Soft Propargylic Deprotonation: Designed Ligand Enables Au-

 Catalyzed Isomerization of Alkynes to 1,3-DienesZhixun Wang, ${ }^{\dagger}$ Yanzhao Wang, ${ }^{\dagger}$ and Liming Zhang, ${ }^{*}$

Department of Chemistry \& Biochemistry, University of California, Santa Barbara, CA 93106

Content	Page number
General	S 2
Synthesis of Ligands and Catalysts	S 2
Preