C}(26) \mathrm{H}_{2}+\mathrm{C}(33) \mathrm{H}_{2}\right), 3.65-3.73\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{2}+\mathrm{C}(22) \mathrm{H}_{2}\right)$, $4.15\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{2}\right), 4.56\left(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(34) \mathrm{H}_{2}\right), 6.73(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(29) \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=8.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C}(28) \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(32) \mathrm{H}), 7.13(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}), 7.37(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{C}(6) \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 10.9$ (s, $1 \mathrm{C}, \mathrm{C}(14)$), 11.6 (s, $1 \mathrm{C}, \mathrm{C}(15)$), 29.7 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(35)$), 30.2 (s, 1 C, $C(25)$), 33.3 (s, 1 C, C(26)), 41.4 (s, 1 C, C(16)), 54.0 (s, $2 C, C(19)+C(23)), 57.5$ (s, 1 C, C(17)), 66.8 (s, 2 C,
$C(20)+C(22)), 71.2(\mathrm{~s}, 1 \mathrm{C}, C(34)), 109.3$ (s, $1 \mathrm{C}, C(3 / 29)$), 109.4 ($\mathrm{s}, 1 \mathrm{C}, C(3 / 29)$), $117.0(\mathrm{~s}, 1 \mathrm{C}, C(7)), 119.8$ (s, 1

 $1 \mathrm{C}, \mathrm{C}(10)$), 165.0 (s, $1 \mathrm{C}, \mathrm{C}(13))$; LRMS m/z (ESI ${ }^{+}$) $473\left[\mathrm{MH}^{+}\right]$; HRMS (ESI ${ }^{+}$) found 473.2535, calculated for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{3}{ }^{+} 473.2547$; LCMS (System B) $t_{\mathrm{r}} 3.6 \mathrm{~min}$ (87\%).

5-(3,5-Dimethyl-1,2-oxazol-4-yl)-2-[2-(1-methyl-1H-indol-5-yl)ethyl]-1-[2-(morpholin-4-yl)ethyl]-1Hbenzimidazole (s113)

3-(1-Methyl-1H-indol-5-yl)propanoic acid ($28 \mathrm{mg}, 0.14 \mathrm{mmol}$) was reacted with compound 22 (0.13 mmol) according to general procedure C. The product was obtained as a colourless gum ($35 \mathrm{mg}, 56 \%$); $R_{f} 0.45$ (EtOAc:MeOH:NEt ${ }_{3}, 90: 10: 1$); $v_{\max }$ (neat) $2930(\mathrm{C}-\mathrm{H}), 2856(\mathrm{C}-\mathrm{H}), 2818(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$ $2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right), 2.38-2.42\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{2}+\mathrm{C}(24) \mathrm{H}_{2}\right), 2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{3}\right), 2.51(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{C}(18) \mathrm{H}_{2}\right)$, 3.20-3.33(m,2 H, C(25) H_{2}), 3.33-3.49(m, $\left.2 \mathrm{H}, \mathrm{C}(26) \mathrm{H}_{2}\right), 3.61-3.74\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(21) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right)$, $3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(36) \mathrm{H}_{3}\right), 4.11\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{2}\right), 6.43$ (dd, J=3.0, $\left.0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(35) \mathrm{H}\right), 7.06$ (d, J=3.0 Hz, 1 H, C(34)H), 7.09 (dd, J=8.5, 1.5 Hz, $1 \mathrm{H}, \mathrm{C}(28) H$), 7.13 (dd, J=8.5, $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}), 7.26$ (d, J=8.5 Hz, 1 H , $\mathrm{C}(29) H$), $7.38(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(3) H), 7.50(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(32) \mathrm{H}), 7.66(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm 10.9 (s, $1 \mathrm{C}, \mathrm{C}(15)$), 11.6 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(16)$), 30.6 (s, $1 \mathrm{C}, \mathrm{C}(25)$), 32.9 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(36)$), 34.2 (s, 1 C, $C(26)$), 41.2 (s, 1 C, $C(17)$), 53.7 (s, $2 C, C(20)+C(24)), 57.2(\mathrm{~s}, 1 \mathrm{C}, C(18)$), 66.6 (s, $2 \mathrm{C}, C(21)+C(23)), 100.5$ ($s, 1$ C, C(35)), 109.4 ($s, 1$ C, C(3/29)), 109.5 ($s, 1$ C, C(3/29)), 117.0 (s, 1 C, C(10)), 119.7 (s, 1 C, C(6)), 120.1 (s, 1 C, C(32)), 122.2 (s, 1 C, C(28)), 123.4 (s, 1 C, C(2)), 124.3 ($s, 1$ C, C(1)), 128.8 (s, $1 \mathrm{C}, C(31)$), 129.3 ($s, 1 \mathrm{C}$, $C(34)$), 131.6 ($s, 1 \mathrm{C}, ~ C(27)$), 134.1 ($s, 1 \mathrm{C}, ~ C(4)$), 135.6 (s, $1 \mathrm{C}, C(30)$), 142.7 (s, $1 \mathrm{C}, C(5)$), 155.7 ($\mathrm{s}, 1 \mathrm{C}, C(8)$), 159.0 (s, $1 \mathrm{C}, \mathrm{C}(11)$), 165.0 (s, $1 \mathrm{C}, \mathrm{C}(14)$); LRMS $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right) 506\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 484\left[\mathrm{MH}^{+}\right]$; HRMS (ESI ${ }^{+}$) found 484.2699, calculated for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~N}_{5} \mathrm{O}_{2}{ }^{+} 484.2707$; LCMS (System A) $t_{\mathrm{r}} 9.5 \mathrm{~min}$ ($>99 \%$).

5-(3,5-Dimethyl-1,2-oxazol-4-yl)-2-[2-(2-methyl-1H-benzimidazol-5-yl)ethyl]-1-[2-(morpholin-4-yl)ethyl]-1H-benzimidazole (s114)

3-(2-methyl-1H-benzimidazol-5-yl)propanoic acid ($53 \mathrm{mg}, 0.26 \mathrm{mmol}$) was reacted with compound 22 (40 mg , 0.13 mmol) according to general procedure D . Chromatography was carried out with a gradient of $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}$ which was increased linearly from 99:1:0.1 to 90:10:1 over 20 CVs . The product was obtained as a brown gum ($39 \mathrm{mg}, 62 \%$); $R_{f} 0.35$ ($\mathrm{EtOAc}: \mathrm{MeOH}: \mathrm{NEt}_{3}, 90: 10: 1$); $v_{\max }$ (neat) 2927 (C-H), 2855 (C$\mathrm{H}), 2814(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right), 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{3}\right), 2.43-2.48(\mathrm{~m}, 4$
$\left.\mathrm{H}, \mathrm{C}(20) \mathrm{H}_{2}+\mathrm{C}(24) \mathrm{H}_{2}\right), 2.58-2.66\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}(18) \mathrm{H}_{2}+\mathrm{C}(36) \mathrm{H}_{3}\right), 3.24-3.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(25) \mathrm{H}_{2}\right), 3.33-3.41(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{C}(26) \mathrm{H}_{2}\right)$, $3.63-3.70\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(21) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 4.16\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{2}\right), 5.43$ (br. s, $1 \mathrm{H}, \mathrm{NH}$), 7.06 (dd, $J=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(28) H$), 7.14 (dd, J=8.0, $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}), 7.35-7.41$ (m, $3 \mathrm{H}, \mathrm{C}(3) \mathrm{H}+\mathrm{C}(29) \mathrm{H}+\mathrm{C}(32) \mathrm{H})$, 7.57 (d, J=1.5 Hz, $1 \mathrm{H}, \mathrm{C}(6) \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 10.8$ (s, $1 \mathrm{C}, \mathrm{C}(15)$), $11.5(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(16)$), 14.9 (s, $1 \mathrm{C}, C(36)$), 30.2 ($\mathrm{s}, 1 \mathrm{C}, C(25)$), 34.1 ($\mathrm{s}, 1 \mathrm{C}, ~ C(26)$), 41.5 ($\mathrm{s}, 1 \mathrm{C}, C(17)$), $54.0(\mathrm{~s}, 2 \mathrm{C}, C(20)+C(24)$), 57.6 (s, 1 C , $C(18)), 66.8$ (s, 2 C, C(21)+C(23)), 109.5 (s, 1 C, C(3)), 114.0 (s, 1 C, C(29/32)), 114.4 (s, 1 C, C(29/32)), 117.0 (s,
 134.9 (s, $1 \mathrm{C}, C(27)$), 137.0 ($s, 1 \mathrm{C}, ~ C(30 / 31)$), 138.7 ($s, 1 \mathrm{C}, ~ C(30 / 31)$), 142.8 ($s, 1 \mathrm{C}, C(5)$), 151.1 ($\mathrm{s}, 1 \mathrm{C}, C(34)$), 155.4 (s, $1 \mathrm{C}, ~ C(8)$), 158.9 (s, $1 \mathrm{C}, ~ C(11)$), 165.0 (s, $1 \mathrm{C}, \mathrm{C}(14)$); LRMS m/z (ESI ${ }^{+} 485\left[\mathrm{MH}^{+}\right], 483$ [(M-H)]; HRMS (ESI ${ }^{+}$) found 485.2653, calculated for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~N}_{6} \mathrm{O}_{2}{ }^{+} 485.2660$; LCMS (System B) $t_{\mathrm{r}} 2.9 \mathrm{~min}$ (93%).

4-(2-\{5-(3,5-Dimethyl-1,2-oxazol-4-yl)-1-[2-(morpholin-4-yl)ethyl]-1H-benzimidazol-2-yl\}ethyl)-3,4-dihydro-2H-1,4-benzoxazine (s 115)

3-(2,3-Dihydro-4H-1,4-benzoxazin-4-yl)propanoic acid ($29 \mathrm{mg}, 0.14 \mathrm{mmol}$) was reacted with compound 22 (0.13 mmol) according to general procedure C . The product was obtained as a pale-yellow gum (17 mg , 43%); $R_{f} 0.45$ (EtOAc:MeOH:NEt ${ }_{3}, 90: 10: 1$); $v_{\max }$ (neat) $2950(\mathrm{C}-\mathrm{H}), 2853(\mathrm{C}-\mathrm{H}), 1502 ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right), 2.43\left(\mathrm{~s}, 7 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{3}+\mathrm{C}(20) \mathrm{H}_{2}+\mathrm{C}(24) \mathrm{H}_{2}\right), 2.67\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(18) \mathrm{H}_{2}\right)$, $3.24\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(25) \mathrm{H}_{2}\right), 3.27-3.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(32) \mathrm{H}_{2}\right), 3.58-3.78\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(21) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right)$, $3.99(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(26) \mathrm{H}_{2}$), $4.11-4.18\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(31) \mathrm{H}_{2}\right)$, $4.18-4.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{2}\right), 6.61-6.69(\mathrm{~m}, 1 \mathrm{H}$, C(34/35)H), 6.76 (dd, J=8.0, 1.5 Hz, $1 \mathrm{H}, \mathrm{C}(33 / 36) \mathrm{H}), 6.82$ (dd, J=8.0, $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(33 / 36) H$), $6.84-6.89$ (m, 1 H, C(34/35)H), 7.16 (dd, J=8.5, 1.5 Hz, $1 \mathrm{H}, \mathrm{C}(2) H$), $7.38-7.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 7.63$ (d, J=1.5 Hz, $1 \mathrm{H}, \mathrm{C}(6) \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$) δ ppm 10.9 (s, $1 \mathrm{C}, \mathrm{C}(15)$), 11.6 (s, $1 \mathrm{C}, \mathrm{C}(16)$), 23.7 (s, $1 \mathrm{C}, \mathrm{C}(25)$), 41.2 (s, 1 C , $C(17)$), 47.8 (s, $1 \mathrm{C}, C(20)$), 49.4 ($\mathrm{s}, 1 \mathrm{C}, ~ C(18)$), 53.7 ($\mathrm{s}, 2 \mathrm{C}, C(20)+C(24)$), 57.3 (s, $1 \mathrm{C}, C(18)$), 64.4 ($\mathrm{s}, 1 \mathrm{C}$, $C(31)$), 66.4 (s, 2 C, $C(21)+C(23)), 109.6$ (s, 1 C, C(3)), 111.6 (s, 1 C, C(36)), 116.8 (s, 1 C, C(33)), 116.9 (s, 1 C, $C(10)), 117.9$ (s, 1 C, C(34/35)), 119.7 (s, 1 C, C(6)), 121.8 (s, 1 C, C(34/37)), 123.8 (s, 1 C, C(2)), 124.7 (s, 1 C, $C(1)$), 133.9 (s, 1 C, $C(4 / 5)$), 134.1 (s, 1 C, $C(4 / 5)$), 144.2 (s, $1 \mathrm{C}, C(4 / 5)$), 153.9 (s, $1 \mathrm{C}, C(8)$), 158.9 (s, 1 C , $C(11)), 165.1(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(14)) ;$ LRMS $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right) 510\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 488\left[\mathrm{MH}^{+}\right] ; \mathrm{HRMS}\left(E S I^{+}\right)$found 488.2637, calculated for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{5} \mathrm{O}_{3}{ }^{+} 488.2656$; LCMS (System A) $t_{\mathrm{r}} 9.9$ min (92\%).

4-(3-\{5-(3,5-Dimethyl-1,2-oxazol-4-yl)-1-[2-(morpholin-4-yl)ethyl]-1H-benzimidazol-2-yl\}propyl)-3,4-dihydro-2H-1,4-benzoxazine (s116)

4-(2,3-Dihydro-4H-1,4-benzoxazin-4-yl)butanoic acid ($31 \mathrm{mg}, 0.14 \mathrm{mmol}$) was reacted with compound 22 (0.13 mmol) according to general procedure C . The product was obtained as a pale-brown gum (18 mg , 28\%); $R_{f} 0.40$ (EtOAc:MeOH: $\mathrm{NEt}_{3}, 90: 10: 1$); $\mathrm{v}_{\text {max }}$ (neat) 2932 (C-H), 2855 (C-H); ${ }^{1} \mathrm{H} N \mathrm{NR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ ppm $2.25-2.36\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}+\mathrm{C}(26) \mathrm{H}_{2}\right), 2.41-2.44\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{3}\right), 2.46-2.54(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{C}(20) \mathrm{H}_{2}+\mathrm{C}(24) \mathrm{H}_{2}\right), 2.71\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(18) \mathrm{H}_{2}\right), 3.01\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(25) \mathrm{H}_{2}\right), 3.36-3.41(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{C}(29) \mathrm{H}_{2}\right), 3.48\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(27) \mathrm{H}_{2}\right), 3.66-3.75\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(21) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 4.19-4.23\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(30) \mathrm{H}_{2}\right)$, $4.26\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{2}\right), 6.60(\mathrm{td}, \mathrm{J}=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(35) \mathrm{H}), 6.63(\mathrm{dd}, \mathrm{J}=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(37) \mathrm{H}), 6.73-$ $6.79(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(34) \mathrm{H}+\mathrm{C}(36) \mathrm{H}), 7.15(\mathrm{dd}, \mathrm{J}=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 7.63(\mathrm{~d}, \mathrm{~J}=1.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 10.8(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(15)), 11.5(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(16))$, $24.3(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(26))$, 24.5 (s, $1 \mathrm{C}, \mathrm{C}(25)$), 41.2 ($\mathrm{s}, 1 \mathrm{C}, C(17)$), $47.1(\mathrm{~s}, 1 \mathrm{C}, ~ C(29)$), $50.0(\mathrm{~s}, 1 \mathrm{C}, ~ C(27)$), $53.8(\mathrm{~s}, 2 \mathrm{C}, C(20)+C(24)), 57.3$ ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(18)), 64.4(\mathrm{~s}, 1 \mathrm{C}, C(30)), 66.5(\mathrm{~s}, 2 \mathrm{C}, ~ C(21)+C(23)), 109.5(\mathrm{~s}, 1 \mathrm{C}, C(3)), 112.0(\mathrm{~s}, 1 \mathrm{C}, C(34 / 37)), 116.5$
 $123.8(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(2)$), $124.6(\mathrm{~s}, 1 \mathrm{C}, C(1)), 134.0(\mathrm{~s}, 1 \mathrm{C}, C(4)), 135.2(\mathrm{~s}, 1 \mathrm{C}, ~ C(33)), 144.0(\mathrm{~s}, 1 \mathrm{C}, C(32)$), 155.1 (s, $1 \mathrm{C}, \mathrm{C}(8)), 158.9$ ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(11)$), 165.1 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(14))$; LRMS $\mathrm{m} / \mathrm{z}\left(E S I^{+}\right) 524\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 502\left[\mathrm{MH}^{+}\right]$; HRMS (ESI $)$ found 502.2806 , calculated for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{~N}_{5} \mathrm{O}_{3}{ }^{+} 502.2813$; LCMS (System A) $t_{\mathrm{r}} 10.0 \mathrm{~min}$ (99%).

4-Bromo-2-(bromomethyl)-1-nitrobenzene

3 -Bromobenzyl bromide ($5.00 \mathrm{~g}, 20.0 \mathrm{mmol}$) was added portion-wise to cooled ($-10^{\circ} \mathrm{C}$) c. $\mathrm{H}_{2} \mathrm{SO}_{4}(20 \mathrm{~mL})$. c. $\mathrm{HNO}_{3}(4 \mathrm{~mL})$ was added drop-wise at a rate which maintained the temperature below $0{ }^{\circ} \mathrm{C}$. The mixture was allowed to warm to room temperature over 2 h then poured onto crushed ice (50 mL). Once all the ice had melted, the resultant mixture was extracted with EtOAc $(20 \mathrm{~mL})$. The phases were separated then the organic phase was washed with water ($3 \times 20 \mathrm{~mL}$) and brine (20 mL) then dried over MgSO_{4} and evaporated directly onto silica. The crude material was purified by flash column chromatography on a silica column (330 g). The column was eluted with a gradient of EtOAc:c-hexane which was increased linearly from 2:98 to 20:80 over 10 CVs . The desired fractions were combined and evaporated to yield the product as a paleyellow solid ($2.27 \mathrm{~g}, 39 \%$); mp $75-78{ }^{\circ} \mathrm{C}\left\{l \mathrm{lit} .{ }^{1} \mathrm{mp} 77-78{ }^{\circ} \mathrm{C}\right\}$; $R_{f} 0.35$ (EtOAc:c-hexane, $10: 90$); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 4.79\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}(7) \mathrm{H}_{2}\right), 7.63(\mathrm{dd}, \mathrm{J}=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}), 7.95$ (d, J=8.5 Hz, $1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 27.9(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(10)), 127.0(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(3)), 128.4(\mathrm{~s}, 1$ C, C(1)), 132.7 (s, 1 C, C(2)), 134.7 (s, 1 C, C(5)), 135.4 (s, 1 C, C(6)), 146.6 (s, 1 C, C(4)); HRMS (FI^{+}) found 294.8723, calculated for $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{Br}_{2} \mathrm{NO}_{2}{ }^{+} 294.8667$; LCMS (System B) $t_{r} 5.8 \mathrm{~min}$ ($>99 \%$).
(5-Bromo-2-nitrobenzyl)(triphenyl)phosphonium bromide

Triphenyl phosphine ($1.95 \mathrm{~g}, 7.46 \mathrm{mmol}$) was added to a stirred solution of 4-bromo-2-(bromomethyl)-1nitrobenzene ($2.20 \mathrm{~g}, 7.45 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(15 \mathrm{~mL})$. The mixture was stirred for 64 h at room temperature then concentrate in vacuo. $\mathrm{CHCl}_{3}(15 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ were added then the solid was collected by filtration. The solid was dried under vacuum to yield the product as a pale yellow solid (4.15 g , quant.); mp 269-271 ${ }^{\circ} \mathrm{C}\left\{\right.$ lit. $\left.{ }^{1} \mathrm{mp} 256-258{ }^{\circ} \mathrm{C}\right\} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 6.23\left(\mathrm{~d}, \mathrm{~J}=15.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(7) \mathrm{H}_{2}\right), 7.61(\mathrm{dt}$, $J=9.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}), 7.63-7.70(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{Ph} H), 7.70-7.78(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{PhH}), 7.78-7.85(\mathrm{~m}, 4 \mathrm{H}$, $3 \times \mathrm{PhH}+\mathrm{C}(3) H), 8.16(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(6) H) ;{ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 28.2(\mathrm{~d}, \mathrm{~J}=48.5 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C}(7))$, 116.9 (d, J=86.0 Hz, 3 C, $3 \times \operatorname{ArC}$) 126.6 (d, J=8.5 Hz, $1 \mathrm{C}, ~ C(5) 126.9(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{C}, C(3)), 129.8$ (d, J=3.0 Hz, 1 C, $C(1)), 130.4(d, J=12.5 \mathrm{~Hz}, 6 \mathrm{C}, 6 \times \operatorname{ArC}) 133.1(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{C}, C(2)), 134.2(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 6 \mathrm{C}, 6 \times \operatorname{ArC}) 135.4$ (d, J=3.0 Hz, 3 C, $3 \times \operatorname{ArC}$) 137.6 (d, J=5.5 Hz, 1 C, C(6)), 147.1 (d, J=5.5 Hz, 1 C, C(4)); ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm 24.8 (s, 1 P); LRMS m/z (ESI $)^{+} 478\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)^{+}\right], 476\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)^{+}\right] ; \mathrm{LCMS}$ (System B) $t_{\mathrm{r}} 4.7 \mathrm{~min}$ (93\%).
(2-Amino-5-bromobenzyl)(triphenyl)phosphonium chloride hydrochloride (38)

Zinc dust (2.96 g, 45.3 mmol) was added portion-wise to a solution of (5-bromo-2nitrobenzyl)(triphenyl)phosphonium bromide ($5.05 \mathrm{~g}, 9.06 \mathrm{mmol}$) in $\mathrm{AcOH}(90 \mathrm{~mL})$. The resultant suspension was stirred at room temperature for 1 h then filtered through Celite. The filter cake was washed with MeCN then the filtrate was concentrated in vacuo. The residue was azeotroped with toluene ($2 \times 50 \mathrm{~mL}$) then dried under high vacuum to yield the desired product as a beige foam ($4.67 \mathrm{~g}, 99 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ ppm $4.94\left(\mathrm{~d}, \mathrm{~J}=15.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(7) \mathrm{H}_{2}\right), 6.54(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}), 6.60(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 7.13$ (dt, $J=9.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}), 7.62-7.80(\mathrm{~m}, 12 \mathrm{H}, 12 \times \mathrm{PhH}), 7.85-8.01(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{PhH}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) δ ppm 24.3 (d, $\left.J=47.5 \mathrm{~Hz}, 1 \mathrm{C}, ~ C(7)\right)$, 106.6 (d, J=4.0 Hz, $1 \mathrm{C}, C(1)$), $112.4(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{C}, C(5))$, 117.9 (d, J=85.0 Hz, 3 C, $3 \times P h C$) 118.0 (d, J=3.0 Hz, 1 C, C(2)), 130.1 (d, J=12.0 Hz, 6 C, $6 \times P h C$) 131.8 (d, J=3.0 $\mathrm{Hz}, 1 \mathrm{C}, C(6)), 133.6(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{C}, ~ C(3))$, 134.1 ($\mathrm{d}, \mathrm{J}=9.5 \mathrm{~Hz}, 6 \mathrm{C}, 6 \times \mathrm{PhC}$) 135.2 ($\mathrm{d}, J=2.5 \mathrm{~Hz}, 3 \mathrm{C}, 3 \times \mathrm{PhC}$) 146.9 (d, J=5.5 Hz, 1 C, C(4)); ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta \mathrm{ppm} 21.5$ (s, 1 P); LRMS m/z (ESI ${ }^{+} 448$ $\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)^{+}\right], 446\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)^{+}\right]$; LCMS (System B) $t_{\mathrm{r}} 4.7 \mathrm{~min}$ (99\%).
(5-Bromo-2-\{[3-(3-chloro-4-methoxyphenyl)propanoyl]amino\}benzyl)(triphenyl)phosphonium chloride

Oxalyl chloride ($239 \mu \mathrm{~L}, 2.83 \mathrm{mmol}$) was added to a solution of 3-(3-chloro-4-methoxyphenyl)propanoic acid ($202 \mathrm{mg}, 0.94 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. DMF (1 drop) was added then the resultant solution was stirred at room temperature for 1 h . The solvent was evaporated by nitrogen blow-down. The residue was re-dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) then evaporated by blow-down. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ then added drop-
wise to a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of compound 38 ($202 \mathrm{mg}, 0.94 \mathrm{mmol}$) in DMF (1.5 mL) and pyridine (0.5 mL). The mixture was allowed to warm to room temperature then stirred for 16 h . The solvent was evaporated by nitrogen blow-down then the residue was partitioned between EtOAc (5 mL) and $1 \mathrm{Maq} . \mathrm{HCl}$ solution (5 mL). The phases were separated then the organic phase was washed with brine (5 mL) then dried over MgSO_{4} and evaporated. The crude material was suspended in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ then the supernatant was decanted off with a pipette. The solid material was dried under vacuum to yield the product as a yellow solid ($243 \mathrm{mg}, 56 \%$); mp 169-171 ${ }^{\circ} \mathrm{C}$; $\mathrm{v}_{\text {max }}$ (neat) $3064(\mathrm{C}-\mathrm{H}), 2909(\mathrm{C}-\mathrm{H}), 1687(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ ppm 2.41-2.49 (m, $2 \mathrm{H}, \mathrm{C}(10) \mathrm{H}_{2}$), 2.56-2.64 (m, $\left.2 \mathrm{H}, \mathrm{C}(9) \mathrm{H}_{2}\right), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(19) \mathrm{H}_{3}\right), 5.61(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{C}(7) \mathrm{H}_{2}\right), 6.69-6.79(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(6) \mathrm{H}+\mathrm{C}(16) \mathrm{H}), 7.06-7.19(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}(2) \mathrm{H}+\mathrm{C}(13) \mathrm{H}+\mathrm{C}(17) \mathrm{H}), 7.44-7.56$ (m, 7 H , $\mathrm{C}(3) \mathrm{H}+6 \times \mathrm{Ph} H)$, $7.56-7.71(\mathrm{~m}, 9 \mathrm{H}, 9 \times \mathrm{PhH}), 10.28$ (br. s., $1 \mathrm{H}, \mathrm{NH}$); ${ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 27.5(\mathrm{~d}$, $J=46.0 \mathrm{~Hz}, 1 \mathrm{C}, ~ C(7)), 30.1(\mathrm{~s}, 1 \mathrm{C}, C(10)$), 37.6 ($\mathrm{s}, 1 \mathrm{C}, C(9)$), $56.1(\mathrm{~s}, 1 \mathrm{C}, ~ C(19)), 112.1(\mathrm{~s}, 1 \mathrm{C}, C(16)$), $116.9(\mathrm{~d}$, $J=4.0 \mathrm{~Hz}, 1 \mathrm{C}, ~ C(1)), 117.6$ (d, J=86.0 Hz, 3 C, 3×PhC) 121.6 (s, $1 \mathrm{C}, \mathrm{C}(14)$), 121.9 (d, J=8.5 Hz, $1 \mathrm{C}, \mathrm{C}(5)$), 127.5 ($\mathrm{s}, 1 \mathrm{C}, ~ C(12)$), 127.7 ($\mathrm{d}, \mathrm{J}=4.0 \mathrm{~Hz}, 1 \mathrm{C}, ~ C(3)$), 128.0 ($\mathrm{s}, 1 \mathrm{C}, ~ C(17)$), 130.1 ($\mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}, 6 \mathrm{C}, 6 \times \mathrm{PhC}$) 130.3 ($\mathrm{s}, 1 \mathrm{C}$, $C(13)), 131.7(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 1 \mathrm{C}, C(2)), 134.3(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 6 \mathrm{C}, 6 \times \mathrm{PhC}) 134.5(\mathrm{~d}, J=18.5 \mathrm{~Hz}, 1 \mathrm{C}, C(6)), 134.9(\mathrm{~d}$, $J=3.0 \mathrm{~Hz}, 3 \mathrm{C}, 3 \times \mathrm{PhC}$) 137.4 (d, J=5.5 Hz, $1 \mathrm{C}, \mathrm{C}(4)$), 153.0 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(15)$), 171.9 (s, $1 \mathrm{C}, \mathrm{C}(8))$; LRMS m/z (ESI) $645\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)^{+}\right], 643\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)^{+}\right]$; HRMS found 644.0943, calculated for $\mathrm{C}_{35} \mathrm{H}_{31}\left({ }^{81} \mathrm{Br}\right) \mathrm{ClNO}_{2} \mathrm{P}^{+} 644.0939$, found 642.0959, calculated for $\mathrm{C}_{35} \mathrm{H}_{31}{ }^{79} \mathrm{Br}$) $\mathrm{ClNO}_{2} \mathrm{P}^{+}$642.0959; LCMS (System B) $t_{\mathrm{r}} 6.2 \mathrm{~min}$ (85\%).

2-[2-(3-Chloro-4-methoxyphenyl)ethyl]-5-(3,5-dimethyl-1,2-oxazol-4-yl)-1H-indole

A
suspension
of
(5-bromo-2-\{[3-(3-chloro-4methoxyphenyl)propanoyl]amino\}benzyl)(triphenyl)phosphonium chloride ($318 \mathrm{mg}, 0.46 \mathrm{mmol}$) and KOt - Bu ($63 \mathrm{mg}, 0.57 \mathrm{mmol}$) in anhydrous toluene (4 mL) was crimp-sealed in a microwave vial then heated under microwave irradiation for 15 minutes at $130^{\circ} \mathrm{C}$. The resultant mixture was partitioned between EtOAc (5 mL) and 1 M aq. $\mathrm{HCl}(5 \mathrm{~mL})$. The phases were separated then the organic phase was washed with water (5 mL) and brine (5 mL) then dried over MgSO_{4} and evaporated directly onto silica. The crude material was purified by flash column chromatography on a silica column (4 g). The column was eluted with a gradient of EtOAc:chexane which was increased linearly from 10:90 to 30:70 over 12 CVs. The desired fractions were combined and evaporated to yield the intermediate bromoindole 39 as an off-white solid ($94 \mathrm{mg}, 56 \%$). The bromoindole was dissolved in DMF (1 mL) then 4-(2-chloroethyl)morpholine hydrochloride ($53 \mathrm{mg}, 0.28$ mmol), and $\mathrm{K}_{2} \mathrm{CO}_{3}(108 \mathrm{mg}, 0.78 \mathrm{mmol})$ were added. The mixture was heated at $80^{\circ} \mathrm{C}$ for 2 h then potassium iodide ($46 \mathrm{mg}, 0.28 \mathrm{mmol}$) was added. The mixture was heated at $80^{\circ} \mathrm{C}$ for 16 h then allowed to cool. The solids were removed by filtration then $\mathrm{NaH}(60 \%$ dispersion in mineral oil, $11 \mathrm{mg}, 0.28 \mathrm{mmol})$ was added. The mixture was heated at $80^{\circ} \mathrm{C}$ for 3 h then more 4 -(2-chloroethyl)morpholine hydrochloride ($53 \mathrm{mg}, 0.28$ mmol) and $\mathrm{NaH}(60 \%$ dispersion in mineral oil, $11 \mathrm{mg}, 0.28 \mathrm{mmol}$) were added. The mixture was heated at $80^{\circ} \mathrm{C}$ for a further 24 h then allowed to cool. The mixture was partitioned between EtOAc (5 mL) and water $(5 \mathrm{~mL})$. The phases were separated then the organic phase was washed with water (5 mL) and brine (5 mL) then dried over MgSO_{4} and evaporated. The crude material was purified by flash column chromatography on a silica column (4g) which was eluted with EtOAc. The desired fractions were combined and evaporated to
yield the product as a yellow/brown gum ($30 \mathrm{mg}, 24 \%$ from bromoindole); $R_{f} 0.30$ (EtOAc); mp 157-160 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 2.31-2.42\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(25) \mathrm{H}_{2}+\mathrm{C}(29) \mathrm{H}_{2}\right), 2.50\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(23) \mathrm{H}_{2}\right), 2.93$ (s, $\left.4 \mathrm{H}, \mathrm{C}(10) \mathrm{H}_{2}+\mathrm{C}(11) \mathrm{H}_{2}\right), 3.56-3.68\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(26) \mathrm{H}_{2}+\mathrm{C}(28) \mathrm{H}_{2}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(19) \mathrm{H}_{3}\right), 4.05(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{C}(22) \mathrm{H}_{2}$), $6.15(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(9) \mathrm{H}), 6.78(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(14) \mathrm{H}), 6.97$ (dd, J=8.5, 2.0 Hz, $\left.1 \mathrm{H}, \mathrm{C}(13) \mathrm{H}\right), 7.07$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 7.15$ (dd, J=8.5, $2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}), 7.18(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(17) \mathrm{H}), 7.57(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}(6) \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm 28.6 (s, $1 \mathrm{C}, \mathrm{C}(10)$), 33.4 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(11)$), 41.0 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(22)$), 54.0 ($\mathrm{s}, 2$
 C, $C(3)$), 112.1 ($s, 1 \mathrm{C}, ~ C(14)$), 112.7 ($s, 1 \mathrm{C}, C(1)$), 122.3 ($s, 1 \mathrm{C}, C(16)$), 122.5 ($\mathrm{s}, 1 \mathrm{C}, C(6)), 123.5(\mathrm{~s}, 1 \mathrm{C}, C(2)$),
 $1 \mathrm{C}, \mathrm{C}(8)), 153.5(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(15))$; LRMS $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right) 479\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right) \mathrm{H}^{+}\right], 477\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right) \mathrm{H}^{+}\right]$; HRMS (ESI ${ }^{+}$) found 479.0902, calculated for $\mathrm{C}_{23} \mathrm{H}_{27}\left({ }^{81} \mathrm{Br}\right) \mathrm{ClN}_{2} \mathrm{O}_{2}^{+} 479.0918$, found 477.0926 , calculated for $\mathrm{C}_{23} \mathrm{H}_{27}\left({ }^{(99} \mathrm{Br}\right) \mathrm{ClN}_{2} \mathrm{O}_{2}^{+}$ 477.0939; LCMS (System B) $t_{\mathrm{r}} 6.5 \mathrm{~min}$ (72\%).

2-[2-(3-Chloro-4-methoxyphenyl)ethyl]-5-(3,5-dimethyl-1,2-oxazol-4-yl)-1-[2-(morpholin-4-yl)ethyl]-1Hindole (40)

$\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(5 \mathrm{mg}, 0.0063 \mathrm{mmol})$ was added to a solution of 2-[2-(3-Chloro-4-methoxyphenyl)ethyl]-5-(3,5-dimethyl-1,2-oxazol-4-yl)-1H-indole ($30 \mathrm{mg}, 0.063 \mathrm{mmol}$) and 3,5-dimethylisoxazole-4-boronic acid pinacol ester ($17 \mathrm{mg}, 0.075 \mathrm{mmol}$) in DME (0.5 mL). The mixture was stirred then saturated aq. NaHCO_{3} solution (0.2 mL) was added. The mixture was degassed by evacuating and refilling with nitrogen ($\times 3$) then heated at 80 ${ }^{\circ} \mathrm{C}$ for 2 h . The reaction was allowed to cool then partitioned between EtOAc (1 mL) and water (1 mL). The phases were separated then organic phase was passed through a hydrophobic frit then evaporated. The crude material was purified by flash column chromatography on a silica column (4 g). The column was eluted with a gradient of EtOAc:c-hexane, which was increased linearly from 80:20 to 100:0 over 30 column volumes (CVs). The desired fractions were combined and evaporated then then the material was dissolved in MeOH and loaded onto a pre-wetted SCX-cartridge (1 g). Non-basic components were eluted with MeOH then the captured product was released by elution with methanolic ammonia solution (7 M). The basic eluent was evaporate to yield the product as a yellow gum ($13 \mathrm{mg}, 42 \%$); $R_{f} 0.45$ (EtOAc); $v_{\text {max }}$ (neat) 2958 (C$\mathrm{H}), 2854(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right), 2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{3}\right), 2.46-2.57(\mathrm{~m}, 4$ $\left.\mathrm{H}, \mathrm{C}(20) \mathrm{H}_{2}+\mathrm{C}(24) \mathrm{H}_{2}\right), 2.66\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(18) \mathrm{H}_{2}\right), 2.97-3.15\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(25) \mathrm{H}_{2}+\mathrm{C}(26) \mathrm{H}_{2}\right), 3.64-3.78(\mathrm{~m}, 4$ $\left.\mathrm{H}, \mathrm{C}(21) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 3.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(34) \mathrm{H}_{3}\right), 4.16-4.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{2}\right), 6.33(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(9) \mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{C}(29) \mathrm{H}$), 7.04 (dd, J=8.5, $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}), 7.10$ (dd, J=8.5, $2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(28) \mathrm{H}), 7.30(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}(32) \mathrm{H}), 7.35(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 7.41(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl 3$) \delta \mathrm{ppm} 10.9(\mathrm{~s}$, 1 C, C(15)), 11.5 (s, 1 C , C(16)), 28.6 (s, 1 C, C(25)), 33.6 (s, 1 C, C(26)), 40.8 (s, $1 \mathrm{C}, C(17)$), 53.9 ($s, 2$ C, $C(20)+C(24)), 56.2(\mathrm{~s}, 1 \mathrm{C}, C(34)), 57.7(\mathrm{~s}, 1 \mathrm{C}, C(18)), 66.7(\mathrm{~s}, 2 \mathrm{C}, C(21)+C(23)), 99.5(\mathrm{~s}, 1 \mathrm{C}, C(9)), 109.2$ (s, 1 C , $C(3)$), 112.2 ($s, 1 \mathrm{C}, C(29)$), 117.5 (s, $1 \mathrm{C}, ~ C(10)$), 120.7 ($\mathrm{s}, 1 \mathrm{C}, C(6)$), 121.6 ($\mathrm{s}, 1 \mathrm{C}, C(1)$), 122.3 ($\mathrm{s}, 2 \mathrm{C}$,

$\left[\mathrm{M}\left({ }^{37} \mathrm{Cl}\right) \mathrm{H}^{+}\right], 494\left[\mathrm{M}\left({ }^{35} \mathrm{Cl}\right) \mathrm{H}^{+}\right]$; HRMS (ESI $)$found 494.2191, calculated for $\mathrm{C}_{28} \mathrm{H}_{33}\left({ }^{35} \mathrm{CI}\right) \mathrm{N}_{3} \mathrm{O}_{3}{ }^{+} 494.2205$, found 496.2182, calculated for $\left.\mathrm{C}_{28} \mathrm{H}_{33}{ }^{37} \mathrm{CI}\right) \mathrm{N}_{3} \mathrm{O}_{3}{ }^{+} 496.2178$; LCMS (System B) $t_{\mathrm{r}} 5.0 \mathrm{~min}$ (94\%).

5-(3,5-Dimethyl-1,2-oxazol-4-yl)-1-[2-(morpholin-4-yl)ethyl]-1,3-dihydro-2H-benzimidazol-2-one

A solution of compound $22(1.00 \mathrm{~g}, 3.16 \mathrm{mmol})$ and CDI ($1.02 \mathrm{~g}, 6.32 \mathrm{mmol}$) in THF (10 mL) was heated under reflux for 16 h . The reaction mixture was allowed to cool then partitioned between EtOAc (20 mL) and water $(20 \mathrm{~mL})$. The phases were separated then the organic phase was washed with water (20 mL) and brine (20 mL) then dried over MgSO_{4} and evaporated. The crude material was purified by flash column chromatography on silica (80 g). The column was eluted with a gradient of EtOAc:MeOH, which was increased linearly from 100:0 to 80:20 over 11 CVs. The desired fractions were combined and evaporated then the resultant material re-dissolved in EtOAc (20 mL). The solution was washed with water ($2 \times 20 \mathrm{~mL}$) and brine (20 mL) then dried over MgSO_{4} to yield the product as an off-white solid ($0.78 \mathrm{~g}, 78 \%$); $R_{f} 0.25$ (EtOAc:MeOH:NEt ${ }_{3}, 90: 10: 1$); mp 180-183 ${ }^{\circ} \mathrm{C}$; $v_{\text {max }}$ (neat) $2930(\mathrm{C}-\mathrm{H}), 2857(\mathrm{C}-\mathrm{H}), 2828(\mathrm{C}-\mathrm{H}), 1703$ (C=O); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(14) \mathrm{H}_{3}\right), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right), 2.52-2.64(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{C}(19) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 2.75\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{2}\right), 3.61-3.75\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{2}+\mathrm{C}(22) \mathrm{H}_{2}\right), 4.06(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{C}(16) \mathrm{H}_{2}$), 6.96 (dd, J=8.0, 1.5 Hz, $\left.1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}\right), 7.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 10.29$ (s, 1 H , NH); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 10.8$ (s, $1 \mathrm{C}, \mathrm{C}(14)$), 11.5 (s, $1 \mathrm{C}, \mathrm{C}(15)$), 38.4 (s, $1 \mathrm{C}, \mathrm{C}(16)$), 53.7 (s, 2 C , $C(19)+C(23)$), 56.2 (s, 1 C, $C(17)$), 66.9 (s, $2 C, C(20)+C(22)$), 108.1 (s, $1 \mathrm{C}, C(3)$), 110.3 ($s, 1 C, C(6)), 116.7$ ($s, 1$ C, $C(7)$), 122.5 (s, 1 C, C(2)), 123.8 (s, 1 C, C(1)), 128.4 (s, 1 C, C(5)), 129.8 (s, 1 C, C(4)), 155.7 (s, 1 C, C(24)), 158.8 (s, $1 \mathrm{C}, C(10)), 165.0(\mathrm{~s}, 1 \mathrm{C}, C(13)) ;$ LRMS (System B) $m / z\left(\mathrm{ESI}^{+}\right) 365\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 343\left[\mathrm{MH}^{+}\right],\left(\mathrm{ESI}^{-}\right) 341$ [(M-H)]; HRMS (ESI ${ }^{+}$) found 343.1752, calculated for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{3}{ }^{+} 343.1765$; LCMS (System B) $t_{\mathrm{r}} 3.0 \mathrm{~min}$ (99\%).

2-(Benzyloxy)-5-(3,5-dimethyl-1,2-oxazol-4-yl)-1-[2-(morpholin-4-yl)ethyl]-1H-benzimidazole (41)

Benzyl bromide ($59 \mu \mathrm{~L}, 0.50 \mathrm{mmol}$) was added to a suspension of 5-(3,5-dimethyl-1,2-oxazol-4-yl)-1-[2-(morpholin-4-yl)ethyl]-1,3-dihydro-2H-benzimidazol-2-one (100 mg, 0.33 mmol) and $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ ($182 \mathrm{mg}, 0.66$ mmol) in toluene (2 mL). The resultant suspension was heated at $80^{\circ} \mathrm{C}$ for 16 h then allowed to cool. The mixture was evaporated directly onto silica then purified by flash column chromatography on a silica column $(4 \mathrm{~g})$. The column was eluted with a gradient of EtOAc:MeOH: NEt_{3} which was increased linearly from 99:1:0.1 to 90:10:1 over 30 CVs. The desired fractions were combined and evaporated then the material was
re-purified on silica (4 g). Eluted with a gradient of $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}$ which was increased linearly from 99:1:0.1 to 94:6:0.6 over 30 CVs. The desired fractions were combined and evaporated to yield the product as a colourless gum ($33 \mathrm{mg}, 23 \%$); $R_{f} 0.50$ (EtOAc: $\mathrm{MeOH}: \mathrm{NEt}_{3}, 90: 10: 1$); $v_{\max }$ (neat) $2970(\mathrm{C}-\mathrm{H}), 1739 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(14) \mathrm{H}_{3}\right), 2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right), 2.44-2.53\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(19) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right)$, $2.71\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{2}\right), 3.55-3.64\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{2}+\mathrm{C}(22) \mathrm{H}_{2}\right), 4.15\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{2}\right), 5.61(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{C}(26) \mathrm{H}_{2}$), 7.04 (dd, J=8.0, $\left.1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}\right), 7.25$ (d, J=8.0 Hz, $\left.1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}\right), 7.37-7.52$ (m, 6 H , $\mathrm{C}(6) \mathrm{H}+5 \times \mathrm{Ph} H$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 10.9$ (s, $1 \mathrm{C}, \mathrm{C}(14)$), 11.5 (s, $1 \mathrm{C}, \mathrm{C}(15)$), 39.5 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(16)$), 53.7 (s, 2 C,$C(19)+C(23)$), 56.9 (s, $1 \mathrm{C}, ~ C(17)$), $66.7(\mathrm{~s}, 2 \mathrm{C}, C(20)+C(22)), 72.0(\mathrm{~s}, 1 \mathrm{C}, C(26)), 108.4(\mathrm{~s}, 1 \mathrm{C}, C(3))$, 117.2 ($\mathrm{s}, 1 \mathrm{C}, ~ C(7)$), 118.4 ($\mathrm{s}, 1 \mathrm{C}, ~ C(6)$), 122.1 ($\mathrm{s}, 1 \mathrm{C}, ~ C(2)$), 123.7 ($\mathrm{s}, 1 \mathrm{C}, ~ C(1)$), 128.2 ($\mathrm{s}, 2 \mathrm{C}, 2 \times \operatorname{ArC)} 128.7$ ($\mathrm{s}, 3$ C, $3 \times \operatorname{ArC}$) 133.0 (s, 1 C, $C(4)$), 135.4 (s, 1 C, $C(27)$), 140.4 (s, $1 \mathrm{C}, ~ C(5)$), 157.8 (s, $1 \mathrm{C}, C(24)$), 159.0 (s, 1 C , $C(10)$), 164.9 (s, $1 \mathrm{C}, \mathrm{C}(13)$); LRMS $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right) 455\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 433\left[\mathrm{MH}^{+}\right]$; HRMS (ESI ${ }^{+}$) found 433.2218, calculated for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{3}{ }^{+} 433.2234$; LCMS (System B) $t_{\mathrm{r}} 4.0 \mathrm{~min}$ (91\%).
\{5-(3,5-Dimethyl-1,2-oxazol-4-yl)-1-[2-(morpholin-4-yl)ethyl]-1H-benzimidazol-2-yl\}methanol

A mixture of compound 22 ($316 \mathrm{mg}, 1.00 \mathrm{mmol}$) and glycolic acid ($114 \mathrm{mg}, 1.50 \mathrm{mmol}$) in $6 \mathrm{M} \mathrm{aq} . \mathrm{HCl}(5 \mathrm{~mL})$ was heated under microwave irradiation for 20 minutes at $180^{\circ} \mathrm{C}$. The pH of the resultant solution was made basic by drop-wise addition of 20% aq. NaOH solution. The mixture was extracted with EtOAc (10 mL). The phases were separated then the organic phase was washed with water (10 mL) and brine (10 mL) then dried over MgSO_{4} and evaporated. The crude material was purified by flash column chromatography on a silica column (24 g). The column was eluted with a gradient of $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}$ which was increased linearly from 99:1:0.1 to 90:10:1 over 12 CVs . The desired fractions were combined and evaporated to yield the product as a pale-orange solid ($221 \mathrm{mg}, 62 \%$); $R_{f} 0.35\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}, 90: 10: 1\right) ; \mathrm{mp} 154-158{ }^{\circ} \mathrm{C}$; $v_{\text {max }}$ (neat) $3122(\mathrm{O}-\mathrm{H}), 2842(\mathrm{C}-\mathrm{H}), 2813(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(14) \mathrm{H}_{3}\right), 2.41(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right), 2.49-2.70\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(19) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 2.88\left(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{2}\right), 3.66-3.83(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{C}(20) \mathrm{H}_{2}+\mathrm{C}(22) \mathrm{H}_{2}\right), 4.43\left(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{2}\right), 4.91\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}(25) \mathrm{H}_{2}\right), 7.18(\mathrm{dd}, \mathrm{J}=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H})$, $7.41(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 10.8(\mathrm{~s}, 1 \mathrm{C}$, $C(14)$), 11.5 (s, 1 C, $C(15)$), 42.0 (s, 1 C, $C(16)$), 54.3 (s, $2 C, C(19)+C(23)), 56.8(\mathrm{~s}, 1 \mathrm{C}, C(25)), 57.8$ (s, 1 C ,

 165.1 (s, $1 \mathrm{C}, \mathrm{C}(13)$); LRMS $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right) 379\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 357\left[\mathrm{MH}^{+}\right]$, (ESI) $355\left[(\mathrm{M}-\mathrm{H})^{-}\right]$; HRMS (ESI ${ }^{+}$) found 357.1914, calculated for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{3}{ }^{+} 357.1921$; LCMS (System B) $t_{\mathrm{r}} 2.7 \mathrm{~min}$ ($>99 \%$).

5-(3,5-Dimethyl-1,2-oxazol-4-yl)-2-[(3-fluoro-4-methoxyphenoxy)methyl]-1-[2-(morpholin-4-yl)ethyl]-1H-benzimidazole (42)

Tri-n-butylphosphine ($165 \mu \mathrm{~L}, 0.66 \mathrm{mmol}$) was added to a solution of \{5-(3,5-dimethyl-1,2-oxazol-4-yl)-1-[2-(morpholin-4-yl)ethyl]-1H-benzimidazol-2-yl\}methanol ($120 \mathrm{mg}, 0.33 \mathrm{mmol}$), 3-fluoro-4-methoxyphenol (72 $\mathrm{mg}, 0.51 \mathrm{mmol}$) and azodicarbonyldipiperidide ($168 \mathrm{mg}, 0.66 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. The solution was stirred at room temperature for 16 h then diluted with methanol (3 mL) and loaded onto a pre-wetted SCX cartridge (2 g). Eluted with MeOH then the captured basic components were eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}(90: 10: 1)$. The basic eluent was evaporated then the crude material was purified by flash column chromatography on a silica column (12 g). The column was eluted with a gradient of EtOAc:MeOH: NEt_{3} which was increased linearly from 100:0:0 to 98:2:0.2 over 20 CVs . The desired fractions were combined and evaporated to yield the product as a yellow gum ($107 \mathrm{mg}, 67 \%$); $R_{f} 0.15$ (EtOAc); $v_{\max }$ (neat) $2953(\mathrm{C}-\mathrm{H}), 2836(\mathrm{C}-\mathrm{H}), 2800(\mathrm{C}-\mathrm{H}), 1512 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(14) \mathrm{H}_{3}\right), 2.42$ ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right), 2.48-2.71\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(19) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 2.75-2.96\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{2}\right), 3.67-3.81(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{C}(20) \mathrm{H}_{2}+\mathrm{C}(22) \mathrm{H}_{2}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(34) \mathrm{H}_{3}\right), 4.42-4.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{2}\right), 5.41\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}(25) \mathrm{H}_{2}\right), 6.80-6.93$ (m, 3 $\mathrm{H}, \mathrm{C}(28) \mathrm{H}+\mathrm{C}(29) \mathrm{H}+\mathrm{C}(32) \mathrm{H}), 7.21$ (dd, J=8.5, $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}), 7.46-7.59(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}), 7.66$ (d, J=1.5 Hz, 1 $\mathrm{H}, \mathrm{C}(6) \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$) $\delta \mathrm{ppm} 10.8(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(14)$), $11.5(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(15)$), $41.5(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(16)), 53.8(\mathrm{~s}$, $2 \mathrm{C}, C(19)+C(23)), 56.9(\mathrm{~s}, 1 \mathrm{C}, C(34)$), 57.6 ($\mathrm{s}, 1 \mathrm{C}, C(17)), 64.3$ (s, $1 \mathrm{C}, C(25)$), $66.4(\mathrm{~s}, 2 \mathrm{C}, C(20)+C(22)$), 104.6 (d, J=22.5 Hz, 1 C, C(32)), 109.3 (d, J=3.0 Hz, 1 C, C(29)), 110.0 (s, 1 C, C(3)), 114.4 (d, J=2.5 Hz, $1 \mathrm{C}, C(28)$), 116.8 ($s, 1 C, C(7)), 120.8(s, 1 C, C(6)), 124.8(s, 1 C, C(2)), 124.9(s, 1 C, C(1)), 134.7(s, 1 C, C(4)), 142.5(s, 1$ C, C(5)), 142.7 (d, J=11.0 Hz, 1 C, C(24)), 150.0 (s, 1 C, C(24)), 152.7 (d, J=247.0 Hz, 1 C, C(31)), 151.8 (d, J=9.5 $\mathrm{Hz}, 1 \mathrm{C}, \mathrm{C}(27)$), 158.9 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(10)$), 165.1 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(13)$); ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}-131.4$ (s, 1 F); LRMS $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right) 503\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 481\left[\mathrm{MH}^{+}\right] ; \mathrm{HRMS}\left(\mathrm{ESI}^{+}\right)$found 481.2240, calculated for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{FN}_{4} \mathrm{O}_{4}^{+}$ 481.2246; LCMS (System A) $t_{\mathrm{r}} 10.5 \mathrm{~min}$ (98\%).

5-(3,5-Dimethyl-1,2-oxazol-4-yl)-1-[2-(morpholin-4-yl)ethyl]-2-[(2R)-2-phenylpropyl]-1H-benzimidazole (43)

(R)-3-Phenylbutyric acid ($28 \mu \mathrm{~L}, 0.18 \mathrm{mmol}$) was reacted with compound $\mathbf{2 2}$ ($50 \mathrm{mg}, 0.16 \mathrm{mmol}$) according to general procedure B . Chromatography was carried out with a gradient of $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}$, which was increased linearly from 99:1:0.1 to 92:8:0.8 over 30 CVs . The product was obtained as a pale yellow gum (34 $\mathrm{mg}, 48 \%) ; R_{f} 0.45\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}, 90: 10: 1\right.$); $[\alpha]_{\mathrm{D}}^{22}-91.4$ (c 2.8 in CHCl_{3}); $\mathrm{v}_{\max }$ (neat) 2961 (C-H), 2931
(C-H), $2855(\mathrm{C}-\mathrm{H}), 2815(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 1.46\left(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}(33) \mathrm{H}_{3}\right), 2.31(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{C}(7) \mathrm{H}_{3}\right), 2.37-2.62\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{C}(6) \mathrm{H}_{3}+\mathrm{C}(18) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}+\mathrm{C}(27) \mathrm{H}_{2}\right), 3.16\left(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(19) \mathrm{H}_{2}\right), 3.53-3.64(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{C}(20) \mathrm{H})$, 3.64-3.71(m,4 H, C(24) $\left.\mathrm{H}_{2}+\mathrm{C}(26) \mathrm{H}_{2}\right)$, $3.92-4.07\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{2}\right), 7.11$ (dd, J=8.0, 1.5 Hz, 1 H , $\mathrm{C}(9) \mathrm{H}), 7.19-7.26(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{PhH}), 7.28-7.35(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}(10) \mathrm{H}+2 \times \mathrm{Ph} H), 7.63(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(13) \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$) δ ppm 10.9 (s, $1 \mathrm{C}, \mathrm{C}(7)$), 11.6 (s, $1 \mathrm{C}, \mathrm{C}(6)$), 21.2 (s, $1 \mathrm{C}, \mathrm{C}(33)$), 36.6 (s, $1 \mathrm{C}, \mathrm{C}(19)$), 39.0 (s, 1 C, $C(20)$), 41.2 (s, 1 C, $C(17)$), 53.9 (s, $2 C, C(23)+C(27)$), 57.5 (s, 1 C, $C(18)$), $66.7(\mathrm{~s}, 2 \mathrm{C}, C(24)+C(26)$), 109.4 (s, 1 C, C(10)), 117.0 (s, 1 C, C(1)), 119.8 (s, 1 C, C(13)), 123.2 (s, 1 C, C(9)), 124.1 (s, 1 C, C(8)), 126.6 (s, $1 \mathrm{C}, C(30)$), 126.7 (s, $2 \mathrm{C}, C(28 / 29)+C(32 / 31)), 128.6$ (s, $2 \mathrm{C}, C(28 / 29)+C(32 / 31)$), $134.1(\mathrm{~s}, 1 \mathrm{C}, C(11)), 143.1$ (s,
 $911\left[(2 \mathrm{M}+\mathrm{Na})^{+}\right], 889\left[(2 \mathrm{M}+\mathrm{H})^{+}\right], 467\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 445\left[\mathrm{MH}^{+}\right]$; HRMS (ESI ${ }^{+}$) found 445.2596, calculated for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+} 445.2598$; LCMS (System B) $t_{\mathrm{r}} 3.5 \mathrm{~min}$ (90%).

5-(3,5-Dimethyl-1,2-oxazol-4-yl)-1-[2-(morpholin-4-yl)ethyl]-2-[(2S)-2-phenylpropyl]-1H-benzimidazole (44)

(S)-3-Phenylbutyric acid ($28 \mu \mathrm{~L}, 0.18 \mathrm{mmol}$) was reacted with compound $22(50 \mathrm{mg}, 0.16 \mathrm{mmol})$ according to general procedure B. Chromatography was carried out with a gradient of EtOAc:MeOH:NEt ${ }_{3}$, which was increased linearly from 99:1:0.1 to 95:5:0.5 over 20 CVs. The product was obtained as a colourless gum (26 $\mathrm{mg}, 36 \%$); $R_{f} 0.25$ (EtOAc:MeOH:NEt ${ }_{3}, 90: 10: 1$); $[\alpha]_{\mathrm{D}}^{20}+99.6$ (c 2.8 in CHCl_{3}); $\mathrm{v}_{\max }$ (neat) 2960 (C-H), 2929 (C$\mathrm{H}), 2854(\mathrm{C}-\mathrm{H}), 2815(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.46\left(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}(33) \mathrm{H}_{3}\right), 2.30(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{C}(14) \mathrm{H}_{3}\right), 2.41-2.52\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}+\mathrm{C}(17) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}+\mathrm{C}(19) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 2.53-2.62\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.09-$ $3.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(25) \mathrm{H}_{2}\right)$, 3.52-3.64(m,1 H, C(26)H), 3.65-3.71(m,4H,C(20)H$\left.+\mathrm{C}(22) \mathrm{H}_{2}\right), 3.92-4.11(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{C}(16) \mathrm{H}_{2}$), 7.11 (dd, J=8.5, 1.5 Hz, $\left.1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}\right), 7.18-7.26(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{PhH}), 7.28-7.36(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}(3) \mathrm{H}+2 \times \mathrm{PhH})$, 7.63 (s, $1 \mathrm{H}, \mathrm{C}(6) \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 10.9$ ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(14)$), 11.6 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(15)$), 21.2 ($\mathrm{s}, 1 \mathrm{C}$, $C(33)$), 36.6 ($\mathrm{s}, 1 \mathrm{C}, ~ C(25)$), 39.1 ($\mathrm{s}, 1 \mathrm{C}, ~ C(26)$), 41.2 ($\mathrm{s}, 1 \mathrm{C}, ~ C(16)$), 53.9 ($\mathrm{s}, 2 \mathrm{C}, ~ C(19)+C(23)$), 57.4 ($\mathrm{s}, 1 \mathrm{C}$, $C(17)$), 66.7 (s, $2 C, C(20)+C(22)$), 109.5 ($s, 1 C, C(3)$), 117.0 ($s, 1 \mathrm{C}, C(7)$), 119.8 (s, $1 \mathrm{C}, C(6)$), 123.3 (s, 1 C , $C(2)), 124.2$ ($\mathrm{s}, 1 \mathrm{C}, C(1)), 126.6$ ($\mathrm{s}, 1 \mathrm{C}, C(30)$), 126.7 ($\mathrm{s}, 2 \mathrm{C}, C(28 / 29)+C(32 / 31)), 128.7$ (s, $2 C$, $C(28 / 29)+C(32 / 31)$), 134.0 (s, 1 C, C(4)), 142.9 (s, 1 C, C(27)), 145.9 (s, 1 C, C(5)), 154.7 (s, 1 C, C(24)), 159.0 (s, $1 \mathrm{C}, \mathrm{C}(10)), 165.0(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(13))$; LRMS $\mathrm{m} / \mathrm{z}\left(E \mathrm{I}^{+}\right) 911\left[(2 \mathrm{M}+\mathrm{Na})^{+}\right], 889\left[(2 \mathrm{M}+\mathrm{H})^{+}\right], 467\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 445\left[\mathrm{MH}^{+}\right]$, (ESI) 443 [(M-H)]; HRMS (ESI ${ }^{+}$) found 445.2580, calculated for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+} 445.2598$; LCMS (System B) $t_{\mathrm{r}} 3.6$ \min (93\%).

2-Methyl-3-phenylpropanoic acid ($30 \mathrm{mg}, 0.18 \mathrm{mmol}$) was reacted with compound 22 ($50 \mathrm{mg}, 0.16 \mathrm{mmol}$) according to general procedure B. Chromatography was carried out with a gradient of EtOAc:MeOH:NEt ${ }_{3}$, which was increased linearly from 99:1:0.1 to 95:5:0.5 over 20 CVs . The product was obtained as a colourless gum ($26 \mathrm{mg}, 36 \%$); $R_{f} 0.30$ (EtOAc:MeOH:NEt ${ }_{3}, 90: 10: 1$); $v_{\max }$ (neat) $2966(\mathrm{C}-\mathrm{H}), 2923(\mathrm{C}-\mathrm{H}), 2857(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm $1.53\left(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}(33) \mathrm{H}_{3}\right), 2.22-2.35\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(14) \mathrm{H}_{3}+\mathrm{C}(17) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.35-$ $2.55\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}+\mathrm{C}(17) \mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}+\mathrm{C}(19) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 2.95-3.12\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(26) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.21-3.37(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{C}(25) \mathrm{H}+\mathrm{C}(26) \mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.63-3.72\left(\mathrm{t}, \mathrm{J}=4.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{2}+\mathrm{C}(22) \mathrm{H}_{2}\right), 3.83-4.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{2}\right), 7.03-7.13$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{C}(2) \mathrm{H}+2 \times \mathrm{PhH}$), $7.14-7.25(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{Ph} H), 7.31(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}) ;{ }^{13} \mathrm{C}$

 $911\left[(2 \mathrm{M}+\mathrm{Na})^{+}\right], 889\left[(2 \mathrm{M}+\mathrm{H})^{+}\right], 467\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 445\left[\mathrm{MH}^{+}\right]$; HRMS (ESI ${ }^{+}$) found 445.2580 , calculated for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{2}^{+} 445.2598$; LCMS (System B) $t_{\mathrm{r}} 3.6 \mathrm{~min}$ (90\%).
(1S)-1-\{5-(3,5-Dimethyl-1,2-oxazol-4-yl)-1-[2-(morpholin-4-yl)ethyl]-1H-benzimidazol-2-yl\}-2phenylethanol (46)

L-(-)-phenyllactic acid ($43 \mathrm{mg}, 0.26 \mathrm{mmol}$) was reacted with compound 22 ($40 \mathrm{mg}, 0.13 \mathrm{mmol}$) according to general procedure D. Chromatography was carried out with a gradient of EtOAc:MeOH: NEt_{3}, which was increased linearly from 99:1:0.1 to 90:10:1 over 20 CVs. The desired fractions were combined and evaporated to yield the product as a brown gum ($9 \mathrm{mg}, 16 \%$); $R_{f} 0.40$ (EtOAc: $\mathrm{MeOH}: \mathrm{NEt}_{3}, 90: 10: 1$); $[\alpha]_{\mathrm{D}}^{20}$ +24.9 (c 0.5 in CHCl_{3}); $\mathrm{v}_{\max }$ (neat) $3252(\mathrm{O}-\mathrm{H}), 2923(\mathrm{C}-\mathrm{H}), 2853(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 2.31(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{C}(14) \mathrm{H}_{3}\right), 2.40-2.46\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}(15) H_{3}+\mathrm{C}(19) H_{A} \mathrm{H}_{\mathrm{B}}+\mathrm{C}(23) H_{A} \mathrm{H}_{\mathrm{B}}\right), 2.51-2.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(19) \mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}+\mathrm{C}(23) \mathrm{H}_{\mathrm{A}} H_{B}\right)$, 2.70-2.87 (m, 2 H, C(17) H_{2}), 3.43 (dd, J=14.0, $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(33) H_{A} \mathrm{H}_{\mathrm{B}}$), 3.58 (dd, J=14.0, 5.5 Hz, 1 H , $\left.\mathrm{C}(33) \mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.67-3.73\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{2}+\mathrm{C}(22) \mathrm{H}_{2}\right), 4.23-4.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{2}\right), 5.20(\mathrm{dd}, J=7.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}(25) H$), 7.18 (dd, J=8.0, 1.5 Hz, $1 \mathrm{H}, \mathrm{C}(1) \mathrm{H}), 7.21-7.33(\mathrm{~m}, 5 \mathrm{H}, 5 \times \mathrm{PhH}$), $7.39(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 7.70(\mathrm{~d}$, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl ${ }^{2}$) $\delta \mathrm{ppm} 10.9(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(14)$), 11.6 (s, $1 \mathrm{C}, \mathrm{C}(15)$), 41.5 (s, 2 C ,
$C(16)+C(33)$), 54.3 (s, 2 C, $C(19)+C(23)$), 57.4 (s, $1 C, C(17)$), 66.0 (s, $2 C, C(20)+C(22)$), 67.5 (s, $1 \mathrm{C}, C(25)$), 109.6 ($s, 1 \mathrm{C}, ~ C(3)$), 116.9 ($s, 1 \mathrm{C}, C(7)$), 120.7 ($\mathrm{s}, 1 \mathrm{C}, C(6)$), 124.3 ($\mathrm{s}, 1 \mathrm{C}, C(1)$), $125.0(\mathrm{~s}, 1 \mathrm{C}, C(2)$), 126.7 ($\mathrm{s}, 1$ C, $C(29)$), 128.4 (s, $2 C, C(27 / 28)+C(31 / 30)$), 129.7 (s, $2 C, C(27 / 28)+C(31 / 30)$), $134.0(\mathrm{~s}, 1 \mathrm{C}, C(4)$), 137.8 (s, 1 C, C(32)), 142.4 (s, 1 C, C(5)), 156.3 (s, 1 C, C(24)), 158.9 (s, $1 \mathrm{C}, ~ C(10)$), 165.1 (s, $1 \mathrm{C}, \mathrm{C}(13)$); LRMS m/z (ESI) $447\left[\mathrm{MH}^{+}\right]$; HRMS (ESI ${ }^{+}$) found 447.2395, calculated for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{3}{ }^{+} 447.2391$; LCMS (System B) $t_{\mathrm{r}} 3.6 \mathrm{~min}$ (79\%).
(2,3-Dihydro-1-benzofuran-2-yl)-5-(3,5-dimethyl-1,2-oxazol-4-yl)-1-[2-(morpholin-4-yl)ethyl]-1Hbenzimidazole (47)

3-(2,3-Dihydro-1-benzofuran-5-yl)propanoic acid ($27 \mathrm{mg}, 0.14 \mathrm{mmol}$) was reacted with compound 22 (0.13 mmol) according to general procedure C . The product was obtained as a pale yellow gum ($27 \mathrm{mg}, 48 \%$); R_{f} 0.35 (EtOAc:MeOH: $\mathrm{NEt}_{3}, ~ 95: 5: 0.5$); $v_{\max }$ (neat) 2927 (C-H), $2854(\mathrm{C}-\mathrm{H}), 2814(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(14) \mathrm{H}_{3}\right), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right), 2.45-2.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(19) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}+\mathrm{C}(23) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.58-2.67(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{C}(19) \mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}+\mathrm{C}(23) \mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 2.86\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{2}\right), 3.64-3.75\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{2}+\mathrm{C}(22) \mathrm{H}_{2}+\mathrm{C}(26) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)$, 4.30 (dd, J=15.5, 7.5 Hz, $\left.1 \mathrm{H}, \mathrm{C}(26) \mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 4.39-4.48\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 4.54-4.65\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{A} H_{B}\right), 6.15$ (dd, J=9.5, 7.5 Hz, $1 \mathrm{H}, \mathrm{C}(25) H$), $6.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(3) H), 6.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(31) H$), 7.15 (t, J=7.5 Hz, $1 \mathrm{H}, \mathrm{C}(30) \mathrm{H}), 7.19$ (dd, J=8.0, $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}), 7.31(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(32) \mathrm{H}), 7.48(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}(29) \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 10.8(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(14)$), 11.5 (s, $1 \mathrm{C}, \mathrm{C}(15)$), 33.5 (s, $1 \mathrm{C}, C(26)$), 42.1 (s, $1 \mathrm{C}, C(16)$), $54.0(\mathrm{~s}, 2 \mathrm{C}, C(19)+C(23)$), $57.8(\mathrm{~s}, 1 \mathrm{C}, C(17)$), 66.9 (s, $2 \mathrm{C}, C(20)+C(22)$), 76.8 (s, $1 \mathrm{C}, ~ C(25)$), 109.4 ($\mathrm{s}, 1 \mathrm{C}, ~ C(3)), 110.0$ ($\mathrm{s}, 1 \mathrm{C}, ~ C(29)$), 116.9 ($\mathrm{s}, 1 \mathrm{C}, C(7)$), 120.9 ($\mathrm{s}, 1 \mathrm{C}, C(6)$), 121.4 ($\mathrm{s}, 1 \mathrm{C}$, $C(31)$), 124.5 ($s, 1 \mathrm{C}, ~ C(2)$), 124.6 ($s, 1 \mathrm{C}, ~ C(1)), 125.1$ ($\mathrm{s}, 1 \mathrm{C}, C(32)$), $126.0(\mathrm{~s}, 1 \mathrm{C}, C(27)$), 128.2 ($\mathrm{s}, 1 \mathrm{C}, C(30)$), 135.4 (s, 1 C, C(4)), 142.3 (s, $1 \mathrm{C}, ~ C(5)$), 152.6 ($s, 1 \mathrm{C}, ~ C(24)$), 158.2 ($\mathrm{s}, 1 \mathrm{C}, ~ C(28)$), 158.9 ($\mathrm{s}, 1 \mathrm{C}, C(10)$), 165.0 (s , $1 \mathrm{C}, \mathrm{C}(13))$; LRMS (ESI ${ }^{+} \mathrm{m} / \mathrm{z} 445\left[\mathrm{MH}^{+}\right]$; HRMS (ESI ${ }^{+}$) found 445.2215, calculated for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{3}{ }^{+} 445.2234$; LCMS (System A) $t_{\mathrm{r}} 10.5 \mathrm{~min}$ (94\%).

2-(2,3-Dihydro-1H-inden-2-yl)-5-(3,5-dimethyl-1,2-oxazol-4-yl)-1-[2-(morpholin-4-yl)ethyl]-1Hbenzimidazole (48)

3-(2,3-Dihydro-1H-inden-5-yl)propanoic acid ($26 \mathrm{mg}, 0.14 \mathrm{mmol}$) was reacted with compound 22 (0.13 mmol) according to general procedure C . The product was obtained as a pale yellow gum ($13 \mathrm{mg}, 23 \%$); R_{f} 0.30 (EtOAc:MeOH:NEt ${ }_{3}$, 95:5:0.5); $\mathrm{v}_{\max }$ (neat) 2926 (C-H), $2853(\mathrm{C}-\mathrm{H}), 2815(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
ppm 2.29 (s, 3 H, C(14) H_{3}), $2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right), 2.52-2.58\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(19) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 2.80(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{C}(17) H_{2}$), 3.43 (dd, J=15.5, $\left.9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(26) H_{A} H_{B}+\mathrm{C}(33) H_{A} H_{B}\right), 3.62$ (dd, J=15.5, $9.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{C}(26) \mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}+\mathrm{C}(33) \mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.69-3.75\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{2}+\mathrm{C}(22) \mathrm{H}_{2}\right), 4.01$ (quin, J=9.0 Hz, $\left.1 \mathrm{H}, \mathrm{C}(25) \mathrm{H}\right), 4.37(\mathrm{t}, \mathrm{J}=7.0$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{2}$), 7.15 (dd, J=8.0, $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}$), $7.20-7.23$ (m, $\left.2 \mathrm{H}, \mathrm{C}(30) \mathrm{H}+\mathrm{C}(31) \mathrm{H}\right), 7.27-7.30(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{C}(29) \mathrm{H}+\mathrm{C}(32) \mathrm{H}), 7.43(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 7.63(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$ 10.8 (s, 1 C, C(14)), 11.5 (s, 1 C, C(15)), 37.5 (s, 1 C, C(25)), 38.9 (s, $2 C, C(26)+C(33)$), 41.7 (s, 1 C, C(16)), 54.1 (s, $2 C, C(19)+C(23)), 57.8(\mathrm{~s}, 1 \mathrm{C}, C(17)), 66.8$ (s,2C,C(20)+C(22)),109.5(s,1C,C(3)),117.1(s,1C,C(7)), 120.1 (s, 1 C, $C(6)$), 123.6 (s, $1 C, C(2)$), 124.3 ($s, 3 C, C(1)+C(29)+C(32)), 126.8(\mathrm{~s}, 2 C, C(30)+C(31)), 134.6$ (s, 1
 $C(13))$; LRMS $m / z\left(E S I^{+}\right) 443\left[\mathrm{MH}^{+}\right]$; HRMS (ESI ${ }^{+}$) found 443.2435, calculated for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{2}^{+} 443.2442$; LCMS (System A) $t_{r} 9.6 \mathrm{~min}$ (94\%).

5-(3,5-Dimethyl-1,2-oxazol-4-yl)-1-[2-(morpholin-4-yl)ethyl]-2-(1,2,3,4-tetrahydronaphthalen-2-yl)-1Hbenzimidazole (49)

1,2,3,4-Tetrahydronaphthalene-2-carboxylic acid ($26 \mathrm{mg}, 0.14 \mathrm{mmol}$) was reacted with compound 22 (0.13 mmol) according to general procedure C . The product was obtained as a pale orange solid ($11 \mathrm{mg}, 19 \%$); R_{f} 0.30 (EtOAc:MeOH:NEt $\left.{ }_{3}, 95: 5: 0.5\right)$; mp $87-90^{\circ} \mathrm{C}$; $v_{\text {max }}$ (neat) 2921 (C-H), $2851(\mathrm{C}-\mathrm{H}),{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 2.26-2.34\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}(14) \mathrm{H}_{3}+\mathrm{C}(34) \mathrm{H}_{2}\right), 2.42-2.44\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right), 2.48-2.61(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{C}(19) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 2.74-2.86\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{2}\right), 2.98-3.18\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}(26) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}+\mathrm{C}(33) \mathrm{H}_{2}\right), 3.29-3.38(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{C}(25) \mathrm{H}), 3.42-3.51\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(26) \mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.65-3.75\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{2}+\mathrm{C}(22) \mathrm{H}_{2}\right), 4.30-4.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{2}\right)$, 7.12-7.22 (m, 5 H, C(2)H+4×ArH), $7.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , CDCl_{3}) $\delta \mathrm{ppm} 10.9$ ($\mathrm{s}, 1 \mathrm{C}, ~ C(14)$), 11.6 ($\mathrm{s}, 1 \mathrm{C}, ~ C(15)$), 29.0 ($\mathrm{s}, 1 \mathrm{C}, ~ C(34)$), 29.4 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(33)$), 33.3 ($\mathrm{s}, 1 \mathrm{C}$, $C(25)$), 35.1 ($\mathrm{s}, 1 \mathrm{C}, ~ C(26)$), 41.5 ($\mathrm{s}, 1 \mathrm{C}, ~ C(16)$), 54.1 ($\mathrm{s}, 2 \mathrm{C}, ~ C(19)+C(23)$), 57.8 (s, $1 \mathrm{C}, C(17)$), 66.7 ($\mathrm{s}, 2 \mathrm{C}$, $C(20)+C(22)$), 109.6 (s, 1 C, C(3)), 117.0 (s, 1 C, $C(7)$), 120.1 (s, 1 C, $C(6)$), 123.7 (s, 1 C, C(2)), 124.5 (s, 1 C, $C(1)$), 126.0 (s, 1 C, C(30/32)), 126.2 (s, 1 C, C(30/32)), 129.0 (s, $2 C, C(29)+C(31)), 134.1(\mathrm{~s}, 1 \mathrm{C}, C(4)$), 135.2 (s , $1 \mathrm{C}, ~ C(27 / 28)$), 135.4 (s, $1 \mathrm{C}, C(27 / 28)$), 143.3 (s, $1 \mathrm{C}, C(5)$), 159.0 (s, $2 \mathrm{C}, C(10)+C(24)$), 165.1 (s, $1 \mathrm{C}, C(13)$); LRMS $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right) 457\left[\mathrm{MH}^{+}\right]$; HRMS (ESI ${ }^{+}$) found 457.2581, calculated for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+} 457.2598$; LCMS (System A) $t_{r} 10.0 \mathrm{~min}(91 \%)$.

5-(3,5-Dimethyl-1,2-oxazol-4-yl)-1-[2-(morpholin-4-yl)ethyl]-2-[trans-2-phenylcyclopropyl]-1Hbenzimidazole (50)

(trans)-2-Phenylcyclopropanecarboxylic acid ($26 \mathrm{mg}, 0.14 \mathrm{mmol}$) was reacted with compound 22 (0.13 mmol) according to general procedure C. The product was obtained as a pale orange gum ($14 \mathrm{mg}, 25 \%$); R_{f} 0.35 (EtOAc:MeOH:NEt ${ }_{3}, 95: 5: 0.5$); $v_{\max }$ (neat) $2958(\mathrm{C}-\mathrm{H}), 2924(\mathrm{C}-\mathrm{H}), 2854(\mathrm{C}-\mathrm{H}), 2814(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.70\left(\mathrm{dt}, \mathrm{J}=8.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(33) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.10\left(\mathrm{dt}, J=8.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(33) \mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 2.27-2.34$ ($\left.\mathrm{m}, 4 \mathrm{H}, \mathrm{C}(14) \mathrm{H}_{3}+\mathrm{C}(25) \mathrm{H}\right), 2.34-2.44\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{C}(14) \mathrm{H}_{3}+\mathrm{C}(19) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 2.61-2.68(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(26) \mathrm{H})$, $2.69-$ $2.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{2}\right), 3.53-3.68\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{2}+\mathrm{C}(22) \mathrm{H}_{2}\right), 4.27-4.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{2}\right), 7.12$ (dd, J=8.0, 1.5 Hz, 1 H, C(2)H), 7.18-7.21 (m, 2 H, C(28)H+C(32)H), 7.22-7.27 (m, $1 \mathrm{H}, \mathrm{C}(30) H$), $7.31-7.42$ (m, 3 H , $\mathrm{C}(29) \mathrm{H}+\mathrm{C}(31) \mathrm{H}), 7.59(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 10.8(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(14)), 11.5(\mathrm{~s}, 1$
 $C(19)+C(23)), 57.6$ (s, 1 C, C(17)), 66.6 (s, $2 C, C(20)+C(22)$), 109.1 (s, 1 C, $C(3)$), 117.1 (s, $1 C, C(7)), 119.7$ (s, 1 C, $C(3)$), 123.4 ($s, 1 \mathrm{C}, ~ C(2)$), 124.4 ($\mathrm{s}, 1 \mathrm{C}, ~ C(1)), 125.7$ ($\mathrm{s}, 2 \mathrm{C}, C(28)+C(32)$), 126.5 ($\mathrm{s}, 1 \mathrm{C}, C(30)$), 128.7 ($\mathrm{s}, 2 \mathrm{C}$, $C(29)+C(31)$), 134.6 (s, 1 C, C(4)), 140.6 (s, 1 C, C(27)), 142.5 (s, 1 C, C(5)), 156.1 (s, $1 \mathrm{C}, C(24)$), 159.0 (s, 1 C, $C(10)$), 165.0 (s, $1 \mathrm{C}, C(13)$); LRMS $m / z\left(\mathrm{ESI}^{+}\right) 443\left[\mathrm{MH}^{+}\right]$; HRMS (ESI ${ }^{+}$) found 443.2432, calculated for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+} 443.2442$; LCMS (System A) $t_{\mathrm{r}} 9.7 \mathrm{~min}$ (96\%).

5-(3,5-Dimethyl-1,2-oxazol-4-yl)-1-[2-(morpholin-4-yl)ethyl]-2-(naphthalen-1-ylmethyl)-1Hbenzimidazole (51)

Naphthalen-1-ylacetic acid was reacted with compound 22 according to general procedure B. Chromatography was carried out with a gradient of EtOAc:MeOH: NEt_{3}, which was increased linearly from 99:1:0.1 to 95:5:0.5 over 20 CVs . The product was obtained as a colourless gum ($27 \mathrm{mg}, 45 \%$); $R_{f} 0.30$ (EtOAc:MeOH:NEt ${ }_{3}, 90: 10: 1$); $v_{\max }$ (neat) $2959(\mathrm{C}-\mathrm{H}), 2855(\mathrm{C}-\mathrm{H}), 2816(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$ 2.22-2.28(m, 4 H, C(19) $\left.\mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(14) \mathrm{H}_{3}\right), 2.37\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{2}\right), 2.44(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{C}(15) \mathrm{H}_{3}$), 3.58-3.68 (m, $\left.4 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{2}+\mathrm{C}(22) \mathrm{H}_{2}\right), 4.14\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{2}\right), 4.86\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}(25) \mathrm{H}_{2}\right)$, 7.15 (dd, $J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(31) \mathrm{H}), 7.35-7.42(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(3) \mathrm{H}+\mathrm{C}(30) \mathrm{H}), 7.50-7.61$ (m, 2 $\mathrm{H}, \mathrm{C}(33) \mathrm{H}+\mathrm{C}(34) \mathrm{H}), 7.67$ (s, $1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}), 7.81(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(29) \mathrm{H}), 7.91$ (d, J=7.5 Hz, $1 \mathrm{H} \mathrm{C}(29) \mathrm{H}), 8.25$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(32) \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$) $\delta \mathrm{ppm} 10.9(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(14)), 11.5(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(15)), 32.0(\mathrm{~s}, 1 \mathrm{C}$,

 125.5 (s, 1 C, C(30)), 126.0 (s, 1 C, C(31)), 126.5 (s, 1 C, C(33/34)), 126.6 (s, 1 C, C(33/34)), 128.0 (s, 1 C, C(29)),
 ($\mathrm{s}, 1 \mathrm{C}, C(5)$), $154.1(\mathrm{~s}, 1 \mathrm{C}, C(24)$), 159.0 ($\mathrm{s}, 1 \mathrm{C}, C(10)), 165.0$ (s, $1 \mathrm{C}, C(13)$); LRMS m/z (ESI ${ }^{+} 955\left[(2 \mathrm{M}+\mathrm{Na})^{+}\right]$, $933\left[(2 \mathrm{M}+\mathrm{H})^{+}\right], 489\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 467\left[\mathrm{MH}^{+}\right],\left(\mathrm{ESI}^{-}\right) 465\left[(\mathrm{M}-\mathrm{H})^{-}\right]$; HRMS (ESI ${ }^{+}$) found 467.2428 , calculated for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{2}^{+} 467.2442$; LCMS (System B) $t_{\mathrm{r}} 3.8 \mathrm{~min}$ (87\%).

4-(3,5-Dimethyl-1,2-oxazol-4-yl)-N-[1-(morpholin-4-yl)propan-2-yl]-2-nitroaniline

1-(Morpholin-4-yl)propan-2-amine ($37 \mathrm{mg}, 0.26 \mathrm{mmol}$) was added to a solution of compound 10 (60 mg , $0.25 \mathrm{mmol})$ and $\operatorname{EtN}(i-\operatorname{Pr})_{2}(35 \mu \mathrm{~L}, 0.30 \mathrm{mmol})$ in THF (2 mL) in a sealable vial. The vial was sealed then the solution was heated at $80{ }^{\circ} \mathrm{C}$ for 16 h . The resultant mixture was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and water (3 mL). The organic phase was collected by passing it through a hydrophobic frit then evaporated by nitrogen blow-down. The crude material was purified by flash column chromatography on a silica column (4 g). The column was eluted with a gradient of EtOAc:c-hexane which was increased linearly from 10:90 to 100:0 over 30 CVs . The desired fractions were combined and evaporated to yield the product as a brightorange solid ($61 \mathrm{mg}, 68 \%$); $R_{f}(0.30)$; mp $214-217^{\circ} \mathrm{C}$; $\mathrm{v}_{\max }$ (neat) $3362(\mathrm{~N}-\mathrm{H}), 2934(\mathrm{C}-\mathrm{H}), 2929(\mathrm{C}-\mathrm{H}), 2850(\mathrm{C}-$ H), 2809 (C-H), 1561 ($\mathrm{N}-\mathrm{O}$), $1355(\mathrm{~N}-\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 1.35\left(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}(25) \mathrm{H}_{3}\right), 2.27$ (s, $3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}$), $2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{3}\right), 2.46-2.67\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C}(18) \mathrm{H}_{2}+\mathrm{C}(20) \mathrm{H}_{2}+\mathrm{C}(24) \mathrm{H}_{2}\right), 3.64-3.76(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{C}(21) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 3.79-3.89(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(17) \mathrm{H}), 6.97(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 7.33$ (dd, J=9.0, 2.0 Hz, 1 H , $\mathrm{C}(2) \mathrm{H}), 8.08(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}), 8.28-8.50(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 10.8(\mathrm{~s}, 1 \mathrm{C}$, $C(15)$), 11.6 ($s, 1 \mathrm{C}, ~ C(16)$), 19.3 ($\mathrm{s}, 1 \mathrm{C}, ~ C(25)$), 45.8 ($\mathrm{s}, 1 \mathrm{C}, ~ C(17)$), 53.9 (s, $2 \mathrm{C}, ~ C(20)+C(24)$), 63.7 (s, 1 C , $C(18)$), 66.9 (s, 2 C,$C(21)+C(23)$), 114.7-114.9 (m, $2 C, C(3)+C(10)), 117.1(\mathrm{~s}, 1 C, C(1)), 127.2(\mathrm{~s}, 1 \mathrm{C}, C(6)$), 132.0 (s, 1 C, C(5)), 136.6 (s, 1 C, C(2)), 144.0 (s, 1 C, C(4)), 158.6 (s, 1 C, C(11)), 165.3 (s, $1 \mathrm{C}, C(14)$); LRMS m/z $\left(E I^{+}\right) 383\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 361\left[\mathrm{MH}^{+}\right], 359\left[(\mathrm{M}-\mathrm{H})^{-}\right]$; HRMS (ESI ${ }^{+}$) found 361.1858, calculated for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{4}^{+}$ 361.1870; LCMS (System B) $t_{\mathrm{r}} 3.6 \mathrm{~min}$ (99\%).

4-(3,5-Dimethyl-1,2-oxazol-4-yl)-N-[2-(morpholin-4-yl)propyl]-2-nitroaniline

25

2-(Morpholin-4-yl)propan-1-amine ($37 \mathrm{mg}, 0.26 \mathrm{mmol}$) was added to a solution of compound 10 (60 mg , $0.25 \mathrm{mmol})$ and $\operatorname{EtN}(i-\mathrm{Pr})_{2}(35 \mu \mathrm{~L}, 0.30 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ in a sealable vial. The vial was sealed then the solution was heated at $80{ }^{\circ} \mathrm{C}$ for 16 h . The resultant mixture was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and water (3 mL). The organic phase was collected by passing it through a hydrophobic frit then evaporated by nitrogen blow-down. The crude material was purified by flash column chromatography on a silica column (4 g). The column was eluted with a gradient of EtOAc:c-hexane which was increased linearly from 10:90 to 100:0 over 30 CVs . The desired fractions were combined and evaporated to yield the product as a brightorange solid ($73 \mathrm{mg}, 81 \%$); $R_{f} 0.35$ (EtOAc:c-hexane, 80:20); mp $184-187^{\circ} \mathrm{C}$; $\mathrm{v}_{\max }$ (neat) 3321 ($\mathrm{N}-\mathrm{H}$), 2970 (CH), 2857 (C-H), 2815 (C-H), 1352 (N-O), 1556 (N-O); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 1.13(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{C}(25) \mathrm{H}_{3}\right), 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{3}\right), 2.45-2.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}+\mathrm{C}(24) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.59-2.74$ (m, 2 H, C(20) $\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}+\mathrm{C}(24) \mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}$), 2.97-3.07(m, $\left.1 \mathrm{H}, \mathrm{C}(18) \mathrm{H}\right), 3.07-3.18\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.27-3.37(\mathrm{~m}, 1$
$\mathrm{H}, \mathrm{C}(17) \mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}$), $3.71-3.87\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(21) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 6.89(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 7.33$ (dd, J=8.5, 2.0 Hz, 1 $\mathrm{H}, \mathrm{C}(2) \mathrm{H}), 8.09(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}), 8.80-8.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 10.7(\mathrm{~s}, 1$
 1 C, C(18)), 67.2 (s, 2 C, $C(21)+C(23)$), 114.9 (s, 1 C, C(3)), 114.9 (s, 1 C, C(10)), 116.9 (s, 1 C, C(1)), 127.0 (s, 1 C, $C(6)$), 131.7 ($\mathrm{s}, 1 \mathrm{C}, C(5)$), 136.6 ($\mathrm{s}, 1 \mathrm{C}, C(2)$), 144.2 ($\mathrm{s}, 1 \mathrm{C}, C(4)$), 158.6 ($\mathrm{s}, 1 \mathrm{C}, C(2)$), 165.2 ($\mathrm{s}, 1 \mathrm{C}, C(6)$); LRMS $m / z\left(\mathrm{ESI}^{+}\right) 383\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 361\left[\mathrm{MH}^{+}\right]$; HRMS (ESI ${ }^{+}$) found 361.1859, calculated for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{+} 361.1870$; LCMS (System B) $t_{\mathrm{r}} 3.6 \mathrm{~min}$ (>99\%).

2-[2-(3-Chloro-4-methoxyphenyl)ethyl]-5-(3,5-dimethyl-1,2-oxazol-4-yl)-1-[1-(morpholin-4-yl)propan-2-yl]-1H-benzimidazole (52)

Freshly prepared 1 M aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(0.4 \mathrm{~mL}, 0.4 \mathrm{mmol})$ was added to a suspension of 4-(3,5-dimethyl-1,2-oxazol-4-yl)-N-[1-(morpholin-4-yl)propan-2-yl]-2-nitroaniline ($28 \mathrm{mg}, 0.078 \mathrm{mmol}$) in EtOH (0.5 mL) in a sealable vial. The vial was sealed then heated at $80^{\circ} \mathrm{C}$ for 2 h then more 1 M aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(0.4 \mathrm{~mL}, 0.4 \mathrm{mmol})$ was added. The mixture was heated for a further 2 h then allowed to cool. The resultant mixture was partitioned between 10% aq. $\mathrm{NH}_{3}(1.5 \mathrm{~mL})$ and EtOAc (1.5 mL). The organic phase was passed through MgSO_{4} on a hydrophobic frit then evaporated by nitrogen blow-down. The residue was dissolved in EtOAc (2 mL) then 3-(3-chloro-4-methoxyphenyl)propanoic acid ($14 \mathrm{mg}, 0.065 \mathrm{mmol}$), DIPEA ($15 \mu \mathrm{~L}, 0.086 \mathrm{mmol}$) and T3P ($50 \mathrm{wt} . \%$ in EtOAc, $0.2 \mathrm{~mL}, 0.31 \mathrm{mmol}$) were added. The solution was heated under reflux for 18 h then allowed to cool. The resultant solution was partitioned between EtOAc (3 mL) and $1 \mathrm{M} \mathrm{aq} . \mathrm{NaOH}(3 \mathrm{~mL})$. The organic phase was passed through a little MgSO_{4} on a hydrophobic frit then evaporated by nitrogen blowdown. The crude material was purified by flash column chromatography on a silica column (4 g). The column was eluted with a gradient of EtOAc:MeOH: NEt_{3} which was increased linearly from 99:1:0.1 to 95:5:0.5 over 30 CVs. The desired fractions were combined and evaporated to yield the product as a colourless gum (9 mg , 23\%); $R_{f} 0.50$ (EtOAc:MeOH: $\mathrm{NEt}_{3}, ~ 90: 10: 1$); $v_{\max }$ (neat) 2957 (C-H), 2923 (C-H), 2857 (C-H); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.60\left(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}(25) \mathrm{H}_{3}\right), 2.24-2.35\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}+\mathrm{C}(20) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}+\mathrm{C}(24) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.41-2.52$ ($\mathrm{m}, 5 \mathrm{H}, \mathrm{C}(16) H_{3}+\mathrm{C}(20) \mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}+\mathrm{C}(24) \mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}$), 2.78 (dd, J=13.5,5.5 Hz,1 H,C(18) $\left.H_{A} H_{B}\right), 2.96$ (dd, J=13.5, $8.5 \mathrm{~Hz}, 1$ $\left.\mathrm{H}, \mathrm{C}(18) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.08-3.30\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(26) \mathrm{H}_{2}+\mathrm{C}(27) \mathrm{H}_{2}\right), 3.55-3.64\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(21) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 3.90(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{C}(35) \mathrm{H}_{3}\right), 4.53-4.67(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(17) \mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(30) \mathrm{H}), 7.09$ (dd, J=8.5, 1.5Hz,1 H, C(2)H), 7.13 (dd, J=8.5, 2.0 Hz, 1 H, C(29)H), 7.29 (d, J=2.0 Hz, $1 \mathrm{H}, \mathrm{C}(33) H$), 7.49 (d, J=8.5 Hz, $1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 7.64$ (d, J=1.5 Hz, $1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 10.9$ (s, $1 \mathrm{C}, \mathrm{C}(15)$), 11.6 (s, $1 \mathrm{C}, \mathrm{C}(16)$), 18.0 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(25)$), 30.2

 $1 \mathrm{C}, \mathrm{C}(11))$, 165.1 (s, $1 \mathrm{C}, \mathrm{C}(14)$); LRMS $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right) 509\left[\mathrm{MH}^{+}\right]$; HRMS (ESI $)$found 509.2305 , calculated for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{ClN}_{4} \mathrm{O}_{3}{ }^{+} 509.2314 ;$ LCMS (System B) $t_{\mathrm{r}} 5.8 \mathrm{~min}$ (86\%).
2-[2-(3-Chloro-4-methoxyphenyl)ethyl]-5-(3,5-dimethyl-1,2-oxazol-4-yl)-1-[2-(morpholin-4-yl)propyl]-1H-benzimidazole (53)

Freshly prepared 1 M aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(0.5 \mathrm{~mL}, 0.5 \mathrm{mmol})$ was added to a suspension of 4-(3,5-dimethyl-1,2-oxazol-4-yl)- N-[2-(morpholin-4-yl)propyl]-2-nitroaniline ($35 \mathrm{mg}, 0.096 \mathrm{mmol}$) in EtOH (0.5 mL) in a sealable vial. The vial was sealed then heated at $80^{\circ} \mathrm{C}$ for 2 h then more 1 M aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(0.5 \mathrm{~mL}, 0.5 \mathrm{mmol})$ was added. The mixture was heated for a further 2 h then allowed to cool. The resultant mixture was partitioned between 10% aq. $\mathrm{NH}_{3}(1.5 \mathrm{~mL})$ and EtOAc (1.5 mL). The organic phase was passed through MgSO_{4} on a hydrophobic frit then evaporated by nitrogen blow-down. The residue was dissolved in EtOAc (2 mL) then 3-(3-chloro-4-methoxyphenyl)propanoic acid ($16 \mathrm{mg}, 0.075 \mathrm{mmol}$), DIPEA ($15 \mu \mathrm{~L}, 0.086 \mathrm{mmol}$) and T3P (50 $w t . \%$ in EtOAc, $0.2 \mathrm{~mL}, 0.31 \mathrm{mmol}$) were added. The solution was heated under reflux for 18 h then allowed to cool. The resultant solution was partitioned between EtOAc (3 mL) and 1 M aq. $\mathrm{NaOH}(3 \mathrm{~mL})$. The organic phase was passed through a little MgSO_{4} on a hydrophobic frit then evaporated by nitrogen blow-down. The crude material was purified by flash column chromatography on a silica column (4 g). The column was eluted with a gradient of EtOAc: $\mathrm{MeOH}: \mathrm{NEt}_{3}$ which was increased linearly from 99:1:0.1 to 95:5:0.5 over 30 CVs . The desired fractions were combined and evaporated to yield the product as a colourless gum ($19 \mathrm{mg}, 39 \%$); R_{f} 0.45 (EtOAc:MeOH:NEt ${ }_{3}, 90: 10: 1$); $v_{\text {max }}$ (neat) $2968(\mathrm{C}-\mathrm{H}), 2855(\mathrm{C}-\mathrm{H}) 1503(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm $1.04\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}(25) \mathrm{H}_{3}\right), 2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{3}\right), 2.50-2.66(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{C}(20) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}+\mathrm{C}(24) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.64-2.79\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}+\mathrm{C}(24) \mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 2.95-3.06(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(18) \mathrm{H}), 3.13-3.33$ $\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{C}(26) \mathrm{H}_{2}+\mathrm{C}(27) \mathrm{H}_{2}\right)$), 3.63-3.82(m, $\left.4 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}+\mathrm{C}(34) \mathrm{H}_{3}\right), 3.83-3.99\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(21) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right)$, 4.18-4.37(m, $\left.1 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{A} H_{B}\right), 6.88(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(30) \mathrm{H}), 7.07-7.20(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(2) \mathrm{H}+\mathrm{C}(29) \mathrm{H}), 7.29(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(33) \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 7.67(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ δ ppm 10.9 (s, 1 C, C(15)), 11.6 (s, 1 C, C(16)), 12.0 (s, 1 C, C(25)), 29.6 (s, 1 C, C(26)), 32.5 (s, 1 C, C(27)), 46.5
 109.9 (s, 1 C, C(3)), 112.3 (s, 1 C, C(30)), 116.9 (s, 1 C, C(10)), 119.7 (s, 1 C, C(6)), 122.4 (s, 1 C, C(32)), 123.7 (s, 1 C, C(2)), 124.6 (s, 1 C, C(1)), 127.7 (s, 1 C, C(29)), 130.0 (s, 1 C, C(33)), 133.8 (s, 1 C, C(28)), 134.3 (s, 1 C,
 LRMS $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right) 509\left[\mathrm{MH}^{+}\right]$; $\mathrm{HRMS}\left(\mathrm{ESI}^{+}\right)$found 509.2314, calculated for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{ClN}_{4} \mathrm{O}_{3}{ }^{+}$509.2314; LCMS (System B) $t_{\mathrm{r}} 5.6 \mathrm{~min}$ (96\%).

5-(3,5-Dimethyl-1,2-oxazol-4-yl)-2-[2-(1H-indol-1-yl)ethyl]-1-[1-(morpholin-4-yl)propan-2-yl]-1Hbenzimidazole (54)

Freshly prepared 1 M aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(0.4 \mathrm{~mL}, 0.4 \mathrm{mmol})$ was added to a suspension of 4-(3,5-dimethyl-1,2-oxazol-4-yl)-N-[1-(morpholin-4-yl)propan-2-yl]-2-nitroaniline ($28 \mathrm{mg}, 0.078 \mathrm{mmol}$) in EtOH (0.5 mL) in a sealable vial. The vial was sealed then heated at $80^{\circ} \mathrm{C}$ for 2 h then more 1 M aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(0.4 \mathrm{~mL}, 0.4 \mathrm{mmol})$ was added. The mixture was heated for a further 2 h then allowed to cool. The resultant mixture was partitioned between 10% aq. $\mathrm{NH}_{3}(1.5 \mathrm{~mL})$ and EtOAc $(1.5 \mathrm{~mL})$. The organic phase was passed through MgSO_{4} on a hydrophobic frit then evaporated by nitrogen blow-down. The residue was dissolved in EtOAc (2 mL) then 3-(1H-indol-1-yl)propanoic acid ($12 \mathrm{mg}, 0.063 \mathrm{mmol}$), DIPEA ($15 \mu \mathrm{~L}, 0.086 \mathrm{mmol}$) and T3P ($50 \mathrm{wt} . \%$ in EtOAc, $0.2 \mathrm{~mL}, 0.31 \mathrm{mmol}$) were added. The solution was heated under reflux for 18 h then allowed to cool. The resultant solution was partitioned between EtOAc (3 mL) and 1 M aq. $\mathrm{NaOH}(3 \mathrm{~mL})$. The organic phase was passed through a little MgSO_{4} on a hydrophobic frit then evaporated by nitrogen blow-down. The crude material was purified by flash column chromatography on a silica column (4 g). The column was eluted with a gradient of EtOAc:MeOH: NEt_{3} which was increased linearly from 99:1:0.1 to 95:5:0.5 over 30 CVs . The desired fractions were combined and evaporated to yield the product as a colourless gum ($11 \mathrm{mg}, 29 \%$); R_{f} 0.45 (EtOAc:MeOH:NEt ${ }_{3}, 90: 10: 1$); $v_{\max }$ (neat) $2927(\mathrm{C}-\mathrm{H}), 2853(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.37$ $\left(\mathrm{d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}(25) H_{3}\right), 2.06-2.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}+\mathrm{C}(24) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)$), $2.22-2.36(\mathrm{~m}, 5 \mathrm{H}$, $\left.\mathrm{C}(15) \mathrm{H}_{3}+\mathrm{C}(20) \mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}+\mathrm{C}(24) \mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 2.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{3}\right), 2.60\left(\mathrm{dd}, \mathrm{J}=13.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(18) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.72$ (dd, $\left.J=13.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(18) \mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.35-3.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(26) \mathrm{H}_{2}\right), 3.46-3.55\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(21) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 4.15-$ $4.28(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(17) \mathrm{H}), 4.76-4.95\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(27) \mathrm{H}_{2}\right), 6.47$ (dd, J=3.0, $\left.0.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(30) \mathrm{H}\right), 7.04-7.16$ (m, 3 H , $\mathrm{C}(2) \mathrm{H}+\mathrm{C}(31) \mathrm{H}+\mathrm{C}(34) H), 7.21$ (td, J=7.5, 1.0 Hz, 1 H, C(33)H), $7.39(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 7.45(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{C}(32) \mathrm{H})$, $7.62-7.69(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(6) \mathrm{H}+\mathrm{C}(35) \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 10.9(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(15)), 11.6$ (s, 1
 $C(20)+C(24)$), 62.2 ($s, 1 C, C(18)), 66.8(\mathrm{~s}, 2 C, C(21)+C(23)), 101.8$ ($s, 1 C, C(30)), 108.9(\mathrm{~s}, 1 \mathrm{C}, C(3)), 111.6$ ($\mathrm{s}, 1$ C, C(32)), 116.9 (s, 1 C, C(10)), 119.7 (s, 1 C, C(34)), 120.1 ($s, 1$ C, C(6)), 121.3 (s, $1 \mathrm{C}, C(35)$), 121.8 ($s, 1 \mathrm{C}$,
 135.5 (s, 1 C, $C(28)$), 143.5 (s, 1 C, $C(5)$), 153.1 (s, 1 C, $C(8)$), 159.0 (s, 1 C, C(11)), 165.1 (s, 1 C, C(14)); LRMS $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right) 484\left[\mathrm{MH}^{+}\right]$; HRMS (ESI ${ }^{+}$) found 484.2698, calculated for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~N}_{5} \mathrm{O}_{2}{ }^{+} 484.2707$; LCMS (System B) t_{r} 6.0 min (90\%).

5-(3,5-Dimethyl-1,2-oxazol-4-yl)-2-[2-(1H-indol-1-yl)ethyl]-1-[2-(morpholin-4-yl)propyl]-1Hbenzimidazole (55)

Freshly prepared 1 M aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(0.5 \mathrm{~mL}, 0.5 \mathrm{mmol})$ was added to a suspension of 4-(3,5-dimethyl-1,2-oxazol-4-yl)- N -[2-(morpholin-4-yl)propyl]-2-nitroaniline ($35 \mathrm{mg}, 0.096 \mathrm{mmol}$) in $\mathrm{EtOH}(0.5 \mathrm{~mL}$) in a sealable vial. The vial was sealed then heated at $80^{\circ} \mathrm{C}$ for 2 h then more 1 M aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ ($0.5 \mathrm{~mL}, 0.5 \mathrm{mmol}$) was added. The mixture was heated for a further 2 h then allowed to cool. The resultant mixture was partitioned between 10% aq. $\mathrm{NH}_{3}(1.5 \mathrm{~mL})$ and $\mathrm{EtOAc}(1.5 \mathrm{~mL})$. The organic phase was passed through MgSO_{4} on a hydrophobic frit then evaporated by nitrogen blow-down. The residue was dissolved in EtOAc (2 mL) then 3(1 H -indol-1-yl)propanoic acid ($14 \mathrm{mg}, 0.085 \mathrm{mmol}$), DIPEA ($15 \mu \mathrm{~L}, 0.086 \mathrm{mmol}$) and T3P ($50 \mathrm{wt} . \% \mathrm{in} \mathrm{EtOAc}$,
$0.2 \mathrm{~mL}, 0.31 \mathrm{mmol}$) were added. The solution was heated under reflux for 18 h then allowed to cool. The resultant solution was partitioned between EtOAc (3 mL) and 1 M aq. $\mathrm{NaOH}(3 \mathrm{~mL})$. The organic phase was passed through a little MgSO_{4} on a hydrophobic frit then evaporated by nitrogen blow-down. The crude material was purified by flash column chromatography on a silica column (4 g). The column was eluted with a gradient of EtOAc: $\mathrm{MeOH}: \mathrm{NEt}_{3}$ which was increased linearly from 99:1:0.1 to 95:5:0.5 over 30 CV . The desired fractions were combined and evaporated to yield the product as a colourless gum ($12 \mathrm{mg}, 26 \%$); R_{f} 0.35 (EtOAc:MeOH:NEt ${ }_{3}, 90: 10: 1$); $v_{\max }$ (neat) $2963(\mathrm{C}-\mathrm{H}), 2855(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 0.74$ (d, J=6.5 Hz, 3 H, C(25) H_{3})), 1.60-2.81 (m, $\left.12 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}+\mathrm{C}(16) \mathrm{H}_{3}+\mathrm{C}(18) \mathrm{H}+\mathrm{C}(20) \mathrm{H}_{2}+\mathrm{C}(24) \mathrm{H}_{2}\right), 3.10-3.91$ (m, 7 $\left.\mathrm{H}, \mathrm{C}(17) \mathrm{H}_{2}+\mathrm{C}(21) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}+\mathrm{C}(27) \mathrm{H}_{2}\right), 4.81\left(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(26) \mathrm{H}_{2}\right), 6.41(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}, \mathrm{C}(31) \mathrm{H})$, $6.87(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}, \mathrm{C}(32) \mathrm{H}), 7.05-7.16(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(2) \mathrm{H}+\mathrm{C}(34) \mathrm{H}), 7.20(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}, \mathrm{C}(35) \mathrm{H})$, $7.27-7.33(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(3) H), 7.38(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(33) \mathrm{H}), 7.61-7.70(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(6) \mathrm{H}+\mathrm{C}(36) \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 10.9$ ($\mathrm{s}, 1 \mathrm{C}, ~ C(15)$), 11.6 ($\left.\mathrm{s}, 2 \mathrm{C}, ~ C(16)+C(25)\right), 28.6$ ($\mathrm{s}, 1 \mathrm{C}, ~ C(26)$), $45.4(\mathrm{~s}, 2 \mathrm{C}, C(17)+C(27)$), 48.9 (s, $2 \mathrm{C}, ~ C(20)+C(24)$), 59.4 (s, $1 \mathrm{C}, C(18)$), 66.5 (s, $2 \mathrm{C}, ~ C(21)+C(23)$), 101.8 ($\mathrm{s}, 1 \mathrm{C}, C(31)$), 109.2 (s, 1 C ,
 121.9 (s, 1 C, C(35)), 123.9 (s, 1 C, C(2)), 124.8 (s, 1 C, C(1)), 128.1 (s, 1 C, C(32)), 128.8 (s, 1 C, C(30)), 134.4 (s, $1 \mathrm{C}, C(4)$), 135.3 (s, $1 \mathrm{C}, C(29)$), 142.7 (s, $1 \mathrm{C}, C(5)$), 153.5 (s, $1 \mathrm{C}, C(8)$), 158.9 (s, $1 \mathrm{C}, C(11)$), 165.1 ($\mathrm{s}, 1 \mathrm{C}$, $\mathrm{C}(14))$; LRMS $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right) 484\left[\mathrm{MH}^{+}\right]$; HRMS (ESI ${ }^{+}$) found 484.2698, calculated for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~N}_{5} \mathrm{O}_{2}{ }^{+} 484.2707$; LCMS (System B) $t_{\mathrm{r}} 3.9 \mathrm{~min}$ (98\%).

(2R)- N^{1}-[4-(3,5-Dimethyl-1,2-oxazol-4-yl)-2-nitrophenyl]propane-1,2-diamine

25
$\operatorname{EtN}(i-\operatorname{Pr})_{2}(1.29 \mathrm{~mL}, 7.40 \mathrm{mmol})$ was added to a suspension of (R)-propane-1,2-diamine dihydrochloride (374 $\mathrm{mg}, 2.54 \mathrm{mmol})$ and compound $10(500 \mathrm{mg}, 2.12 \mathrm{mmol})$ and in THF (20 mL). The mixture was stirred at room temperature for 16 h then at reflux for 2 h then allowed to cool. $\mathrm{K}_{2} \mathrm{CO}_{3}(1.02 \mathrm{~g}, 7.40 \mathrm{mmol}$) and DMF (5 mL) were added then the mixture was heated under reflux for 4 h then allowed to cool. The resultant mixture was partitioned between EtOAc (10 mL) and water (10 mL). The phases were separated then the organic phase was washed with water (10 mL) and brine $(10 \mathrm{~mL})$ then dried over MgSO_{4} and evaporated. The crude material was purified by flash column chromatography on a silica column (40 g). The column was eluted with a gradient of $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}$ which was increased linearly from 99:1:0.1 to 90:10:1 over 12 CVs . The desired fractions were combined and evaporated to yield the product (4:1 ratio of regioisomers in favour of desired) as a bright-orange solid ($233 \mathrm{mg}, 38 \%$); $R_{f} 0.15\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}, 90: 10: 1\right)$; mp 124-127 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}-20.4$ (c 0.44 in CHCl_{3}); $\mathrm{v}_{\max }$ (neat) $3372(\mathrm{~N}-\mathrm{H}), 2964(\mathrm{C}-\mathrm{H}), 2928(\mathrm{C}-\mathrm{H}), 2869(\mathrm{C}-\mathrm{H}), 1528(\mathrm{~N}-\mathrm{O}), 1353(\mathrm{~N}-$ O); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 1.24\left(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{3}\right)$, 3.11 $3.24\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.25-3.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}+\mathrm{C}(18) \mathrm{H}\right), 6.96$ (d, J=9.0 Hz, $\left.1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}\right), 7.33$ (dd, $J=9.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}), 8.08(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}), 8.41$ (br. s., $1 \mathrm{H}, \mathrm{NH}$); ${ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ ppm 10.7 (s, 1 C, C(15)), 11.5 (s, 1 C, C(16)), 22.1 (s, 1 C, C(20)), 46.0 (s, 1 C, C(18)), 50.9 (s, 1 C, C(17)), 114.6 ($\mathrm{s}, 1 \mathrm{C}, ~ C(3)$), 114.8 ($\mathrm{s}, 1 \mathrm{C}, ~ C(10)$), 117.4 ($\mathrm{s}, 1 \mathrm{C}, ~ C(1)), 127.0$ ($\mathrm{s}, 1 \mathrm{C}, ~ C(6)$), 131.9 ($\mathrm{s}, 1 \mathrm{C}, C(5)$), 136.7 ($\mathrm{s}, 1 \mathrm{C}$, $C(2)), 144.7$ (s, $1 \mathrm{C}, C(4)), 158.5(\mathrm{~s}, 1 \mathrm{C}, C(11)), 165.3(\mathrm{~s}, 1 \mathrm{C}, C(14)) ;$ LRMS $m / z\left(\mathrm{ESI}^{+}\right) 313\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 291\left[\mathrm{MH}^{+}\right]$; HRMS (ESI ${ }^{+}$) found 291.1444, calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{3}{ }^{+}$291.1452; LCMS (System B) $t_{\mathrm{r}} 3.6$ min (81\%).

(2S)- N^{1}-[4-(3,5-Dimethyl-1,2-oxazol-4-yl)-2-nitrophenyl]propane-1,2-diamine

EtN $(i-\operatorname{Pr})_{2}(1.29 \mathrm{~mL}, 7.40 \mathrm{mmol})$ was added to a suspension of (R)-propane-1,2-diamine dihydrochloride (374 $\mathrm{mg}, 2.54 \mathrm{mmol})$ and compound $\mathbf{1 0}(500 \mathrm{mg}, 2.12 \mathrm{mmol})$ and in THF (20 mL). The mixture was stirred at room temperature for 16 h then at reflux for 2 h then allowed to cool. $\mathrm{K}_{2} \mathrm{CO}_{3}(1.02 \mathrm{~g}, 7.40 \mathrm{mmol})$ and DMF (5 mL) were added then the mixture was heated under reflux for 4 h then allowed to cool. The resultant mixture was partitioned between EtOAc (10 mL) and water (10 mL). The phases were separated then the organic phase was washed with water (10 mL) and brine (10 mL) then dried over MgSO_{4} and evaporated. The crude material was purified by flash column chromatography on a silica column (40 g). The column was eluted with a gradient of $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}$ which was increased linearly from 99:1:0.1 to 90:10:1 over 12 CVs . The desired fractions were combined and evaporated to yield the product (4:1 ratio of regioisomers in favour of desired) as a bright-orange solid (254 mg, 41\%); $R_{f} 0.15\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}, 90: 10: 1\right) ; \mathrm{mp} 126-129{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}+17.7$ (c $1.4 \mathrm{in} \mathrm{CHCl}_{3}$); $v_{\max }$ (neat) $3369(\mathrm{~N}-\mathrm{H}), 2964(\mathrm{C}-\mathrm{H}), 2928(\mathrm{C}-\mathrm{H}), 2871$ (C-H), 1526 (N-O), 1352 (NO); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 1.24\left(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{3}\right)$, 3.11 $3.24\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(17) H_{A} \mathrm{H}_{\mathrm{B}}\right), 3.25-3.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}+\mathrm{C}(18) \mathrm{H}\right), 6.96(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 7.33$ (dd, $J=9.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}), 8.08(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}), 8.41$ (br. s., $1 \mathrm{H}, N \mathrm{~N}) ;{ }^{13} \mathrm{C} N \mathrm{NR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ ppm 10.7 (s, 1 C, C(15)), 11.5 (s, 1 C, C(16)), 22.1 (s, 1 C, C(20)), 46.0 (s, 1 C, C(18)), 50.9 (s, 1 C, C(17)), 114.6 ($s, 1 \mathrm{C}, ~ C(3)$), 114.8 ($\mathrm{s}, 1 \mathrm{C}, ~ C(10)$), 117.4 ($\mathrm{s}, 1 \mathrm{C}, ~ C(1)), 127.0$ ($\mathrm{s}, 1 \mathrm{C}, C(6)$), 131.9 ($\mathrm{s}, 1 \mathrm{C}, C(5)$), 136.7 ($\mathrm{s}, 1 \mathrm{C}$,
 HRMS (ESI ${ }^{+}$) found 291.1446, calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{3}{ }^{+}$291.1452; LCMS (System B) $t_{\mathrm{r}} 3.6 \mathrm{~min}$ (87%).

2-Bromoethyl ether ($100 \mu \mathrm{~L}, 0.79 \mathrm{mmol}$) was added to a suspension of ($2 R$)- N^{1}-[4-(3,5-dimethyl-1,2-oxazol-4-$\mathrm{yl})$-2-nitrophenyl]propane-1,2-diamine ($210 \mathrm{mg}, 0.72 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(299 \mathrm{mg}, 2.16 \mathrm{mmol})$ in DMF (5 mL). The mixture was heated in a sealed vial at $70^{\circ} \mathrm{C}$ for 16 h then allowed to cool. The resultant mixture was partitioned between water (5 mL) and EtOAc (5 mL). The phases were separated then the aqueous phase was extracted with more EtOAc (5 mL). The combined organic phases were washed with water (5 mL) and brine (5 mL) then dried over MgSO_{4} and evaporated directly onto silica. The crude material was purified by flash column chromatography on a silica column (24 g). The column was eluted with a gradient of acetone: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ which was increased linearly from 0:100 to 6:94 over 6 CVs then isocratic at 6:94 for 10 CVs. The desired fractions were combined and evaporated then the resultant material was purified again by flash column chromatography on a silica column (12 g). The column was eluted with acetone:c-hexane (1:9). The desired fractions were combined and evaporated to yield the product as a pale orange solid ($71 \mathrm{mg}, 27 \%$); R_{f}
0.20 (acetone:c-hexane, 20:80); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 1.13\left(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}(25) \mathrm{H}_{3}\right), 2.26(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{C}(15) \mathrm{H}_{3}\right), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{3}\right), 2.45-2.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}+\mathrm{C}(24) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.59-2.74(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{C}(20) \mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}+\mathrm{C}(24) \mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 2.97-3.07(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(18) \mathrm{H}), 3.07-3.18\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.27-3.37(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{C}(17) \mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}$), $3.71-3.87\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(21) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 6.89(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 7.33(\mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}(2) \mathrm{H}), 8.09(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}), 8.80-8.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 10.7(\mathrm{~s}, 1 \mathrm{C}$,

 $m / z\left(\mathrm{ESI}^{+}\right) 361\left[\mathrm{MH}^{+}\right] ;$HRMS (ESI $)$found 361.1858, calculated for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{+}$361.1870.

4-(3,5-Dimethyl-1,2-oxazol-4-yl)- N^{11}-[(2S)-2-(morpholin-4-yl)propyl]-2-nitroaniline (57)

2-Bromoethyl ether ($0.68 \mathrm{~mL}, 5.4 \mathrm{mmol}$) was added to a suspension of (2 S) - N^{1}-[4-(3,5-Dimethyl-1,2-oxazol-4-$\mathrm{yl})$-2-nitrophenyl]propane-1,2-diamine ($1.43 \mathrm{~g}, 4.92 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.04 \mathrm{~g}, 14.8 \mathrm{mmol})$ in DMF (50 mL). The mixture was heated at $70^{\circ} \mathrm{C}$ for 16 h then allowed to cool and partitioned between EtOAc (50 mL) and water (50 mL). The phases were separated then the organic phase was extracted with more EtOAc (50 mL). The combined organic phases were washed with 1:1 brine:water ($3 \times 50 \mathrm{~mL}$) then brine (50 mL) then dried over MgSO_{4} and evaporated. The crude material was purified by flash column chromatography on a silica column (80 g). The column was eluted with a gradient of acetone: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, which was increased linearly from 0:100 to 10:90 over 10 CVs . The desired fractions were combined and evaporated. The resultant material was purified further by flash column chromatography on a silica column (80 g). The column was eluted with a gradient of acetone:c-hexane, which was increased linearly from 10:90 to 20:80 over 20 CVs. The desired fractions were combined and evaporated to yield the product as an orange solid ($620 \mathrm{mg}, 35 \%$); $R_{f} 0.20$ (acetone:c-hexane, 20:80); mp 182-185 ${ }^{\circ} \mathrm{C}$; $\mathrm{v}_{\max }$ (neat) $3321(\mathrm{~N}-\mathrm{H}), 2964(\mathrm{C}-\mathrm{H}), 2858(\mathrm{C}-\mathrm{H}), 2815(\mathrm{C}-\mathrm{H}), 1525$ ($\mathrm{N}-\mathrm{O}$), 1353 ($\mathrm{N}-\mathrm{O}$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.13$ (d, J=6.5 Hz, $\left.3 \mathrm{H}, \mathrm{C}(25) \mathrm{H}_{3}\right), 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right)$, $2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{3}\right), 2.45-2.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(20) H_{A} \mathrm{H}_{\mathrm{B}}+\mathrm{C}(24) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.59-2.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}+\mathrm{C}(24) \mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right)$, 2.97-3.07 (m, 1 H, C(18)H), 3.07-3.18 (m, 1 H, C(17) $H_{A} H_{B}$), 3.27-3.37 (m, $\left.1 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{\mathrm{A}} H_{B}\right)$, 3.71 - $3.87(\mathrm{~m}, 4$ $\left.\mathrm{H}, \mathrm{C}(21) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 6.89(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 7.33$ (dd, J=8.5, 2.0 Hz,1H, C(2)H), 8.09(d,J=2.0 Hz,1 H, $\mathrm{C}(6) \mathrm{H}), 8.80-8.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 10.7(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(15))$, $11.3(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(16 / 25)$), 11.5 (s, $1 \mathrm{C}, C(16 / 25)$), 45.3 ($\mathrm{s}, 1 \mathrm{C}, C(17)$), 48.0 (s, $2 \mathrm{C}, C(20)+C(24)$), 57.4 (s, $1 \mathrm{C}, C(18)$), 67.2 (s, 2 C , $C(21)+C(23)$), 114.9 ($s, 1 C, C(3)$), 114.9 ($s, 1 C, C(10)$), 116.9 ($s, 1 C, C(1)$), $127.0(\mathrm{~s}, 1 \mathrm{C}, C(6)$), 131.7 ($\mathrm{s}, 1 \mathrm{C}$,
 $\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 361\left[\mathrm{MH}^{+}\right]$; HRMS (ESI ${ }^{+}$) found 361.1856, calculated for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{+} 361.1870$; LCMS (System B) t_{r} 3.7 min (>99\%).

2-[2-(3-Chloro-4-methoxyphenyl)ethyl]-5-(3,5-dimethyl-1,2-oxazol-4-yl)-1-[(2R)-2-(morpholin-4-yl)propyl]-1H-benzimidazole (58)

Freshly prepared 1 M aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(0.32 \mathrm{~mL}, 0.32 \mathrm{mmol})$ was added to a suspension of compound 56 (23 mg , 0.065 mmol) in EtOH (0.5 mL) in a sealable vial. The vial was sealed then heated at $80^{\circ} \mathrm{C}$ for 1 h then allowed to cool. The resultant mixture was partitioned between 10% aq. $\mathrm{NH}_{3}(1 \mathrm{~mL})$ and EtOAc (1 mL). The organic phase was passed through a hydrophobic frit then evaporated by nitrogen blow-down. The residue was dissolved in EtOAc (2 mL) then added to a vial containing 3-(3-chloro-4-methoxyphenyl)propanoic acid (13 $\mathrm{mg}, 0.061 \mathrm{mmol})$. DIPEA ($23 \mu \mathrm{~L}, 0.13 \mathrm{mmol}$) and T3P ($50 \mathrm{wt} . \% \mathrm{in}$ EtOAc, $0.2 \mathrm{~mL}, 0.31 \mathrm{mmol}$) were added then the solution was heated at $80^{\circ} \mathrm{C}$ for 16 h then allowed to cool. 1 M aq. NaOH solution (1 mL) was added and the phases were mixed then allowed to separate. The organic phase was passed through a hydrophobic frit then evaporated by nitrogen blow-down. The crude material was purified by flash column chromatography on a silica column (4 g). The column was eluted with a gradient of EtOAc: $\mathrm{MeOH}: \mathrm{NEt}_{3}$ which was increased linearly from 99:1:0.1 to 95:5:0.5 over 30 CVs . The desired fractions were combined and evaporated to yield the product as a colourless gum (15 mg, 46\%); $R_{f} 0.50$ (EtOAc:MeOH:NEt ${ }_{3}, 90: 10: 1$); $[\alpha]_{\mathrm{D}}^{20}-3.8$ (c 0.6 in CHCl_{3}); $\mathrm{v}_{\text {max }}$ (neat) $2964(\mathrm{C}-\mathrm{H}), 2933(\mathrm{C}-\mathrm{H}), 2854(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 0.93(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{C}(33) \mathrm{H}_{3}\right), 2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right), 2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{3}\right), 2.38-2.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}+\mathrm{C}(24) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.53-2.61$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}+\mathrm{C}(24) \mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}$), 2.81-2.94 (m, $\left.1 \mathrm{H}, \mathrm{C}(18) \mathrm{H}\right), 3.00-3.12\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(25) \mathrm{H}_{2}\right), 3.12-3.22(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{C}(26) \mathrm{H}_{2}\right)$, $3.51-3.65\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(21) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 3.76-3.84\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}+\mathrm{C}(35) \mathrm{H}_{3}\right), 4.08$ (dd, J=14.5,6.5 $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 6.79(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 6.99-7.07(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(2) \mathrm{H}+\mathrm{C}(28) \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}(32) H$), 7.26 (d, J=8.5 Hz, $1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 7.56(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 10.9(\mathrm{~s}$, $1 \mathrm{C}, C(15)$), 11.6 ($\mathrm{s}, 1 \mathrm{C}, C(16)), 12.2$ ($\mathrm{s}, 1 \mathrm{C}, C(33)$), 29.7 ($\mathrm{s}, 1 \mathrm{C}, C(25)$), $32.5(\mathrm{~s}, 1 \mathrm{C}, C(26)$), $46.6(\mathrm{~s}, 1 \mathrm{C}, C(17))$, 49.3 (s, 2 C, $C(20)+C(24)$), 56.2 (s, 1 C, $C(35)$), 59.5 (s, 1 C, $C(18)$), 66.9 (s, $2 C, C(21)+C(23)), 109.8(\mathrm{~s}, 1 \mathrm{C}, C(3))$,
 $1 \mathrm{C}, C(1)), 127.7$ (s, $1 \mathrm{C}, ~ C(28)$), 130.0 ($\mathrm{s}, 1 \mathrm{C}, ~ C(32)$), 133.9 ($\mathrm{s}, 1 \mathrm{C}, ~ C(27)$), 134.5 ($\mathrm{s}, 1 \mathrm{C}, C(4)$), 142.7 ($\mathrm{s}, 1 \mathrm{C}$, $C(5)$), 153.6 (s, 1 C, C(30)), 155.1 (s, 1 C, C(8)), 159.0 (s, 1 C, C(11)), 165.0 (s, $1 \mathrm{C}, ~ C(14)$); LRMS m/z (ESI ${ }^{+} 511$ $\left[\mathrm{M}\left({ }^{37} \mathrm{Cl}\right) \mathrm{H}^{+}\right] 509\left[\mathrm{M}\left({ }^{35} \mathrm{CI}\right) \mathrm{H}^{+}\right]$; HRMS (ESI $)$found 511.2297, calculated for $\mathrm{C}_{28} \mathrm{H}_{34}\left({ }^{37} \mathrm{Cl}\right) \mathrm{N}_{4} \mathrm{O}_{3}{ }^{+} 511.2287$; HRMS (ESI ${ }^{+}$) found 509.2312, calculated for $\mathrm{C}_{28} \mathrm{H}_{34}\left({ }^{35} \mathrm{Cl}^{2}\right) \mathrm{N}_{4} \mathrm{O}_{3}{ }^{+}$509.2314; LCMS (System B) $t_{\mathrm{r}} 3.8 \mathrm{~min}$ (97\%); er >99:1 (HPLC Chiralpak AD column, $\lambda 220 \mathrm{~nm}, n$-hexane $/ i-\mathrm{PrOH}$ ($70: 30$), flow rate $0.9 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}} 19.5 \mathrm{~min}$ (minor), 26.2 min (major)).

2-[2-(3-Chloro-4-methoxyphenyl)ethyl]-5-(3,5-dimethyl-1,2-oxazol-4-yl)-1-[(2S)-2-(morpholin-4-

 yl)propyl]-1H-benzimidazole (59)

Freshly prepared 1 M aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(0.50 \mathrm{~mL}, 0.50 \mathrm{mmol})$ was added to a suspension of compound 57 (35 mg , $0.097 \mathrm{mmol})$ in $\mathrm{EtOH}(0.5 \mathrm{~mL})$ in a sealable vial. The vial was sealed then heated at $80^{\circ} \mathrm{C}$ for 1 h then allowed to cool. The resultant mixture was partitioned between 10% aq. $\mathrm{NH}_{3}(1 \mathrm{~mL})$ and EtOAc (1 mL). The organic phase was passed through a hydrophobic frit then evaporated by nitrogen blow-down. The residue was dissolved in EtOAc (3 mL) then added to a vial containing 3-(3-chloro-4-methoxyphenyl)propanoic acid (19 $\mathrm{mg}, 0.089 \mathrm{mmol})$. DIPEA ($34 \mu \mathrm{~L}, 0.19 \mathrm{mmol}$) and T3P ($50 \mathrm{wt} . \% \mathrm{in}$ EtOAc, $0.3 \mathrm{~mL}, 0.47 \mathrm{mmol}$) were added then the solution was heated at $80^{\circ} \mathrm{C}$ for 16 h then allowed to cool. 1 M aq. NaOH solution (1 mL) was added and the phases were mixed then allowed to separate. The organic phase was passed through a hydrophobic frit then evaporated by nitrogen blow-down. The crude material was purified by flash column chromatography on a silica column (4 g). The column was eluted with a gradient of EtOAc: $\mathrm{MeOH}: \mathrm{NEt}_{3}$ which was increased linearly from 99:1:0.1 to 95:5:0.5 over 30 CVs . The desired fractions were combined and evaporated to yield the product as a colourless gum ($26 \mathrm{mg}, 52 \%$); $R_{f} 0.50$ (EtOAc:MeOH: $\mathrm{NEt}_{3}, 90: 10: 1$); $[\alpha]_{\mathrm{D}}^{20}+4.0$ (c 1.1 in CHCl_{3}); $\mathrm{v}_{\max }$ (neat) $2963(\mathrm{C}-\mathrm{H}), 2933(\mathrm{C}-\mathrm{H}), 2854(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 0.93(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{C}(33) \mathrm{H}_{3}\right), 2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right), 2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{3}\right), 2.38-2.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}+\mathrm{C}(24) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.53-2.61$ ($\left.\mathrm{m}, 2 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}+\mathrm{C}(24) \mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 2.81-2.94(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(18) \mathrm{H}), 3.00-3.12\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(25) \mathrm{H}_{2}\right), 3.12-3.22(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{C}(26) \mathrm{H}_{2}\right)$, $3.51-3.65\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(21) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 3.76-3.84\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}+\mathrm{C}(35) \mathrm{H}_{3}\right), 4.08$ (dd, J=14.5,6.5 $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 6.79(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 6.99-7.07(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(2) \mathrm{H}+\mathrm{C}(28) \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}(32) H$), 7.26 (d, J=8.5 Hz, $1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 7.56(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 10.9(\mathrm{~s}$, $1 \mathrm{C}, C(15)$), 11.6 ($\mathrm{s}, 1 \mathrm{C}, C(16)$), 12.2 ($\mathrm{s}, 1 \mathrm{C}, C(33)$), 29.7 ($\mathrm{s}, 1 \mathrm{C}, C(25)$), $32.5(\mathrm{~s}, 1 \mathrm{C}, C(26)), 46.8(\mathrm{~s}, 1 \mathrm{C}, C(17)$), 49.3 (s, $2 \mathrm{C}, C(20)+C(24)), 56.2(\mathrm{~s}, 1 \mathrm{C}, C(35)), 59.4(\mathrm{~s}, 1 \mathrm{C}, C(18)), 67.1(\mathrm{~s}, 2 \mathrm{C}, C(21)+C(23)), 109.7(\mathrm{~s}, 1 \mathrm{C}, C(3))$, 112.2 ($s, 1 \mathrm{C}, ~ C(29)$), 117.0 ($\mathrm{s}, 1 \mathrm{C}, ~ C(10)$), 119.8 ($\mathrm{s}, 1 \mathrm{C}, C(6)$), 122.3 ($\mathrm{s}, 1 \mathrm{C}, ~ C(31)$), 123.4 ($\mathrm{s}, 1 \mathrm{C}, C(2)$), 124.1 (s , $1 \mathrm{C}, C(1)), 127.6$ ($\mathrm{s}, 1 \mathrm{C}, ~ C(28)), 130.0$ ($\mathrm{s}, 1 \mathrm{C}, C(32)$), 134.0 ($\mathrm{s}, 1 \mathrm{C}, C(27)$), 134.6 ($\mathrm{s}, 1 \mathrm{C}, C(4)$), 142.9 ($\mathrm{s}, 1 \mathrm{C}$,
 $\left[\mathrm{M}\left({ }^{37} \mathrm{Cl}\right) \mathrm{H}^{+}\right] 509\left[\mathrm{M}\left({ }^{35} \mathrm{CI}\right) \mathrm{H}^{+}\right]$; HRMS (ESI $)$found 511.2290, calculated for $\mathrm{C}_{28} \mathrm{H}_{34}\left({ }^{37} \mathrm{Cl}\right) \mathrm{N}_{4} \mathrm{O}_{3}{ }^{+} 511.2287$; HRMS (ESI ${ }^{+}$) found 509.2308, calculated for $\mathrm{C}_{28} \mathrm{H}_{34}\left({ }^{35} \mathrm{Cl}^{2}\right) \mathrm{N}_{4} \mathrm{O}_{3}{ }^{+}$509.2314; LCMS (System B) $t_{\mathrm{r}} 3.9 \mathrm{~min}$ (97\%); er >99:1 (HPLC Chiralpak AD column, $\lambda 220 \mathrm{~nm}$, n-hexane/i- PrOH ($70: 30$), flow rate $0.9 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}} 19.7 \mathrm{~min}$ (major), 26.7 min (minor)).

5-(3,5-Dimethyl-1,2-oxazol-4-yl)-2-[2-(1H-indol-1-yl)ethyl]-1-[(2R)-2-(morpholin-4-yl)propyl]-1Hbenzimidazole (60)

Freshly prepared 1 M aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(0.32 \mathrm{~mL}, 0.32 \mathrm{mmol})$ was added to a suspension of compound 56 (23 mg , 0.065 mmol) in EtOH (0.5 mL) in a sealable vial. The vial was sealed then heated at $80^{\circ} \mathrm{C}$ for 1 h then allowed to cool. The resultant mixture was partitioned between 10% aq. $\mathrm{NH}_{3}(1 \mathrm{~mL})$ and EtOAc (1 mL). The organic phase was passed through a hydrophobic frit then evaporated by nitrogen blow-down. The residue was dissolved in EtOAc (2 mL) then added to a vial containing 3-(1H-indol-1-yl)propanoic acid (11 mg, 0.058 mmol). DIPEA ($23 \mu \mathrm{~L}, 0.13 \mathrm{mmol}$) and T3P ($50 \mathrm{wt} . \%$ in EtOAc, $0.2 \mathrm{~mL}, 0.31 \mathrm{mmol}$) were added then the solution was heated at $80^{\circ} \mathrm{C}$ for 16 h then allowed to cool. 1 M aq. NaOH solution (1 mL) was added and the phases were mixed then allowed to separate. The organic phase was passed through a hydrophobic frit then evaporated by nitrogen blow-down. The crude material was purified by flash column chromatography on a silica column (4 g). The column was eluted with a gradient of EtOAc: $\mathrm{MeOH}: \mathrm{NEt}_{3}$ which was increased linearly from 99:1:0.1 to 95:5:0.5 over 30 CVs . The desired fractions were combined and evaporated to yield the product as a colourless gum (12 mg, 38\%); $R_{f} 0.35$ (EtOAc:MeOH: $\mathrm{NEt}_{3}, 90: 10: 1$); $[\alpha]_{\mathrm{D}}^{20}+6.4$ (c $0.5 \mathrm{in} \mathrm{CHCl}_{3}$); $v_{\max }$ (neat) $2964(\mathrm{C}-\mathrm{H}), 2855(\mathrm{C}-\mathrm{H}), 2819(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 0.76(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{C}(28) H_{3}\right), 2.12-2.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(20) H_{A} H_{B}+\mathrm{C}(24) H_{A} H_{B}\right), 2.27-2.38\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}(15) H_{3}+\mathrm{C}(20) \mathrm{H}_{A} H_{B}+\mathrm{C}(24) \mathrm{H}_{A} H_{B}\right), 2.46$ ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{3}\right), 2.53-2.69(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(18) \mathrm{H}), 3.21-3.44\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}+\mathrm{C}(25) \mathrm{H}_{2}\right), 3.47-3.66(\mathrm{~m}, 5 \mathrm{H}$, $\left.\mathrm{C}(17) \mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}+\mathrm{C}(21) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 4.80\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(26) \mathrm{H}_{2}\right), 6.43(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(32) \mathrm{H}), 6.89(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{C}(33) H$), $7.09-7.14(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(2) \mathrm{H}+\mathrm{C}(35) H), 7.16-7.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(36) \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H})$, $7.36(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(34) \mathrm{H}), 7.57-7.70(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(6) \mathrm{H}+\mathrm{C}(37) \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 10.9(\mathrm{~s}, 1$ C, $C(15)$), 11.6 ($s, 1 \mathrm{C}, ~ C(16)), 11.8$ ($s, 1 \mathrm{C}, ~ C(33)$), 28.6 ($\mathrm{s}, 1 \mathrm{C}, ~ C(25)$), 45.2 ($\mathrm{s}, 1 \mathrm{C}, ~ C(26)$), 46.2 ($\mathrm{s}, 1 \mathrm{C}, C(17)$), 49.0 (s, 2 C, $C(20)+C(24)$), 59.2 (s, 1 C, $C(18)$), 66.9 (s, $2 C, C(21)+C(23)$), 101.8 (s, $1 \mathrm{C}, C(32)$), 109.0 (s, 1 C, $C(34)$), 109.9 (s, 1 C, C(3)), 117.0 (s, 1 C, C(10)), 119.7 (s, 1 C, C(35)), 119.8 (s, $1 \mathrm{C}, C(6)$), 121.3 ($s, 1 \mathrm{C}, C(37)$), 121.8 (s, 1 C, C(36)), 123.7 (s, 1 C, C(2)), 124.5 (s, 1 C, C(1)), 128.0 (s, 1 C, C(33)), 128.9 (s, 1 C, C(31)), 134.5 (s, $1 \mathrm{C}, C(4)$), 135.4 (s, $1 \mathrm{C}, C(30)$), 142.8 (s, $1 \mathrm{C}, C(5)$), 153.5 (s, $1 \mathrm{C}, C(8)$), 159.0 ($\mathrm{s}, 1 \mathrm{C}, C(11)$), 165.1 ($\mathrm{s}, 1 \mathrm{C}$, $C(14)) ;$ LRMS $m / z\left(E S I^{+}\right) 484\left[\mathrm{MH}^{+}\right]$; HRMS (ESI ${ }^{+}$) found 484.2701, calculated for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~N}_{5} \mathrm{O}_{2}^{+}$484.2707; LCMS (System B) $t_{r} 3.9 \mathrm{~min}$ (98\%); er 99:1 (HPLC Chiralpak AD column, $\lambda 220 \mathrm{~nm}$, n-hexane/i-PrOH (80:20), flow rate $1.0 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}} 25.1 \mathrm{~min}$ (minor), 27.7 min (major)).

5-(3,5-Dimethyl-1,2-oxazol-4-yl)-2-[2-(1H-indol-1-yl)ethyl]-1-[(2S)-2-(morpholin-4-yl)propyl]-1Hbenzimidazole (61)

Freshly prepared 1 M aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(0.50 \mathrm{~mL}, 0.50 \mathrm{mmol})$ was added to a suspension of compound 57 (35 mg , 0.097 mmol) in EtOH (0.5 mL) in a sealable vial. The vial was sealed then heated at $80^{\circ} \mathrm{C}$ for 1 h then allowed to cool. The resultant mixture was partitioned between 10% aq. $\mathrm{NH}_{3}(1 \mathrm{~mL})$ and EtOAc (1 mL). The organic phase was passed through a hydrophobic frit then evaporated by nitrogen blow-down. The residue was dissolved in EtOAc (3 mL) then added to a vial containing 3-(1H-indol-1-yl)propanoic acid (17 mg, 0.090 mmol). DIPEA ($34 \mu \mathrm{~L}, 0.19 \mathrm{mmol}$) and T3P ($50 \mathrm{wt} . \%$ in EtOAc, $0.3 \mathrm{~mL}, 0.47 \mathrm{mmol}$) were added then the solution was heated at $80^{\circ} \mathrm{C}$ for 16 h then allowed to cool. 1 M aq. NaOH solution (1 mL) was added and the phases were mixed then allowed to separate. The organic phase was passed through a hydrophobic frit then evaporated by nitrogen blow-down. The crude material was purified by flash column chromatography on a silica column (4 g). The column was eluted with a gradient of EtOAc: $\mathrm{MeOH}: \mathrm{NEt}_{3}$ which was increased linearly from 99:1:0.1 to 95:5:0.5 over 30 CVs . The desired fractions were combined and evaporated to yield the product as a colourless gum ($26 \mathrm{mg}, 52 \%$); $R_{f} 0.35$ (EtOAc:MeOH: $\mathrm{NEt}_{3}, 90: 10: 1$); $[\alpha]_{\mathrm{D}}^{20}-5.2$ (c 1.2 in CHCl_{3}); $v_{\max }$ (neat) 2963 (C-H), $2955(\mathrm{C}-\mathrm{H}), 2819(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 0.76(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{C}(28) H_{3}\right), 2.12-2.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(20) H_{A} H_{B}+\mathrm{C}(24) H_{A} H_{B}\right), 2.27-2.38\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}+\mathrm{C}(20) \mathrm{H}_{\mathrm{A}} H_{B}+\mathrm{C}(24) \mathrm{H}_{\mathrm{A}} H_{B}\right), 2.46$ ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{3}\right), 2.53-2.69(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(18) \mathrm{H}), 3.21-3.44\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}+\mathrm{C}(25) \mathrm{H}_{2}\right), 3.47-3.66(\mathrm{~m}, 5 \mathrm{H}$, $\left.\mathrm{C}(17) \mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}+\mathrm{C}(21) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 4.80\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(26) \mathrm{H}_{2}\right), 6.43(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(32) \mathrm{H}), 6.89(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{C}(33) H$), $7.09-7.14(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(2) \mathrm{H}+\mathrm{C}(35) H), 7.16-7.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(36) \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(3) \mathrm{H})$, $7.36(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(34) \mathrm{H}), 7.57-7.70(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(6) \mathrm{H}+\mathrm{C}(37) \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 10.9(\mathrm{~s}, 1$ C, $C(15)$), 11.6 ($s, 1 \mathrm{C}, ~ C(16)), 11.9$ ($s, 1 \mathrm{C}, ~ C(33)$), 28.6 ($\mathrm{s}, 1 \mathrm{C}, ~ C(25)$), 45.1 ($\mathrm{s}, 1 \mathrm{C}, ~ C(26)$), 46.2 ($\mathrm{s}, 1 \mathrm{C}, C(17)$), 49.0 (s, 2 C, $C(20)+C(24)$), 59.1 (s, 1 C, $C(18)$), 67.0 (s, $2 C, C(21)+C(23)$), 101.7 (s, $1 \mathrm{C}, C(32)$), 108.9 (s, 1 C, $C(34)$), 109.9 (s, 1 C, C(3)), 117.0 (s, 1 C, C(10)), 119.7 (s, 1 C, C(35)), 119.8 (s, $1 \mathrm{C}, C(6)$), 121.3 ($s, 1 \mathrm{C}, C(37)$), 121.8 (s, 1 C, C(36)), 123.6 (s, 1 C, C(2)), 124.4 (s, 1 C, C(1)), 127.9 (s, 1 C, C(33)), 128.8 (s, 1 C, C(31)), 134.5 (s, $1 \mathrm{C}, C(4)$), 135.4 (s, $1 \mathrm{C}, C(30)$), 142.9 (s, $1 \mathrm{C}, C(5)$), 153.5 (s, $1 \mathrm{C}, C(8)$), 159.0 (s, $1 \mathrm{C}, C(11)$), 165.0 (s, 1 C , $C(14)) ;$ LRMS $m / z\left(E S I^{+}\right) 484\left[\mathrm{MH}^{+}\right]$; HRMS (ESI ${ }^{+}$) found 484.2695, calculated for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~N}_{5} \mathrm{O}_{2}^{+}$484.2707; LCMS (System B) $t_{\mathrm{r}} 3.9 \mathrm{~min}$ (98\%); er >99:1 (HPLC Chiralpak AD column, $\lambda 220 \mathrm{~nm}$, n-hexane/i-PrOH (80:20), flow rate $1.0 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}} 24.7 \mathrm{~min}$ (major), 27.6 min (minor)).

Freshly prepared 1 M aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(0.32 \mathrm{~mL}, 0.32 \mathrm{mmol})$ was added to a suspension of compound 56 (23 mg , 0.065 mmol) in EtOH (0.5 mL) in a sealable vial. The vial was sealed then heated at $80^{\circ} \mathrm{C}$ for 1 h then allowed to cool. The resultant mixture was partitioned between 10% aq. $\mathrm{NH}_{3}(1 \mathrm{~mL})$ and EtOAc (1 mL). The organic phase was passed through a hydrophobic frit then evaporated by nitrogen blow-down. The residue was dissolved in EtOAc (2 mL) then added to a vial containing 3-(3-fluoro-4-methoxyphenyl)propanoic acid (12 $\mathrm{mg}, 0.061 \mathrm{mmol}$). DIPEA ($23 \mu \mathrm{~L}, 0.13 \mathrm{mmol}$) and T3P ($50 \mathrm{wt} . \% \mathrm{in} \mathrm{EtOAc}, 0.2 \mathrm{~mL}, 0.31 \mathrm{mmol}$) were added then the solution was heated at $80^{\circ} \mathrm{C}$ for 16 h then allowed to cool. 1 M aq. NaOH solution (1 mL) was added and the phases were mixed then allowed to separate. The organic phase was passed through a hydrophobic frit then evaporated by nitrogen blow-down. The crude material was purified by flash column chromatography on a silica column (4 g). The column was eluted with a gradient of EtOAc: $\mathrm{MeOH}: \mathrm{NEt}_{3}$ which was increased linearly from 99:1:0.1 to 95:5:0.5 over 30 CVs . The desired fractions were combined and evaporated to yield the product as a colourless gum (12 mg, 38\%); $R_{f} 0.50$ (EtOAc:MeOH: $\mathrm{NEt}_{3}, 90: 10: 1$); $[\alpha]_{\mathrm{D}}^{20}-11.5$ (c 0.6 in CHCl_{3}); $\mathrm{v}_{\max }$ (neat) $2963(\mathrm{C}-\mathrm{H}), 2934(\mathrm{C}-\mathrm{H}), 2855(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.01(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{C}(33) H_{3}\right), 2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right), 2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(16) H_{3}\right), 2.45-2.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(20) H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}+\mathrm{C}(24) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.61-2.69$ (m, 2 H, C(20) $\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}+\mathrm{C}(24) \mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}$), 2.90-3.02(m, $\left.1 \mathrm{H}, \mathrm{C}(18) \mathrm{H}\right), 3.08-3.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(25 / 26) \mathrm{H}_{2}\right), 3.20-3.30(\mathrm{~m}, 2$ $\left.\mathrm{H}, \mathrm{C}(25 / 26) \mathrm{H}_{2}\right), 3.60-3.73\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(21) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 3.81-3.92\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}+\mathrm{C}(35) \mathrm{H}_{3}\right), 4.16$ (dd, $\left.J=14.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 6.85-6.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(29) \mathrm{H}), 6.93-7.02(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(28) \mathrm{H}+\mathrm{C}(32) \mathrm{H}), 7.13$ (dd, $J=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(2) H$), $7.33(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(3) H), 7.64(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , CDCl_{3}) $\delta \mathrm{ppm} 10.9$ (s, $1 \mathrm{C}, \mathrm{C}(15)$), 11.6 ($\mathrm{s}, 1 \mathrm{C}, C(16)$), 12.2 ($\mathrm{s}, 1 \mathrm{C}, C(33)$), 29.7 ($\mathrm{s}, 1 \mathrm{C}, C(25)$), 32.7 (s, 1 C , $C(26)$), 46.6 (s, 1 C, $C(17)$), 49.3 (s, $2 C, C(20)+C(24)), 56.3$ (s, $1 \mathrm{C}, C(35)$), 59.5 (s, $1 \mathrm{C}, C(18)$), 66.9 (s, 2 C , $C(21)+C(23)), 109.8(\mathrm{~s}, 1 \mathrm{C}, C(3)), 113.6(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{C}, C(29)), 116.0(\mathrm{~d}, \mathrm{~J}=17.0 \mathrm{~Hz}, 1 \mathrm{C}, C(32)), 117.0(\mathrm{~s}, 1 \mathrm{C}$, $C(10)$), 119.8 ($\mathrm{s}, 1 \mathrm{C}, C(6)$), 123.5 (s, $1 \mathrm{C}, C(2)), 124.0(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{C}, C(28)$), $124.3(\mathrm{~s}, 1 \mathrm{C}, C(1)), 133.8(\mathrm{~d}$, $J=6.0 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{C}(27)), 134.5(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(4)), 142.6(\mathrm{~s}, 1 \mathrm{C}, C(5)), 146.2(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{C}, C(30)), 152.3(\mathrm{~d}, \mathrm{~J}=245.0$ $\mathrm{Hz}, 1 \mathrm{C}, \mathrm{C}(31)$), $155.1(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(8)), 159.0\left(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(11)\right.$), $165.0\left(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(14)\right.$); ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$ $-135.0(\mathrm{~s}, 1 \mathrm{~F})$; LRMS $\mathrm{m} / \mathrm{z}\left(E S I^{+}\right) 493\left[\mathrm{MH}^{+}\right]$; HRMS (ESI $)$found 493.2591, calculated for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{FN}_{4} \mathrm{O}_{3}{ }^{+}$ 493.2609; LCMS (System B) $t_{r} 3.7 \mathrm{~min}$ (96\%); er >99:1 (HPLC Chiralpak AD column, $\lambda 220 \mathrm{~nm}$, n-hexane/i$\mathrm{PrOH}(80: 20)$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}} 36.9 \mathrm{~min}$ (minor), 51.8 min (major)).

5-(3,5-Dimethyl-1,2-oxazol-4-yl)-2-[2-(3-fluoro-4-methoxyphenyl)ethyl]-1-[(2S)-2-(morpholin-4-yl)propyl]-1H-benzimidazole (63)

Freshly prepared 1 M aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(0.50 \mathrm{~mL}, 0.50 \mathrm{mmol})$ was added to a suspension of compound 57 (35 mg , 0.097 mmol) in EtOH (0.5 mL) in a sealable vial. The vial was sealed then heated at $80^{\circ} \mathrm{C}$ for 1 h then allowed to cool. The resultant mixture was partitioned between 10% aq. $\mathrm{NH}_{3}(1 \mathrm{~mL})$ and EtOAc (1 mL). The organic phase was passed through a hydrophobic frit then evaporated by nitrogen blow-down. The residue was dissolved in EtOAc (3 mL) then added to a vial containing 3-(3-fluoro-4-methoxyphenyl)propanoic acid (17 $\mathrm{mg}, 0.086 \mathrm{mmol})$. DIPEA ($34 \mu \mathrm{~L}, 0.19 \mathrm{mmol}$) and T3P ($50 \mathrm{wt} . \% \mathrm{in}$ EtOAc, $0.3 \mathrm{~mL}, 0.47 \mathrm{mmol}$) were added then the solution was heated at $80^{\circ} \mathrm{C}$ for 16 h then allowed to cool. 1 M aq. NaOH solution (1 mL) was added and the phases were mixed then allowed to separate. The organic phase was passed through a hydrophobic frit then evaporated by nitrogen blow-down. The crude material was purified by flash column chromatography on a silica column (4 g). The column was eluted with a gradient of EtOAc: $\mathrm{MeOH}: \mathrm{NEt}_{3}$ which was increased linearly from 99:1:0.1 to 95:5:0.5 over 30 CVs. The desired fractions were combined and evaporated to yield the product as a colourless gum (21 mg , 43\%); $R_{f} 0.50$ (EtOAc:MeOH: $\mathrm{NEt}_{3}, 90: 10: 1$); $[\alpha]_{\mathrm{D}}^{20}+12.3$ (c 1.1 in CHCl_{3}); $\mathrm{v}_{\text {max }}$ (neat) 2963 (C-H), $2934(\mathrm{C}-\mathrm{H}), 2854(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.01(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{C}(33) \mathrm{H}_{3}\right), 2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{3}\right), 2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(16) \mathrm{H}_{3}\right), 2.45-2.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}+\mathrm{C}(24) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.61$ - 2.69 (m, $2 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}+\mathrm{C}(24) \mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}$), 2.90-3.02(m,1 H, C(18)H), 3.08-3.20(m,2H,C(25/26)H2),3.20-3.30(m,2 $\left.\mathrm{H}, \mathrm{C}(25 / 26) \mathrm{H}_{2}\right), 3.60-3.73\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(21) \mathrm{H}_{2}+\mathrm{C}(23) \mathrm{H}_{2}\right), 3.81-3.92\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}+\mathrm{C}(35) \mathrm{H}_{3}\right), 4.16$ (dd, $\left.J=14.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(17) \mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 6.85-6.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(29) \mathrm{H}), 6.93-7.02(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(28) \mathrm{H}+\mathrm{C}(32) \mathrm{H})$, 7.13 (dd, $J=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(2) H$), 7.33 (d, J=8.5 Hz, $1 \mathrm{H}, \mathrm{C}(3) \mathrm{H}), 7.64(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta \mathrm{ppm} 10.9$ ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(15)$), 11.6 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(16)$), 12.2 ($\mathrm{s}, 1 \mathrm{C}, C(33)$), 29.7 ($\mathrm{s}, 1 \mathrm{C}, C(25)$), 32.6 ($\mathrm{s}, 1 \mathrm{C}$, $C(26)$), 46.8 (s, 1 C, $C(17)$), 49.3 (s, $2 C, C(20)+C(24)$), 56.3 (s, 1 C, C(35)), 59.4 (s, 1 C, C(18)), 67.1 (s, 2 C, $C(21)+C(23)), 109.7(\mathrm{~s}, 1 \mathrm{C}, C(3)), 113.6$ (d, J=1.5 Hz, $1 \mathrm{C}, C(29)), 116.0(\mathrm{~d}, \mathrm{~J}=17.5 \mathrm{~Hz}, 1 \mathrm{C}, C(32)), 117.0(\mathrm{~s}, 1 \mathrm{C}$,
 $J=5.5 \mathrm{~Hz}, 1 \mathrm{C}, ~ C(27))$, 134.6 ($\mathrm{s}, 1 \mathrm{C}, ~ C(4)), 142.9(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(5)), 146.1$ (d, J=10.5 Hz, $1 \mathrm{C}, C(30)), 152.3$ (d, J=245.5 $\mathrm{Hz}, 1 \mathrm{C}, \mathrm{C}(31)$), 155.2 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}(8)$), $159.0\left(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(11)\right.$), $165.0\left(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}(14)\right.$); ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$ $-135.0(\mathrm{~s}, 1 \mathrm{~F}) ; \mathrm{LRMS} \mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right) 493\left[\mathrm{MH}^{+}\right] ; \mathrm{HRMS}\left(\mathrm{ESI}^{+}\right)$found 493.2603, calculated for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{FN}_{4} \mathrm{O}_{3}{ }^{+}$ 493.2609; LCMS (System B) $t_{\mathrm{r}} 3.7 \mathrm{~min}$ (97%); er >99:1 (HPLC Chiralpak AD column, $\lambda 220 \mathrm{~nm}$, n-hexane/i$\operatorname{PrOH}(80: 20)$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{r}} 36.9 \mathrm{~min}$ (major), 52.3 min (minor)).

General experimental for parallel synthesis compounds

All reactions involving moisture-sensitive reagents were carried out under a nitrogen atmosphere using standard vacuum line techniques and glassware that was oven dried and cooled under nitrogen before use. Commercial anhydrous solvents used in reactions and HPLC grade solvents were employed for work-up and chromatography. Water was purified using an Elix UV-10 system. All other reagents were used as supplied (analytical or HPLC grade) without prior purification. Parallel synthesis was carried out using a Radleys GreenHouse reactor. Parallel work-ups were carried out using a Radleys stacker and Isolute phase separation cartridges. Parallel evaporation was carried out using a Radleys BlowDown Evaporator. NMR spectra were recorded on a Varian Mercury 400 MHz or a Bruker Avance III 400 MHz using the solvent as internal deuterium lock. Coupling constants (J) are quoted in Hz and are recorded to the nearest 0.5 Hz . Identical proton coupling constants are averaged in each spectrum and reported to the nearest 0.5 Hz . When peak multiplicities are reported, the following abbreviations are used: $s=$ singlet, $d=$ doublet, $t=$ triplet, $m=$ multiplet, $\mathrm{br}=$ broadened, $\mathrm{dd}=$ doublet of doublets, $\mathrm{dt}=$ doublet of triplets. Melting points were determined using a Kofler hot stage microscope and are uncorrected. m / z values are reported in Daltons. HRMS measurements were carried out using a Bruker MicroTOF mass spectrometer, equipped with an electrospray ionisation source acquiring in the positive ion mode (ESI ${ }^{+}$, using an external calibrant of sodium formate to deliver a mass accuracy of 5 ppm. Microwave experiments were carried out using a Biotage Initiator 8. Chromatography was carried out using a Presearch Isco Combiflash Companion using Presearch columns or on a Biotage SP4 using Biotage SNAP columns. LCMS t_{r} are quoted to the nearest 0.1 min . Analytical LCMS were obtained on the following systems: System A: stationary phase: Agilent SB C18 $50 \times 3 \mathrm{~mm}$ with 3 micron particle size, $50^{\circ} \mathrm{C}$; detection: UV: $210 \mathrm{~nm}-450 \mathrm{~nm}$ DAD- ELSD-MS; mobile phase: A: $\mathrm{H}_{2} \mathrm{O}+0.1 \%$ formic acid, B: MeCN $+0.1 \%$ formic acid; gradient: 95% A 1 min hold, $95-0 \%$ A over $8 \mathrm{~min}, 2.5 \mathrm{~min}$ hold, 0.50 min reequilibration; flow rate: $1.2 \mathrm{~mL} / \mathrm{min}$; System B: stationary phase: Agilent SB C18 $50 \times 3 \mathrm{~mm}$ with 1.8 micron particle size, $50{ }^{\circ} \mathrm{C}$; detection: UV: $200 \mathrm{~nm}-290 \mathrm{~nm}$ DAD-MS; mobile phase: $\mathrm{A}: \mathrm{H}_{2} \mathrm{O}+0.05 \% \mathrm{~F}_{3} \mathrm{CCOOH}, \mathrm{B}$: $\mathrm{MeCN}+0.05 \% \mathrm{~F}_{3} \mathrm{CCOOH}$; gradient: 95% A 1 min hold, $95-0 \%$ A over $8 \mathrm{~min}, 2.5 \mathrm{~min}$ hold, 0.50 min reequilibration; flow rate: $1.2 \mathrm{~mL} / \mathrm{min}$; System C: stationary phase: Gemini-NX 3um C18 110A, ambient temperature; detection: UV 225 nm-ELSD-MS; system/data file: CTC-MUX1; injection volume: $5 \mu \mathrm{~L}$; flow rate: $1.5 \mathrm{~mL} / \mathrm{min}$, mobile phase (acidic conditions): $\mathrm{A}: \mathrm{H}_{2} \mathrm{O}+0.1 \%$ formic acid, $\mathrm{B}: \mathrm{MeCN}+0.1 \%$ formic acid; Gradient (Time/min, \%B) - (0,5), (3,95), (4,95), (4.1,5), (5,5); (basic conditions): mobile phase: A: $\mathrm{H}_{2} \mathrm{O}+0.1 \%$ ammonia, B: MeCN + 0.1\% ammonia; gradient (Time/min, \%B) - (0,5),(3,95),(4,95),(4.1,5),(5,5). Preparative HPLC purification was carried out using: stationary phase: Gemini NX 5um C18 100x21.2, ambient temperature; detection: ELSD-MS; injection volume: $1000 \mu \mathrm{~L}$; flow rate: $18 \mathrm{~mL} / \mathrm{min}$. The mobile phase used was: acidic conditions: $\mathrm{A}: \mathrm{H}_{2} \mathrm{O}+0.1 \%$ formic acid, $\mathrm{B}: \mathrm{MeCN}+0.1 \%$ formic acid; gradient (time/min \%B) (0-1, $5),(1-7,5-98),(7-9,98),(9-9.1,98-5),(9.1-10,5)$; basic conditions: $A: \mathrm{H}_{2} \mathrm{O}+0.1 \%$ diethylamine, $\mathrm{B}: \mathrm{MeCN}+$ 0.1% diethylamine; gradient (Time/min,\%B) - (0-1, 5),(1-7, 5-98),(7-9, 98),(9-9.1, 98-5),(9.1-10, 5). Products from HPLC purification were assessed to be $\geq 80 \%$ peak area by UV at $225 \mathrm{~nm}, \geq 90 \%$ peak area by ELSD, and $\geq 50 \%$ spectral purity in ES^{+}or ES^{-}. LRMS were recorded on a Waters LCT Premier, equipped with electrospray ionisation source and TOF analyser, acquiring in positive and negative ionisation modes.

General procedure E

3,5-Dimethylisoxazole-4-boronic acid pinacol ester was dissolved in DME to make a 0.3 M stock solution. Aliquots ($1.0 \mathrm{~mL}, 0.3 \mathrm{mmol}$) of the stock solution were added to GreenHouse reaction tubes containing the aryl bromide compounds (0.20 mmol) and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(7 \mathrm{mg}, 0.01 \mathrm{mmol})$. The mixtures were stirred then 1.0 M aq. NaHCO_{3} solution ($0.6 \mathrm{~mL}, 0.6 \mathrm{mmol}$) was added to each tube. The tubes were placed in a Radley's

GreenHouse reactor then degassed by evacuating the apparatus then refilling with nitrogen several times. The mixtures were heated under reflux (block temperature set to $100{ }^{\circ} \mathrm{C}$) for 24 h . Another portion of catalyst ($7 \mathrm{mg}, 0.01 \mathrm{mmol}$) was added to each tube then the mixtures were refluxed for a further 24 h . The reaction mixtures were each worked up as follows $0.5 \mathrm{M} \mathrm{aq} .\mathrm{HCl}(1 \mathrm{~mL})$ and EtOAc (1 mL) were added. The aqueous phase was added onto an Isolute HM-N phase-separation cartridge using a pipette then left to equilibrate on the cartridge for 5 min . The organic phase was then added onto the cartridge followed by elution with more EtOAc to extract the organics. The eluted organic phases were evaporated by blow-down under a nitrogen stream. The crude material thus obtained was purified by preparative HPLC purification.

General procedure \mathbf{F}

3,5-Dimethylisoxazole-4-boronic acid pinacol ester was dissolved in DME to make a 0.3 M stock solution. Aliquots ($1.0 \mathrm{~mL}, 0.3 \mathrm{mmol}$) of the stock solution were added to GreenHouse reaction tubes containing the aryl bromide compounds $(0.20 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(7 \mathrm{mg}, 0.01 \mathrm{mmol})$. The mixtures were stirred then 1.0 M aq. NaHCO_{3} solution ($0.6 \mathrm{~mL}, 0.6 \mathrm{mmol}$) was added to each tube. The tubes were placed in a Radley's GreenHouse reactor then degassed by evacuating the apparatus then refilling with nitrogen several times. The mixtures were heated under reflux (block temperature set to $100^{\circ} \mathrm{C}$) for 24 h . The reaction mixtures were partitioned between water $(3 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. The organic phases were separated from the aqueous by passing them through a hydrophobic frit then evaporated by blow-down using a stream of nitrogen. The crude residues were dissolved in DMSO $(1 \mathrm{~mL})$ then purified by preparative HPLC.

General Procedure G

Compound 9 was dissolved in DMSO to make a 0.1 M stock solution. Aliquots of this stock $(1.0 \mathrm{~mL}, 0.10$ mmol) were dispensed into the reaction vials. The aldehydes were dissolved in ethanol to make 0.67 M stock solutions. Portions of the aldehyde stocks ($0.30 \mathrm{~mL}, 0.20 \mathrm{mmol}$) were then dispensed to the appropriate vials. 1.0 M aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ solution ($0.3 \mathrm{~mL}, 0.3 \mathrm{mmol}$) was added to each vial then the reactions were heated in a GreenHouse reactor at $80^{\circ} \mathrm{C}$ for 18 h . The reaction mixtures were allowed to cool then analysed by LCMS. The reactions were concentrated by half under blow-down then partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and 2 M aq. ammonia (2 mL). The organic phases were collected by passing through a hydrophobic frit then evaporated by blow-down. The residues were dissolved in DMSO (1 mL) then purified by preparative HPLC.

Cmpd	General synthesis procedure	Structure	Mass obtained (mg)	Yield (\%)	LCMS				${ }^{1} \mathrm{H}$ NMR (400 MHz) δ ppm
					$\begin{aligned} & \hline t_{\mathrm{r}} \\ & (\min) \end{aligned}$	m / z	UV purity (\%)	ELSD purity (\%)	
s1	E		28	54	$4.1{ }^{\text {a }}$	$\begin{array}{lr} \text { (ESI } \left.^{+}\right) & 258 \\ {\left[\mathrm{MH}^{+}\right],} & \left(E S I^{-}\right) \\ 256\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	>99	>99	$\begin{aligned} & \text { (DMSO-d })_{6}, 2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(19) H_{3}\right) \text {, } \\ & 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(18) \mathrm{H}_{3}\right), 7.49(\mathrm{dd} \text {, } \\ & J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}), 7.67(\mathrm{~d}, \\ & J=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(9) \mathrm{H}), 7.76-7.81 \\ & (\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(3) \mathrm{H}+\mathrm{C}(4) \mathrm{H}) 13.66(\mathrm{~s}, 1 \\ & \mathrm{H}, \mathrm{OH}) \end{aligned}$
s2	E		5	10	$2.8{ }^{\text {c }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 271 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 269\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	>99	>99	ND
s3	E		25	46	$1.9{ }^{\text {d }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 271 \\ {\left[\mathrm{MH}^{+}\right],\left(\mathrm{ESI}^{-}\right)} \\ 269\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	>99	>99	ND

					LCMS				
Cmpd	General synthesis procedure	Structure	Mass obtained (mg)	Yield (\%)	(min)	m / z	UV purity (\%)	ELSD purity (\%)	${ }^{1} \mathrm{H}$ NMR (400 MHz) δ ppm
s4	E		11	17	$4.9{ }^{\text {a }}$	$\left(\mathrm{ESI}^{+}\right)$ 327 $\left[\mathrm{MH}^{+}\right]$, $\left(\mathrm{ESI}^{-}\right)$ $325\left[(\mathrm{M}-\mathrm{H})^{-}\right]$	>99	>99	(DMSO-d ${ }_{6}$) $1.65(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{C}(22) \mathrm{H}_{3}\right), 2.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(7) \mathrm{H}_{3}\right), 2.40$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}(6) \mathrm{H}_{3}$), $5.36(\mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}, 1$ H, C(18)H), 7.62 (dd, J=9.0, 2.0 Hz , $1 \mathrm{H}, \mathrm{C}(19) \mathrm{H}), 7.74-7.78$ (m, 2 H , $\mathrm{C}(11) \mathrm{H}+\mathrm{C}(15) H)$
s5	E		13	19	$3.8{ }^{\text {a }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 345 \\ {\left[\mathrm{MH}^{+}\right],} \\ 343\left[(\mathrm{ESI}-\mathrm{H})^{-}\right] \end{array}$	>99	>99	(DMSO-d ${ }^{\text {) }} 1.59(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{C}(14) \mathrm{H}_{3}\right), 2.22$ ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{C}(25) \mathrm{H}_{3}\right)$, 2.40 (s, $\left.3 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{3}\right), 5.41$ (q , $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(11) \mathrm{H}$), 7.46 (dd, $J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(12) \mathrm{H}), 7.66$ (dd, J=8.5, $0.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(8) \mathrm{H}), 7.71$ (br. s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 7.74 (dd, J=2.0, $0.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(4) \mathrm{H}), 10.88$ (br. s, 1 H, OH)
s6	E		12	21	$4.1{ }^{\text {d }}$	$\begin{array}{lr} \text { (ESI } \left.^{+}\right) & 288 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 286\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	>99	>99	$\begin{aligned} & \left(\mathrm{DMSO}-d_{6}\right) 2.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(20) \mathrm{H}_{3}\right) \text {, } \\ & 2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(19) \mathrm{H}_{3}\right), 4.19(\mathrm{~s}, 3 \mathrm{H}, \\ & \left.\mathrm{OCH} \mathrm{H}_{3}\right), 7.51(\mathrm{dd}, \mathrm{~J}=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \\ & \mathrm{C}(10) \mathrm{H}), 7.71(\mathrm{dd}, J=8.5,0.5 \mathrm{~Hz}, 1 \\ & \mathrm{H}, \mathrm{C}(6) \mathrm{H}), 7.85(\mathrm{dd}, \mathrm{~J}=2.0,0.5 \mathrm{~Hz}, 1 \\ & \mathrm{H}, \mathrm{C}(4) \mathrm{H}) 13.23 \text { (br. s, } 1 \mathrm{H}, \mathrm{OH}) ; \end{aligned}$

					LCMS				
Cmpd	General synthesis procedure	Structure	Mass obtained (mg)	Yield (\%)	t_{r} (min)	m / z	UV purity (\%)	ELSD purity (\%)	${ }^{1} \mathrm{H}$ NMR (400 MHz) δ ppm
s7	E		44	55	5.0^{a}	$\left(\mathrm{ESI}^{+}\right)$ 403 $\left[\mathrm{MH}^{+}\right],\left(\mathrm{ESI}^{-}\right)$ $401\left[(\mathrm{M}-\mathrm{H})^{-}\right]$	>99	>99	(DMSO-d d_{6} 1.99-2.08 (m, 2 H , $\left.\mathrm{C}(14) \mathrm{H}_{2}\right), 2.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(25) \mathrm{H}_{3}\right)$, 2.25 (t, J=7.0 Hz, $\left.2 \mathrm{H}, \mathrm{C}(15) \mathrm{H}_{2}\right)$, $2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(24) \mathrm{H}_{3}\right), 4.33(\mathrm{t}, \mathrm{J}=7.0$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{C}(12) \mathrm{H}_{2}\right), 7.30$ (dd, J=8.5, $2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(13) \mathrm{H})$, $7.50-7.57$ (m, $2 \mathrm{H}, 2 \times \mathrm{Ph} H$), $7.58-7.64$ (m, 1 H, PhH), 7.74 (dd, J=8.5, $1.0 \mathrm{~Hz}, 1$ H, C(8)H), $7.77-7.82$ (m, 2 H , $2 \times \mathrm{PhH}$), 8.07 (s, $1 \mathrm{H}, \mathrm{C}(5) \mathrm{H}), 8.18$ (dd, J=2.0, $1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(8) \mathrm{H})$ 12.16 (br. s, $1 \mathrm{H}, \mathrm{OH}$)
s8	E		18	20	$2.3{ }^{\text {d }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 451 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 449\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	>99	>99	ND
s9	E		21	35	$3.0^{\text {a }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 304 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 302\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	>99	>99	ND

Cmpd	General synthesis procedure	Structure	Mass obtained (mg)	Yield (\%)	LCMS				${ }^{1} \mathrm{H}$ NMR (400 MHz) δ ppm
					t_{r} (min)	m / z	UV purity (\%)	ELSD purity (\%)	
s10	E		12	24	$2.8{ }^{\text {c }}$	$257 \quad\left[\mathrm{MH}^{+}\right]$, $\left(\mathrm{ESI}^{-}\right)$ $\left[(\mathrm{M}-\mathrm{H})^{-}\right]$	>99	>99	ND
s11	E		9	16	$3.0^{\text {c }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 272 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 270\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	96	89	ND
s12	E		16	28	$2.1{ }^{\text {d }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 285 \\ {\left[\mathrm{MH}^{+}\right],\left(\mathrm{ESI}^{-}\right)} \\ 283\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	>99	99	ND
s13	E		6	10	$4.8{ }^{\text {a }}$	$\begin{array}{ll} \left(\mathrm{ESI}^{+}\right) & 299 \\ {\left[\mathrm{MH}^{+}\right]} & \end{array}$	>99\%	ND	$\left(\mathrm{CDCl}_{3}\right) 2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(22) \mathrm{H}_{3}\right), 2.41$ (s, $\left.3 \mathrm{H}, \mathrm{C}(21) \mathrm{H}_{3}\right), 2.43(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{C}(10) \mathrm{H}_{3}\right), 2.70(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{C}(11) \mathrm{H}_{2}\right), 3.07(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{C}(6) \mathrm{H}_{2}\right), 6.96$ (dd, J=8.0, 1.0 Hz, 1 $\mathrm{H}, \mathrm{C}(9) \mathrm{H}), 7.14$ (d, J=1.0 Hz, 1 H , $\mathrm{C}(8) \mathrm{H}), 7.55$ (d, J=8.0 Hz, 1 H , $\mathrm{C}(4) \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$

Cmpd	General synthesis procedure	Structure	Mass obtained (mg)	Yield (\%)	LCMS				${ }^{1} \mathrm{H}$ NMR (400 MHz) δ ppm
					$\begin{aligned} & t_{\mathrm{r}} \\ & (\min) \end{aligned}$	m / z	UV purity (\%)	ELSD purity (\%)	
s14	E		8	13	$5.4{ }^{a}$	$\left(\mathrm{ESI}^{+}\right)$ 313 $\left[\mathrm{MH}^{+}\right]$	81	ND	$\left(\mathrm{CDCl}_{3}\right) 2.01-2.11 \quad(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{C}(10) \mathrm{H}_{2}\right), 2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(23) \mathrm{H}_{3}\right)$, $2.42-2.49 \quad(\mathrm{~m}, \quad 5 \quad \mathrm{H}$, $\left.\mathrm{C}(22) \mathrm{H}_{3}+\mathrm{C}(13) \mathrm{H}_{2}\right), 2.81-2.88(\mathrm{~m}, 2$ $\left.\mathrm{H}, \mathrm{C}(6) \mathrm{H}_{2}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(11) \mathrm{H}_{3}\right)$, $6.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(5) \mathrm{H}), 7.11(\mathrm{dd}$, $J=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(12) \mathrm{H}), 7.36$ $(\mathrm{dd}, J=8.5,0.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(8) \mathrm{H}), 7.47$ $(\mathrm{dd}, \mathrm{J}=1.5,0.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(4) \mathrm{H})$
s15	E		9	15	$2.6{ }^{\text {c }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 314 \\ {\left[\mathrm{MH}^{+}\right]} & \end{array}$	95	>99	ND
s16	E		31	45	$2.6{ }^{\text {c }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 342 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 340\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	>99	>99	ND

Cmpd	General synthesis procedure	Structure	Mass obtained (mg)	Yield (\%)	LCMS				${ }^{1} \mathrm{H}$ NMR (400 MHz) δ ppm
					t_{r} (min)	m / z	UV purity (\%)	ELSD purity (\%)	
s17	E		24	31	$2.3{ }^{\text {d }}$	(ESI $\left.^{+}\right)$ 391 $\left[\mathrm{MH}^{+}\right]$, $\left(\mathrm{ESI}^{-}\right)$ $389\left[(\mathrm{M}-\mathrm{H})^{-}\right]$	97	98	ND
s18	E		25	41	$2.3{ }^{\text {d }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 311 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 309\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	95	>99	ND
10	F		37	52	$2.1{ }^{\text {c }}$	$\begin{aligned} & 353 \quad\left[\mathrm{MH}^{+}\right], \\ & \left(\mathrm{ESI}^{-}\right) \\ & {\left[(\mathrm{M}-\mathrm{H})^{-}\right]} \end{aligned}$	98	>99	$\left(\mathrm{CDCl}_{3}\right) 1.11(\mathrm{~s}, 9 \mathrm{H}, 9 \times t-\mathrm{Bu}-\mathrm{H})$, $2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(22) \mathrm{H}_{3}\right), 2.35(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{C}(15) \mathrm{H}_{3}+\mathrm{C}(16) \mathrm{H}_{3}\right), 2.42$ ($\mathrm{s}, 3 \mathrm{H}$, $\left.\mathrm{C}(21) \mathrm{H}_{3}\right), 2.53$ - $2.68(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{C}(13) \mathrm{H}_{2}\right), 2.83$ ($\left.\mathrm{s}, 2 \mathrm{H}, \mathrm{C}(10) \mathrm{H}_{2}\right)$, 4.26-4.34 (m, $\left.2 \mathrm{H}, \mathrm{C}(12) \mathrm{H}_{2}\right), 7.11$ (dd, J=8.5, 1.5 Hz, $1 \mathrm{H}, \mathrm{C}(2) \mathrm{H}$), 7.38 (d, J=8.5 Hz, 1 H, C(3)H), 7.62 (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(6) \mathrm{H})$

Cmpd	General synthesis procedure	Structure	Mass obtained (mg)	Yield (\%)	LCMS				${ }^{1} \mathrm{H}$ NMR (400 MHz) δ ppm
					$\begin{aligned} & t_{\mathrm{r}} \\ & (\min) \end{aligned}$	m / z	UV purity (\%)	ELSD purity (\%)	
s19	F		26	58	$3.4{ }^{\text {d }}$	$\left(\mathrm{ESI}^{+}\right)$ 227 $\left[\mathrm{MH}^{+}\right],\left(\mathrm{ESI}^{-}\right)$ $225\left[(\mathrm{M}-\mathrm{H})^{-}\right]$	97	>99	ND
s20	F		22	48	$2.3{ }^{\text {d }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 229 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 227\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	>99	92	ND
s21	F		24	50	$3.4{ }^{\text {d }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 241 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 239\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	96	>99	ND
s22	F		31	63	$1.1{ }^{\text {c }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 244 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 242\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	71	54	ND
s23	F		31	61	$3.0{ }^{\text {d }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 252 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 250\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	91	98	ND

					LCMS				
Cmpd	General synthesis procedure	Structure	Mass obtained (mg)	Yield (\%)	t_{r} (min)	m / z	UV purity (\%)	ELSD purity (\%)	${ }^{1} \mathrm{H}$ NMR (400 MHz) δ ppm
s24	F		24	48	$3.5{ }^{\text {c }}$	$\begin{array}{lr} \hline\left(\mathrm{ESI}^{+}\right) & 253 \\ {\left[\mathrm{MH}^{+}\right],(\mathrm{ESI})} \\ 251\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	>99	>99	ND
s25	F		23	45	$2.7{ }^{\text {d }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 255 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 253\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	97	97	ND
s26	F		38	74	$2.9{ }^{\text {d }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 256 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 254\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	95	>99	ND
s27	F		12	23	$2.8{ }^{\text {d }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 257 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 255\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	>99	94	ND

					LCMS				
Cmpd	General synthesis procedure	Structure	Mass obtained (mg)	Yield (\%)	$\begin{aligned} & t_{\mathrm{r}} \\ & (\min) \end{aligned}$	m / z	UV purity (\%)	ELSD purity (\%)	${ }^{1} \mathrm{H}$ NMR (400 MHz) δ ppm
s28	F		34	66	$2.8{ }^{\text {c }}$	$\left(\mathrm{ESI}^{+}\right)$ 257 $\left[\mathrm{MH}^{+}\right],\left(\mathrm{ESI}^{-}\right)$ $255\left[(\mathrm{M}-\mathrm{H})^{-}\right]$	>99	>99	ND
s29	F		9	17	$3.2{ }^{\text {c }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 257 \\ {\left[\mathrm{MH}^{+}\right],} \\ 255\left[(\mathrm{ESI}-\mathrm{H})^{-}\right] \end{array}$	>99	>99	ND
s30	F		18	36	$2.6{ }^{\text {d }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 257 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 255\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	>99	95	ND
s31	F		36	70	$1.9{ }^{\text {c }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 258 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 256\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	98	95	ND

					LCMS				
Cmpd	General synthesis procedure	Structure	Mass obtained (mg)	Yield (\%)	t_{r} (min)	m / z	UV purity (\%)	ELSD purity (\%)	${ }^{1} \mathrm{H}$ NMR (400 MHz) δ ppm
s32	F		24	44	$2.6{ }^{\text {c }}$	$\left(\mathrm{ESI}^{+}\right)$ 270 $\left[\mathrm{MH}^{+}\right],\left(\mathrm{ESI}^{-}\right)$ $268\left[(\mathrm{M}-\mathrm{H})^{-}\right]$	81	93	ND
s33	F		32	59	$2.9{ }^{\text {c }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 270 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 268\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	>99	95	ND
s34	F		5	9	$3.1{ }^{\text {d }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 270 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 268\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	97	91	ND
s35	F		21	39	$3.1{ }^{\text {c }}$	$\begin{array}{lr} 271 & {\left[\mathrm{MH}^{+}\right],} \\ \left(\mathrm{ESI}^{-}\right) & 269 \\ {\left[(\mathrm{M}-\mathrm{H})^{-}\right]} \end{array}$	93	>99	ND
s36	F		18	33	$2.6{ }^{\text {c }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 272 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 270\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	87	>99	ND

					LCMS				
Cmpd	General synthesis procedure	Structure	Mass obtained (mg)	Yield (\%)	t_{r} (min)	m / z	UV purity (\%)	ELSD purity (\%)	${ }^{1} \mathrm{H}$ NMR (400 MHz) δ ppm
s37	F		13	23	$1.9{ }^{\text {d }}$	$\left(\mathrm{ESI}^{+}\right)$ 284 $\left[\mathrm{MH}^{+}\right],\left(\mathrm{ESI}^{-}\right)$ $283\left[(\mathrm{M}-\mathrm{H})^{-}\right]$	>99	>99	ND
s38	F		40	70	$3.5{ }^{\text {d }}$	$\begin{array}{ll} \left(\mathrm{ESI}^{+}\right) & 285 \\ {\left[\mathrm{MH}^{+}\right]} & \end{array}$	>99	>99	ND
s39	F		53	93	$3.1{ }^{\text {d }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 288 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 286\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	>99	>99	ND
s40	F		13	23	$2.5{ }^{\text {c }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 290 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 288\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	94	>99	ND

Cmpd	General synthesis procedure	Structure	Mass obtained (mg)	Yield (\%)	LCMS				${ }^{1} \mathrm{H}$ NMR (400 MHz) δ ppm
					t_{r} (min)	m / z	UV purity (\%)	ELSD purity (\%)	
s41	F		25	44	$3.2{ }^{\text {d }}$	$\begin{array}{lr} \hline \mathrm{ESI}^{+} \quad 290 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 288\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	>99	>99	ND
s42	F		36	62	$3.0{ }^{\text {d }}$	$\begin{array}{lr} 290 & {\left[\mathrm{MH}^{+}\right],} \\ \left(\mathrm{ESI}^{-}\right) & 288 \\ {\left[(\mathrm{M}-\mathrm{H})^{-}\right]} \end{array}$	>99	>99	ND
s43	F		37	62	$3.8{ }^{\text {c }}$	$\begin{aligned} & 295 \quad\left[\mathrm{MH}^{+}\right], \\ & \left(\mathrm{ESI}^{-}\right) \quad 293 \\ & {\left[(\mathrm{M}-\mathrm{H})^{-}\right]} \end{aligned}$	>99	>99	ND
s44	F		48	81	$3.3{ }^{\text {d }}$	$\begin{array}{lr} 296 & {\left[\mathrm{MH}^{+}\right],} \\ \left(\mathrm{ESI}^{-}\right) & 294 \\ {\left[(\mathrm{M}-\mathrm{H})^{-}\right]} \end{array}$	>99	>99	ND

Cmpd	General synthesis procedure	Structure	Mass obtained (mg)	Yield (\%)	LCMS				${ }^{1} \mathrm{H}$ NMR (400 MHz) δ ppm
					t_{r} (min)	m / z	UV purity (\%)	ELSD purity (\%)	
s49	F		28	46	$3.9{ }^{\text {d }}$	$\begin{array}{lr} \hline\left(\mathrm{ESI}^{+}\right) & 304 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 302\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	>99	>99	ND
s50	F		16	26	$3.1{ }^{\text {d }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 304 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 302\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	>99	>99	ND
s51	F		7	11	$3.0{ }^{\text {d }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 304 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 302\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	96	97	ND
s52	F		3	5	$3.3{ }^{\text {d }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 317 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 315\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	>99	>99	ND
s53	F		22	35	$2.9{ }^{\text {d }}$	$\begin{array}{ll} \left(\mathrm{ESI}^{+}\right) & 318 \\ {\left[\mathrm{MH}^{+}\right]} & \end{array}$	>99	>99	ND

					LCMS				
Cmpd	General synthesis procedure	Structure	Mass obtained (mg)	Yield (\%)	t_{r} (min)	m / z	UV purity (\%)	ELSD purity (\%)	${ }^{1} \mathrm{H}$ NMR (400 MHz) δ ppm
s54	F		15	23	$3.2{ }^{\text {d }}$	(ESI $\left.^{+}\right) \quad 318$ $\left[\mathrm{MH}^{+}\right],\left(\mathrm{ESI}^{-}\right)$, $316\left[(\mathrm{M}-\mathrm{H})^{-}\right]$	>99	>99	ND
s55	F		13	21	$3.3{ }^{\text {d }}$	$\begin{array}{lr} \left.\mathrm{ESI}^{+}\right) & 318 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 316\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	>99	>99	ND
s56	F		17	27	$3.1{ }^{\text {d }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 320 \\ {\left[\mathrm{MH}^{+}\right],\left(\mathrm{ESI}^{-}\right)} \\ 318\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	>99	>99	ND
s57	F		36	56	$3.1{ }^{\text {d }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 318 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 316\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	>99	>99	ND

Cmpd	General synthesis procedure	Structure	Mass obtained (mg)	Yield (\%)	LCMS				${ }^{1} \mathrm{H}$ NMR (400 MHz) δ ppm
					t_{r} (min)	m / z	UV purity (\%)	ELSD purity (\%)	
s58	F		22	34	$3.2{ }^{\text {d }}$	(ESI $\left.^{+}\right)$ 318 $\left[\mathrm{MH}^{+}\right]$, $\left(\mathrm{ESI}^{-}\right)$ $316\left[(\mathrm{M}-\mathrm{H})^{-}\right]$	>99	>99	ND
s59	F		20	31	$3.7{ }^{\text {d }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 324 \\ {\left[\mathrm{MH}^{+}\right]} & \end{array}$	>99	>99	ND
s60	F		51	79	$3.2{ }^{\text {d }}$	$\begin{aligned} & \left(\mathrm{ESI}^{-}\right) \quad 324 \\ & {\left[(\mathrm{M}-\mathrm{H})^{-}\right]} \end{aligned}$	>99	>99	ND
s61	F		26	39	$3.3{ }^{\text {d }}$	$\begin{array}{lr} 333 & {\left[\mathrm{MH}^{+}\right],} \\ \left(\mathrm{ESI}^{-}\right) & 331 \\ {\left[(\mathrm{M}-\mathrm{H})^{-}\right]} \end{array}$	>99	>99	ND

					LCMS				
Cmpd	General synthesis procedure	Structure	Mass obtained (mg)	Yield (\%)	t_{r} (min)	m / z	UV purity (\%)	ELSD purity (\%)	${ }^{1} \mathrm{H}$ NMR (400 MHz) δ ppm
s62	F		26	39	$3.3{ }^{\text {d }}$	$333\left[\mathrm{MH}^{+}\right]$, $\left(\mathrm{ESI}^{-}\right) \quad 331$ $\left[(\mathrm{M}-\mathrm{H})^{-}\right]$	>99	>99	ND
s63	F		17	25	$2.2{ }^{\text {c }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 334 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 332\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	>99	>99	ND
s64	F		9	13	$3.6{ }^{\text {d }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 342 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 340\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	>99	>99	ND
s65	F		13	19	$3.1{ }^{\text {d }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 349 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 347\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	>99	>99	ND

					LCMS				
Cmpd	General synthesis procedure	Structure	Mass obtained (mg)	Yield (\%)	t_{r} (min)	m / z	UV purity (\%)	ELSD purity (\%)	${ }^{1} \mathrm{H}$ NMR (400 MHz) δ ppm
s66	F		27	38	$3.1{ }^{\text {d }}$	$\left(\mathrm{ESI}^{+}\right)$ 353 $\left[\mathrm{MH}^{+}\right],(\mathrm{ESI})$ $351\left[(\mathrm{M}-\mathrm{H})^{-}\right]$	>99	>99	ND
s67	F		8	11	$3.6{ }^{\text {c }}$	$\begin{array}{lr} \text { (ESI } \left.^{+}\right) & 361 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 359\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	>99	>99	ND
s68	F		13	18	$3.4{ }^{\text {d }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 374 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 372\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	>99	>99	ND
s69	F		21	27	$3.0{ }^{\text {d }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 395 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 393\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	96	98	ND

					LCMS				
Cmpd	General synthesis procedure	Structure	Mass obtained (mg)	Yield (\%)	t_{r} (min)	m / z	UV purity (\%)	ELSD purity (\%)	${ }^{1} \mathrm{H}$ NMR (400 MHz) δ ppm
s74	F		38	57	$2.5{ }^{\text {c }}$	$\left(\mathrm{ESI}^{+}\right)$ 338 $\left[\mathrm{MH}^{+}\right]$, $\left(\mathrm{ESI}^{-}\right)$ $336\left[(\mathrm{M}-\mathrm{H})^{-}\right]$	>99	>99	ND
s75	F		29	54	$3.7{ }^{\text {d }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 267 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 265\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	84	88	
s76	F		33	50	$3.6{ }^{\text {d }}$	$\begin{array}{ll} \left(\mathrm{ESI}^{+}\right) & 335 \\ {\left[\mathrm{MH}^{+}\right]} & \end{array}$	99	>99	ND
s77	F		15	30	$2.0^{\text {c }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 254 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 252\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	>99	>99	ND

					LCMS				
Cmpd	General synthesis procedure	Structure	Mass obtained (mg)	Yield (\%)	t_{r} (min)	m / z	UV purity (\%)	ELSD purity (\%)	${ }^{1} \mathrm{H}$ NMR (400 MHz) δ ppm
s82	F		49	68	$2.5{ }^{\text {c }}$	(ESI $\left.^{+}\right)$ 376 $\left[\mathrm{MH}^{+}\right],(E S I-)$ $374\left[(\mathrm{M}-\mathrm{H})^{-}\right]$	>99	>99	ND
14	G		26	34	$3.4{ }^{\text {d }}$	(ESI ${ }^{+}$) 389 $\left[\mathrm{MH}^{+}\right],(E S I)$ 387 [(M-H)]	>99	>99	ND
s83	G		9	24	$3.2{ }^{\text {b }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 375 \\ {\left[\mathrm{MH}^{+}\right]} & \end{array}$	90	ND	$\begin{aligned} & \left(\mathrm{CDCl}_{3}\right) \quad 2.23 \quad(\mathrm{~s}, \quad 6 \quad \mathrm{H}, \\ & \left.\mathrm{C}(21) \mathrm{H}_{3}+\mathrm{C}(22) \mathrm{H}_{3}\right), 2.32(\mathrm{~s}, 3 \mathrm{H}, \\ & \left.\mathrm{C}(6) \mathrm{H}_{3}\right), 2.38(\mathrm{t}, \mathrm{~J}=7.52 \mathrm{~Hz}, 2 \mathrm{H}, \\ & \left.\mathrm{C}(19) \mathrm{H}_{2}\right), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(5) \mathrm{H}_{3}\right), 4.14 \\ & \left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(18) \mathrm{H}_{2}\right), 4.40(\mathrm{~s}, \\ & 2 \mathrm{H}, \mathrm{CH} 2 \mathrm{Ph}), 7.15(\mathrm{dd}, \mathrm{~J}=8.0,1.5 \\ & \mathrm{Hz}, 1 \mathrm{H}, \mathrm{C}(7) \mathrm{H}), 7.27-7.38(\mathrm{~m}, 6 \mathrm{H}, \\ & \mathrm{C}(10) \mathrm{H}+5 \times \mathrm{PhH}), 7.66(\mathrm{~d}, J=1.5 \mathrm{~Hz}, \\ & 1 \mathrm{H}, \mathrm{C}(9) \mathrm{H}) \end{aligned}$

					LCMS				
Cmpd	General synthesis procedure	Structure	Mass obtained (mg)	Yield (\%)	t_{r} (min)	m / z	UV purity (\%)	ELSD purity (\%)	${ }^{1} \mathrm{H}$ NMR (400 MHz) δ ppm
s84	G		19	54	$2.6{ }^{\text {d }}$	$\left(\mathrm{ESI}^{+}\right)$ $\left[\mathrm{MH}^{+}\right],(\mathrm{ESI}-)$ $368\left[(\mathrm{M}-\mathrm{H})^{-}\right]$	>99	>99	ND
s85	G		4	10	$3.1{ }^{\text {c }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 373 \\ {\left[\mathrm{MH}^{+}\right],\left(\mathrm{ESI}^{-}\right),} \\ 371\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	98	>99	ND
s86	G		5	12	$3.3{ }^{\text {d }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 393 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 391\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	>99	>99	ND

					LCMS				
Cmpd	General synthesis procedure	Structure	Mass obtained (mg)	Yield (\%)	t_{r} (min)	m / z	UV purity (\%)	ELSD purity (\%)	${ }^{1} \mathrm{H}$ NMR (400 MHz) δ ppm
s87	G		3	8	$3.4{ }^{\text {c }}$	$389\left[\mathrm{MH}^{+}\right]$	95	98	ND
s88	G		3	9	$3.6{ }^{\text {d }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 381 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 379\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	99	>99	ND
s89	G		13	34	$3.4{ }^{\text {d }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 389 \\ {\left[\mathrm{MH}^{+}\right],\left(\mathrm{ESI}^{-}\right)} \\ 387\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	95	99	ND

					LCMS				
Cmpd	General synthesis procedure	Structure	Mass obtained (mg)	Yield (\%)	t_{r} (min)	m / z	UV purity (\%)	ELSD purity (\%)	${ }^{1} \mathrm{H}$ NMR (400 MHz) δ ppm
s90	G		10	31	$2.9{ }^{\text {d }}$	$\left(\mathrm{ESI}^{+}\right)$ 313 $\left[\mathrm{MH}^{+}\right],\left(\mathrm{ESI}^{-}\right)$ $311\left[(\mathrm{M}-\mathrm{H})^{-}\right]$	98	>99	ND
s91	G		18	50	$3.5{ }^{\text {d }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 367 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 365\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	>99	98	ND
s92	G		16	54	$2.8{ }^{\text {d }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 299 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 297\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	92	>99	ND

					LCMS				
Cmpd	General synthesis procedure	Structure	Mass obtained (mg)	Yield (\%)	t_{r} (min)	m / z	UV purity (\%)	ELSD purity (\%)	${ }^{1} \mathrm{H}$ NMR (400 MHz) δ ppm
s93	G		5	16	$2.8{ }^{\text {c }}$	$\left(\mathrm{ESI}^{+}\right)$ 343 $\left[\mathrm{MH}^{+}\right]$, $\left(\mathrm{ESI}^{-}\right)$ $341\left[(\mathrm{M}-\mathrm{H})^{-}\right]$	92	>99	ND
s94	G		13	34	$2.8{ }^{\text {c }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 390 \\ {\left[\mathrm{MH}^{+}\right],} \\ 388\left[(\mathrm{MSI}-\mathrm{H})^{-}\right] \end{array}$	>99	>99	ND
s95	G		4	12	$2.0^{\text {c }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 359 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 357\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	96	>99	ND

Cmpd	General synthesis procedure	Structure	Mass obtained (mg)	Yield (\%)	LCMS				${ }^{1} \mathrm{H}$ NMR (400 MHz) $\delta \mathrm{ppm}$
					t_{r} (min)	m / z	UV purity (\%)	ELSD purity (\%)	
s96	G		10	30	$1.0^{\text {c }}$	$\left(\mathrm{ESI}^{+}\right)$ 327 $\left[\mathrm{MH}^{+}\right]$	>99	>99	ND
s97	G		13	36	$2.1{ }^{\text {c }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 369 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 367\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	>99	>99	ND
s98	G		5	13	$2.9{ }^{\text {d }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 384 \\ {\left[\mathrm{MH}^{+}\right]} & \end{array}$	90	>99	ND

Cmpd	General synthesis procedure	Structure	Mass obtained (mg)	Yield (\%)	LCMS				${ }^{1} \mathrm{H}$ NMR (400 MHz) δ ppm
					$\begin{aligned} & t_{\mathrm{r}} \\ & (\min) \end{aligned}$	m / z	UV purity (\%)	ELSD purity (\%)	
s99	G		6	17	$1.9{ }^{\text {c }}$	$\begin{array}{lr} \hline\left(\mathrm{ESI}^{+}\right) & 341 \\ {\left[\mathrm{MH}^{+}\right],} & \left(\mathrm{ESI}^{-}\right) \\ 339\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	98	>99	ND
s100	G		17	49	$3.2{ }^{\text {d }}$	$\begin{array}{lr} \left(\mathrm{ESI}^{+}\right) & 341 \\ {\left[\mathrm{MH}^{+}\right],\left(\mathrm{ESI}^{-}\right),} \\ 339\left[(\mathrm{M}-\mathrm{H})^{-}\right] \end{array}$	99	>99	ND

${ }^{a}$ LCMS system A
${ }^{b}$ LCMS system B
${ }^{c}$ LCMS system C (acidic conditions)
${ }^{d}$ LCMS system C (basic conditions)

Protein Expression and purification

cDNAs encoding human BRD4 (NCBI accession numbers NP 055114.1), human CBP (NCBI accession number 004371.1) and human EP300 (NCBI accession number 001420.2) were obtained from FivePrime and were used as template to amplify the bromodomain regions of the proteins. Proteins were cloned, expressed and purified as previously described ${ }^{2}$.

Differential scanning fluorimetry

Thermal melting experiments were carried out using an $\mathrm{Mx3005p}$ Real Time PCR machine (Stratagene). Proteins were buffered in 10 mM HEPES $\mathrm{pH} 7.5,500 \mathrm{mM} \mathrm{NaCl}$ and assayed in a 96 well plate at a final concentration of $2 \mu \mathrm{M}$ in $20 \mu \mathrm{~L}$ volume. Compounds were added at a final concentration of $10 \mu \mathrm{M}$. SYPRO Orange (Molecular Probes) was added as a fluorescence probe at a dilution of 1 in 1000. Excitation and emission filters for the SYPRO-Orange dye were set to 465 nm and 590 nm , respectively. The temperature was raised with a step of $3^{\circ} \mathrm{C}$ per minute from $25^{\circ} \mathrm{C}$ to $96^{\circ} \mathrm{C}$ and fluorescence readings were taken at each interval. The temperature dependence of the fluorescence during the protein denaturation process was approximated by the equation

$$
y(T)=y_{F}+\frac{y_{U}-y_{F}}{1+e^{\Delta u G_{(T)} / R T}}
$$

where $\Delta u G$ is the difference in unfolding free energy between the folded and unfolded state, R is the gas constant and y_{F} and y_{u} are the fluorescence intensity of the probe in the presence of completely folded and unfolded protein respectively ${ }^{3}$. The baselines of the denatured and native state were approximated by a linear fit. The observed temperature shifts, $\Delta T_{\mathrm{m}}{ }^{\text {obs }}$, were recorded as the difference between the transition midpoints of sample and reference wells containing protein without ligand in the same plate and determined by non liner least squares fit.

AlphaScreen

Assays were performed as described previously ${ }^{4}$ with minor modifications from the manufacturer's protocol (PerkinElmer, USA). All reagents were diluted in 25 mM HEPES, $100 \mathrm{mM} \mathrm{NaCl}, 0.1$ \% BSA, pH 7.4 supplemented with 0.05% CHAPS and allowed to equilibrate to room temperature prior to addition to plates. A 11-point 1:2.5 serial dilution of the ligands was prepared over the range of $5000-0 \mu \mathrm{M}$ and $0.1 \mu \mathrm{l}$ transferred to low-volume 384-well plates filled with 5 uL of the assay buffer (ProxiPlateTM- 384 Plus, PerkinElmer, USA), followed by 7 uL of 1 to 2 preparation of biotinylated peptide [H-YSGRGKacGGKacGLGKacGGAKacRHRK(Biotin)-OH for BRD4 or H-ALREIRRYQK(ac)STELLIRKLK(biotin)-OH for CBP/p300] and His-tagged protein to achieve final assay concentrations of 50 nM . Plates were sealed and incubated for a further 30 minutes, before the addition of $8 \mu \mathrm{l}$ of the mixture of streptavidin-coated donor beads $(12.5 \mu \mathrm{~g} / \mathrm{ml})$ and nickel chelate acceptor beads $(12.5 \mu \mathrm{~g} / \mathrm{ml})$ under low light conditions. Plates were foil-sealed to protect from light, incubated at room temperature for 60 minutes and read on a PHERAstar FS plate reader (BMG Labtech, Germany) using an AlphaScreen 680 excitation/570 emission filter set. IC50 values were calculated in Prism 5 (GraphPad Software, USA) after normalization against corresponding DMSO controls and are given as the final concentration of compound in the $20 \mu \mathrm{l}$ reaction volume.

Isothermal Titration Calorimetry

Experiments were carried out on a VP-ITC titration microcalorimeter from MicroCal ${ }^{\text {™ }}$, LLC (Northampton, MA) with a cell volume of 1.4189 ml and a $250 \mu \mathrm{l}$ microsyringe or a ITC200 titration microcalorimeter from GE Healthcare with a cell volume of $200 \mu \mathrm{l}$ and a $40 \mu \mathrm{l}$ microsyringe. Both instruments were equipped with a ThermoVac module. All experiments were carried out at $15{ }^{\circ} \mathrm{C}$ while stirring at 295 rpm , in ITC buffer (50 mM HEPES pH 7.4 (at $25^{\circ} \mathrm{C}$), 150 mM NaCl). The microsyringe was loaded with a solution of the protein sample (200-350 $\mu \mathrm{M}$ protein in ITC buffer) and was carefully inserted into the calorimetric cell which was filled with an amount of the ligand ($200 \mu \mathrm{l}, 20-30 \mu \mathrm{M}$ in ITC buffer). The system was first allowed to equilibrate until the cell temperature reached $15{ }^{\circ} \mathrm{C}$ and an additional delay of 120 (VP-ITC) or 60 sec (ITC200) was applied. All titrations were conducted using an initial control injection of $2 \mu \mathrm{~L}$ (VP-ITC) or 0.3 $\mu \mathrm{l}$ followed by 34 (VP-ITC) or 38 (ITC200) identical injections of $8 \mu \mathrm{l}$ (VP-ITC) or $1 \mu \mathrm{l}$ (ITC200) with a duration of 4 sec (VP-ITC) or 2 sec (ITC200) per injection and a spacing of 250 sec (VP-ITC) or 120 sec (ITC200) between injections. The titration experiments were designed in such a fashion, as to ensure complete saturation of the enzymes before the final injection. The heat of dilution for the proteins were independent of their concentration and corresponded to the heat observed from the last injection, following saturation of ligand binding, thus facilitating the estimation of the baseline of each titration from the last injection. The collected data were corrected for protein heats of dilution (measured on separate experiments by titrating the proteins into ITC buffer) and deconvoluted using the MicroCal ${ }^{\text {tm }}$ Origin software supplied with the instrument to yield enthalpies of binding (ΔH) and binding constants $\left(K_{\mathrm{B}}\right)$ in the same fashion to that previously described in detail by Wiseman and coworkers ${ }^{5}$. Thermodynamic parameters were calculated using the basic equation of thermodynamics $\left(\Delta G=\Delta H-T \Delta S=-R T \ln K_{B}\right.$, where $\Delta G, \Delta H$ and ΔS are the changes in free energy, enthalpy and entropy of binding respectively). In all cases a single binding site model was employed, supplied with the MicroCal ${ }^{m / m}$ Origin software package. Dissociation constants and thermodynamic parameters are listed on Table S3.

Crystallization

Aliquots of the purified proteins were set up for crystallization using a mosquito ${ }^{\circledR}$ crystallization robot (TTP Labtech, Royston UK). Coarse screens were typically setup onto Greiner 3-well plates using three different drop ratios of precipitant to protein per condition ($100+50 \mathrm{nl}, 75+75 \mathrm{nl}$ and $50+100 \mathrm{nl}$). Initial hits were optimized further scaling up the drop sizes. All crystallizations were carried out using the sitting drop vapor diffusion method at $4^{\circ} \mathrm{C}$. CBP crystals with compound 6 were grown by mixing 200 nl of protein ($10 \mathrm{mg} / \mathrm{ml}$ and 1 mM final ligand concentration) with 100 nl of reservoir solution containing $0.10 \mathrm{M} \mathrm{MgCl} 2,0.1 \mathrm{M}$ TRIS pH 8.0, 20 \% PEG 6 K and 10 \% EtGly. CBP crystals with compound 16 were grown by mixing 150 nl of the protein ($9.5 \mathrm{mg} / \mathrm{ml}$ with 1 mM of final ligand concentration) with an equal volume of reservoir solution containing $0.20 \mathrm{M} \mathrm{NaNO}_{3}, 20$ \% PEG 3350 and 10 \% EtGly. BRD4(1) crystals with compound 16 were grown by mixing 100 nl of the protein ($9.0 \mathrm{mg} / \mathrm{ml}$ and 5 mM final ligand concentration) with 100 nl of reservoir solution containing $0.20 \mathrm{M} \mathrm{NaI}, 0.1 \mathrm{M} \mathrm{BT}$-Propane $\mathrm{pH} 8.5,20 \%$ PEG3350 and 10% ethylene glycol. CBP crystals with 58 were grown by mixing 200 nl of the protein ($11.1 \mathrm{mg} / \mathrm{ml}$ with 1 mM of final ligand concentration) with 100 nl of reservoir solution containing $0.20 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}, 0.1 \mathrm{M} \mathrm{MES} \mathrm{pH} 6.0,20$ \% PEG 6K and 10% ethylene glycol. Diffraction quality crystals grew within a few days.

Data Collection and Structure solution

All crystals were cryo-protected using the well solution supplemented with additional ethylene glycol and were flash frozen in liquid nitrogen. Data were collected in-house on a Rigaku FRE rotating anode system equipped with a RAXIS-IV detector at $1.52 \AA$ (CBP/compound 6 and BRD4(1)/compound 16) or at Diamond
beamline 124 at a wavelength of $0.9686 \AA$ (CBP/compound 16) or beamline 102 at a wavelength of $0.979 \AA$ (CBP/compound 58). Indexing and integration was carried out using MOSFLM ${ }^{6}$ or XDS ${ }^{7,8}$ and scaling was performed with SCALA ${ }^{9}$. Initial phases were calculated by molecular replacement with PHASER ${ }^{10}$ using an ensemble of known bromodomain models (PDB IDs 2OSS, 20U0, 2GRC, 2001, 3DAI, 3D7C, 3DWY). Initial models were built by ARP/wARP ${ }^{11}$ followed by manual building in COOT^{12}. Refinement was carried out in REFMAC5 ${ }^{13}$. Thermal motions were analyzed using TLSMD ${ }^{14}$ and hydrogen atoms were included in late refinement cycles. Data collection and refinement statistics can be found in Supplemental Table S4. The model and structure factors have been deposited with PDB accession codes: 4NR4 (CBP/6); 4NR7 (CBP/58); 4NR5 (CBP/16) 4NR8 (BRD4(1)/16)

Cell culture and reagents

Human cell lines (HeLa, RKO and U2OS) were purchased from ATCC and cultivated according to the guidelines provided.

Fluorescence Recovery After Photobleaching (FRAP) Assay

FRAP studies were performed using a protocol and plasmids previously described, with the only alteration being the use of a circular bleach area of $13.5 \mu \mathrm{~m}^{2}$ for GFP-CBP or $7.6 \mu \mathrm{~m}^{2}$ for GFP-BRD4. ${ }^{2,15}$

Luciferase assay

The p53 reporter assay (Qiagen Cignal p53 Reporter (luc)) was performed according to the instructions of the manufacturer using Dual-Glo luciferase reagents (Promega). In brief RKO cells were transfected with the plasmid mixture (p53 firefly luciferase and CMV control renilla luciferase vectors) in 96 well plate format using Fugene HD (Roche). Twelve hours after transfection cells were treated with compound for 24 h and then stimulated with $0.3 \mu \mathrm{M}$ of doxorubicin for further 16 h . Percentage p53 activity was calculated as ratio of luminescence of the experimental reporter reading to luminescence from the control reporter, normalized to the DMSO control and multiplied by 100. IC_{50} values were calculated using GraphPad Prism v6.

Cytotoxicity assay

U2OS cells were harvested from exponential phase cultures and plated in 96 well opaque flat-bottom plates at a cell density of 3×10^{3} cells / well ($100 \mu \mathrm{l}$). Compounds were dissolved in dimethyl sulfoxide (DMSO) at a concentration of 10 mM and serial dilutions performed. 5 ul of compound solution was added to each well, thoroughly mixed and incubated for 24 and 72 hr at $37{ }^{\circ} \mathrm{C}$ in a humidified atmosphere containing $\quad 5 \%$ CO2. $10 \quad \mu$ l of WST-1 (Roche) was added to each well and after mixing plates returned to the incubator. Plates were read on a plate reader at 450 nm after 2 h for cells treated with compound for 24 h or after 1 hr for cells treated with compound for 72 h . Results were plotted as \% of DMSO control. CC_{50} values were calculated using GraphPad Prism v6.

Table S1. DSF vs AlphaScreen for compounds 14-20.

Cmpd	Target	DSF $\mathbf{\Delta T _ { \mathbf { m } }}\left({ }^{\circ} \mathbf{C}\right)$	AlphaScreen $\mathbf{I C}_{\mathbf{5 0}}(\boldsymbol{\mu M})$
$\mathbf{1 3}$	CBP	0.27	460
$\mathbf{1 4}$	BRD4(1)	2.6	22
	CBP	4.4	0.57
$\mathbf{1 5}$	BRD4(1)	2.7	9.1
	BRD9	1.5	100
	CBP	5.4	0.84
$\mathbf{1 6}$	BRD4(1)	2.7	2.4
	CECR2	1.0	12
	CBP	6.5	0.18
	p300	7.9	0.14
$\mathbf{1 7}$	ATAD2	0.16	42
	BRD4(1)	2.1	9.8
	CBP	3.9	0.82
$\mathbf{1 8}$	ATAD2	0.030	19
	BAZ2A	-0.52	14
	BRD4(1)	1.2	4.1
	CBP	2.0	2.0
$\mathbf{1 9}$	BRD4(1)	4.0	7.5
	CBP	6.5	0.75
$\mathbf{2 0}$	BRD4(1)	3.9	9.5
	CBP	6.6	0.44

Table S2. SAR for additional C-2 analgoues.
Cmpd

[^0]Table S3. Dissociation constants and thermodynamic paramters from ITC assays.

Cmpd	BRD	\mathbf{N}^{1}	$\Delta \mathrm{H}(\mathrm{kcal} / \mathrm{mol})$	-TAS (kcal/mol) ${ }^{2}$	$\Delta \mathrm{G}(\mathrm{kcal} / \mathrm{mol})$	$\mathrm{K}_{\mathrm{a}}\left(10^{6} \mathrm{M}^{-1}\right)$
16	CBP	1.00 ± 0.00223	-5.76 ± 0.0184	-2.90	-8.66	3.10 ± 0.106
16	p300	1.00 ± 0.00280	-6.09 ± 0.0245	-2.51	-8.60	2.88 ± 0.122
16	BRD4(1)	1.10 ± 0.00500	-5.86 ± 0.0338	-2.15	-8.01	1.05 ± 0.0509
25	CBP	1.02 ± 0.00208	-9.70 ± 0.0399	0.0674	-9.63	20.2 ± 1.71
25	BRD4(1)	0.987 ± 0.00330	-8.74 ± 0.0402	0.501	-8.24	1.83 ± 0.0697
31	CBP	0.887 ± 0.00152	-9.63 ± 0.0319	-0.346	-9.98	36.1 ± 2.91
31	BRD4(1)	0.674 ± 0.00495	-8.02 ± 0.0815	-0.331	-8.35	2.09 ± 0.155
32	CBP	1.18 ± 0.00143	-10.8 ± 0.0290	0.760	-10.1	44.8 ± 3.12
32	BRD4(1)	0.604 ± 0.00325	-9.99 ± 0.0746	1.670	-8.32	2.26 ± 0.121
35	CBP	0.703 ± 0.00135	-9.30 ± 0.0342	-0.638	-9.94	33.1 ± 2.53
35	BRD4(1)	0.645 ± 0.00594	-9.34 ± 0.118	1.240	-8.10	1.51 ± 0.116
57	CBP	0.983 ± 0.00535	-14.0 ± 0.0994	5.72	-8.50	2.72 ± 0.178
57	BRD4(1)	1.04 ± 0.0101	-8.50 ± 0.108	0.725	-7.78	0.828 ± 0.0479
58	CBP	0.991 ± 0.00239	-10.9 ± 0.0477	0.817	-10.1	47.4 ± 4.44
58	p300	0.975 ± 0.00330	-10.5 ± 0.0565	0.638	-9.86	31.4 ± 2.49
58	BRD4(1)	1.00 ± 0.0149	-8.47 ± 0.161	0.489	-7.98	1.17 ± 0.118
60	CBP	0.88 ± 0.00202	-9.59 ± 0.0406	-0.420	-10.0	38.1 ± 3.43
60	BRD4(1)	0.84 ± 0.0113	-7.46 ± 0.127	-0.844	-8.30	1.88 ± 0.236
61	CBP	1.01 ± 0.00517	-12.5 ± 0.0855	3.94	-8.58	4.18 ± 0.297
61	BRD4(1)	0.862 ± 0.00663	-9.21 ± 0.0912	1.12	-8.09	1.46 ± 0.0973
62	CBP	1.08 ± 0.00290	-11.1 ± 0.0496	1.37	-9.71	25.4 ± 2.01
62	BRD4(1)	0.859 ± 0.00961	-9.15 ± 0.128	0.978	-8.17	1.65 ± 0.136

T Molar binding ratio of the ligand-protein interaction (observed stoichiometry) ${ }^{2}$ At $\mathrm{T}=298.15 \mathrm{~K}$

Table S4. DSF selectivity panel vs AlphaScreen

	DSF $\Delta T_{m}\left({ }^{\circ} \mathrm{C}\right)^{*}$		AlphaScreen IC ${ }_{50}$ ($\left.\mu \mathrm{M}\right)^{*}$	
	Compound 16	Compound 58	Compound 16	Compound 58
BRD2(1)	2.4 ± 0.31 (4)	1.2 ± 0.21 (2)	2.3 ± 1.6 (7)	28 ± 3.0 (2)
BRD3(1)	2.6 ± 0.23 (4)	1.5 ± 0.29 (2)	$N D$	ND
BRD4(1)	2.6 ± 0.43 (5)	1.8 ± 0.46 (4)	$N D$	ND
BRD9	1.5 ± 0.32 (2)	-0.31 ± 0.19 (2)	>25	ND
CECR2	1.0 ± 0.49 (2)	0.87 ± 0.69 (2)	12 ± 1.7 (4)	>20
CBP	6.5 ± 0.18 (2)	9.7 ± 0.31 (4)	0.18 ± 0.041 (6)	0.069 ± 0.0080 (2)
p300	7.9 ± 0.37 (2)	9.7 ± 0.23 (3)	0.14 ± 0.029 (2)	$N D$
PB1(1)	0.34 ± 0.13 (13)	0.16 ± 0.086	$N D$	$N D$
TAF1(1)	0.28 ± 0.18 (5)	0.070 ± 0.11 (3)	$N D$	ND
TAF1L(1)	0.89 ± 019 (4)	0.53 ± 0.59 (2)	$N D$	$N D$
TIF1 α	1.0 ± 0.31 (4)	0.78 ± 0.11 (2)	$N D$	ND
TRIM28	-0.46 ± 0.63 (2)	$0.075 \pm 0.42(2)$	$N D$	ND

[^1]Table S5. X-ray crystallography data collection and refinement statistics.

Data Collection				
PDB ID	4NR4	4NR7	4NR5	4NR8
Protein/Ligand	CBP/6	CBP/58	CBP/16	BRD4(1)/16
Space group	$\mathrm{P} 2{ }_{1} 2_{1} 2_{1}$	$\mathrm{P} 2{ }_{1} 2_{1} 2_{1}$	P2 ${ }_{1}$	$\mathrm{P} 21_{1} 1_{1}{ }_{1}$
Cell dimensions: a, b, c (\AA) $\alpha, \beta, \gamma(\mathrm{deg})$	$\begin{array}{lll} 52.87 & 57.11 & 82.84 \\ 90.00 & 90.00 & 90.00 \end{array}$	$\begin{array}{lll} 35.34 & 49.83 & 80.55 \\ 90.00 & 90.00 & 90.00 \end{array}$	24.7044 .3152 .92 90.0095 .8790 .00	$\begin{array}{lll} 39.05 & 50.76 & 58.66 \\ 90.00 & 90.00 & 90.00 \end{array}$
Resolution* (\AA)	1.69 (1.78-1.69)	1.20 (1.26-1.20)	1.66 (1.75-1.66)	1.63 (1.72-1.63)
Unique observations*	28319 (3976)	44326 (6199)	13513 (1963)	14304 (1710)
Completeness* (\%)	98.5 (86.6)	97.9 (95.3)	99.7 (99.9)	95.5 (80.4)
Redundancy*	3.8 (3.7)	6.5 (6.5)	3.3 (3.3)	4.0 (3.2)
Rmerge*	0.046 (0.131)	0.032 (0.308)	0.033 (0.565)	0.110 (0.570)
I/ σ *	18.0 (7.9)	27.6 (5.5)	17.0 (2.0)	11.6 (2.0)
Refinement				
Resolution (\AA)	1.69	1.20	1.66	1.63
$\mathrm{R}_{\text {work }} / \mathrm{R}_{\text {free }}$ (\%)	15.6/19.2	12.8/14.4	18.9/22.6	21.3/24.6
Number of atoms (protein/other/water)	1874/81/286	1023/58/206	926/40/78	1046/37/121
B-factors (\AA^{2}) (protein/other/water)21.85	14.77/13.70/24.62	13.86/19.24/29.48	35.02/29.51/34.92	13.17/15.05/20.86
r.m.s.d bonds (\AA) r.m.s.d angles (${ }^{\circ}$)	$\begin{aligned} & 0.016 \\ & 1.578 \end{aligned}$	$\begin{aligned} & 0.009 \\ & 1.483 \end{aligned}$	0.015 1.534	$\begin{aligned} & 0.016 \\ & 1.684 \end{aligned}$
Ramachadran Favoured (\%) Allowed (\%) Disallowed (\%)	$\begin{gathered} 100.00 \\ 0.00 \\ 0.00 \end{gathered}$	$\begin{gathered} 100.00 \\ 0.00 \\ 0.00 \end{gathered}$	$\begin{gathered} 99.10 \\ 0.90 \\ 0.00 \end{gathered}$	$\begin{gathered} 97.52 \\ 2.48 \\ 0.00 \end{gathered}$

* Values in parentheses correspond to the highest resolution shell.

Table S6. Compound 58 ADME

Solubility (PBS, pH 7.4)	$38 \mu \mathrm{M}$
logD (PBS, pH 7.4)	3.9
CACO-2 AB	$3710^{-6} \mathrm{~cm} / \mathrm{s}$
p-GP inhibition	$21 \% @ 10 \mu \mathrm{M}$
HLM (remaining after 60 min$)$	0%

Table S7. Compound 58 Cerep wide ligand profiling

Target	$\mathrm{IC}_{50}(\mu \mathrm{M})$
alpha 2C (h) (antagonist radioligand)	0.11
PDE5 (h) (non-selective)	0.15
PAF (h) (agonist radioligand)	0.54
alpha 2A (h) (antagonist radioligand)	0.57
5-HT1A (h) (agonist radioligand)	1.2
CB2 (h) (agonist radioligand)	1.9
Ca2+ channel (L, diltiazem site) (benzothiazepines) (antagonist radioligand)	2.9
NK2 (h) (agonist radioligand)	3.9
alpha 2B (h) (antagonist radioligand)	4.2
MT1 (ML1A) (h) (agonist radioligand)	4.3
Cl - channel (GABA-gated) (antagonist radioligand)	4.6
CB1 (h) (agonist radioligand)	5.5
sigma (non-selective) (h) (agonist radioligand)	5.7
$\mathrm{Na}+$ channel (site 2) (antagonist radioligand)	6.6
5-HT transporter (h) (antagonist radioligand)	>10
5-HT1B (antagonist radioligand)	>10
5-HT1D (agonist radioligand)	>10
5-HT2A (h) (agonist radioligand)	>10
5-HT2B (h) (agonist radioligand)	>10
5-HT2C (h) (agonist radioligand)	>10
5-HT3 (h) (antagonist radioligand)	>10
5-HT4e (h) (antagonist radioligand)	>10
5-HT6 (h) (agonist radioligand)	>10
5-HT7 (h) (agonist radioligand)	>10
A1 (h) (agonist radioligand)	>10
A2A (h) (agonist radioligand)	>10
A2B (h) (antagonist radioligand)	>10
A3 (h) (agonist radioligand)	>10
Abl kinase (h)	>10
ACE (h)	>10
ACE-2 (h)	>10
acetylcholinesterase (h)	>10
alpha 1A (h) (antagonist radioligand)	>10
alpha 1B (h) (antagonist radioligand)	>10
AMPA (agonist radioligand)	>10
APJ (apelin) (h) (agonist radioligand)	>10
AR (h) (agonist radioligand)	>10
AT1 (h) (antagonist radioligand)	>10
AT2 (h) (agonist radioligand)	>10
ATPase ($\mathrm{Na}+/ \mathrm{K}+$)	>10
B2 (h) (agonist radioligand)	>10
BACE-1 (h) (beta -secretase)	>10
BB3 (h) (agonist radioligand)	>10

Target	$\mathrm{IC}_{50}(\mu \mathrm{M})$
beta 1 (h) (agonist radioligand)	>10
beta 2 (h) (agonist radioligand)	>10
beta 3 (h) (antagonist radioligand)	>10
BLT1 (LTB4) (h) (agonist radioligand)	>10
BZD (central) (agonist radioligand)	>10
Ca2+ channel (L, dihydropyridine site) (antagonist radioligand)	>10
$\mathrm{Ca} 2+$ channel (L, verapamil site) (phenylalkylamine) (antagonist radioligand)	>10
$\mathrm{Ca} 2+$ channel (N) (antagonist radioligand)	>10
CaMK2alpha (h)	>10
caspase-3 (h)	>10
CCK1 (CCKA) (h) (agonist radioligand)	>10
CCK2 (CCKB) (h) (agonist radioligand)	>10
CCR2 (h) (agonist radioligand)	>10
CDK2 (h) (cycA)	>10
choline transporter (CHT1) (h) (antagonist radioligand)	>10
COMT (catechol- O-methyl transferase)	>10
COX1 (h)	>10
COX2 (h)	>10
CRF1 (h) (agonist radioligand)	>10
CysLT1 (LTD4) (h) (agonist radioligand)	>10
D1 (h) (antagonist radioligand)	>10
D2S (h) (agonist radioligand)	>10
D3 (h) (antagonist radioligand)	>10
delta 2 (DOP) (h) (agonist radioligand)	>10
dopamine transporter (h) (antagonist radioligand)	>10
EP2 (h) (agonist radioligand)	>10
ERalpha (h) (agonist fluoligand)	>10
ERK2 (h) (P42mapk)	>10
ETA (h) (agonist radioligand)	>10
ETB (h) (agonist radioligand)	>10
FLT-1 kinase (h) (VEGFR1)	>10
FP (h) (agonist radioligand)	>10
Fyn kinase (h)	>10
GABA transporter (antagonist radioligand)	>10
GABAA1 (h) (alpha 1,beta 2,gamma 2) (agonist radioligand)	>10
GABAB(1b) (h) (antagonist radioligand)	>10
glucagon (h) (agonist radioligand)	>10
glycine (strychnine-insensitive) (antagonist radioligand)	>10
GR (h) (agonist radioligand)	>10
guanylyl cyclase (h) (activator effect)	>10
H1 (h) (antagonist radioligand)	>10
H2 (h) (antagonist radioligand)	>10
H3 (h) (agonist radioligand)	>10
H4 (h) (agonist radioligand)	>10
HIV-1 protease (h)	>10
inducible NOS	>10

Target	$\mathrm{IC}_{50}(\mu \mathrm{M})$
IP (PGI2) (h) (agonist radioligand)	>10
IRK (h) (InsR)	>10
kainate (agonist radioligand)	>10
kappa (KOP) (agonist radioligand)	>10
LXRbeta (h) (agonist radioligand)	>10
Lyn A kinase (h)	>10
M1 (h) (antagonist radioligand)	>10
M2 (h) (antagonist radioligand)	>10
M3 (h) (antagonist radioligand)	>10
M4 (h) (antagonist radioligand)	>10
MAO-A (antagonist radioligand)	>10
MC1 (agonist radioligand)	>10
MC3 (h) (agonist radioligand)	>10
MC4 (h) (agonist radioligand)	>10
MCH1 (h) (agonist radioligand)	>10
MMP-1 (h)	>10
MMP-2 (h)	>10
MMP-9 (h)	>10
motilin (h) (agonist radioligand)	>10
MT3 (ML2) (agonist radioligand)	>10
mu (MOP) (h) (agonist radioligand)	>10
N muscle-type (h) (antagonist radioligand)	>10
N neuronal alpha 4beta 2 (h) (agonist radioligand)	>10
neutral endopeptidase (h)	>10
NK1 (h) (agonist radioligand)	>10
NMDA (antagonist radioligand)	>10
NOP (ORL1) (h) (agonist radioligand)	>10
norepinephrine transporter (h) (antagonist radioligand)	>10
p38alpha kinase (h)	>10
PCP (antagonist radioligand)	>10
PDE2A1 (h)	>10
PDE3B (h)	>10
PDE4D2 (h)	>10
PDE6 (non-selective)	>10
PPARgamma (h) (agonist radioligand)	>10
SKCa channel (antagonist radioligand)	>10
sst1 (h) (agonist radioligand)	>10
sst4 (h) (agonist radioligand)	>10
TNF-alpha (h) (agonist radioligand)	>10
TR (TH) (agonist radioligand)	>10
UT (h) (agonist radioligand)	>10
V1a (h) (agonist radioligand)	>10
V2 (h) (agonist radioligand)	>10
VPAC1 (VIP1) (h) (agonist radioligand)	>10
xanthine oxidase/ superoxide O2- scavenging	>10
Y1 (h) (agonist radioligand)	>10

Target	IC $_{50}(\boldsymbol{\mu M})$
ZAP70 kinase (h)	>10

FRAP with GFP-CBP N1168F mutant

GFP-CBP N1168F Mutant FRAP

Figure S1. Time dependence of fluorescent recovery in the bleached area in Fluorescence Recovery After Photobleaching (FRAP) assays with GFP-tagged $3 \times$ CBP BRD N1168F mutant construct. Half times of fluorescence recovery ($\mathrm{t}_{1 / 2}$) are shown as bars, which are colored according to DMSO control (blue), DMSO + SAHA (green), $0.1 \mu \mathrm{M}$ BRD4(1)selective inhibitor 5 (yellow), $0.1 \mu \mathrm{M}$ compound 16 (orange), $0.1 \mu \mathrm{M}$ compound 58 (red).

Compound 58 cytotoxicity

Figure S2. (A) Compound 58 in U2OS MTT cytotoxicity assays, 24 h treatment; (B) Compound $\mathbf{5 8}$ in U2OS MTT cytotoxicity assays, 72 h treatment.

References

(1) Prasitpan, N.; Patel, J. N.; Decroos, P. Z.; Stockwell, B. L.; Manavalan, P.; Kar, L.; Johnson, M. E.; Currie, B. L. J. Heterocycl. Chem. 1992, 29, 335-41.
(2) Filippakopoulos, P.; Qi, J.; Picaud, S.; Shen, Y.; Smith, W. B.; Fedorov, O.; Morse, E. M.; Keates, T.; Hickman, T. T.; Felletar, I.; Philpott, M.; Munro, S.; McKeown, M. R.; Wang, Y.; Christie, A. L.; West, N.; Cameron, M. J.; Schwartz, B.; Heightman, T. D.; La Thangue, N.; French, C. A.; Wiest, O.; Kung, A. L.; Knapp, S.; Bradner, J. E. Nature 2010, 468, 1067-73.
(3) Matulis, D.; Kranz, J. K.; Salemme, F. R.; Todd, M. J. Biochemistry 2005, 44, 525866.
(4) Philpott, M.; Yang, J.; Tumber, T.; Fedorov, O.; Uttarkar, S.; Filippakopoulos, P.; Picaud, S.; Keates, T.; Felletar, I.; Ciulli, A.; Knapp, S.; Heightman, T. D. Mol. BioSyst. 2011, 7, 2899-908.
(5) Wiseman, T.; Williston, S.; Brandts, J. F.; Lin, L. N. Anal. Biochem. 1989, 179, 1317.
(6) Leslie, A. G. W.; Powell, H.; 7.01 ed.; MRC Laboratory of Molecular Biology: Cambridge, 2007.
(7) Kabsch, W. Journal of Applied Crystallography 1988, 21, 916-24.
(8) Kabsch, W. Journal of Applied Crystallography 1988, 21, 67-71.
(9) Evans, P.; 3.3.0 ed.; MRC Laboratory of Molecular Biology: Cambridge, 2007.
(10) McCoy, A. J.; Grosse-Kunstleve, R. W.; Storoni, L. C.; Read, R. J. Acta Crystallogr D Biol Crystallogr 2005, 61, 458-64.
(11) Perrakis, A.; Morris, R.; Lamzin, V. S. Nat Struct Biol 1999, 6, 458-63.
(12) Emsley, P.; Cowtan, K. Acta Crystallogr D Biol Crystallogr 2004, 60, 2126-32.
(13) Murshudov, G. N.; Vagin, A. A.; Dodson, E. J. Acta Crystallogr D Biol Crystallogr 1997, 53, 240-55.
(14) Painter, J.; Merritt, E. A. Acta Crystallogr D Biol Crystallogr 2006, 62, 439-50.
(15) Fedorov, O.; Lingard, H.; Wells, C.; Monteiro, O. P.; Picaud, S.; Keates, T.; Yapp, C.; Philpott, M.; Martin, S. J.; Felletar, I.; Marsden, B. D.; Filippakopoulos, P.; Muller, S.; Knapp, S.; Brennan, P. E. J. Med. Chem. 2014, 57, 462-76.

[^0]: mean $\Delta T_{m} \pm$ SEM (number of measurements).

[^1]: *Mean value \pm SEM (number of measurements).

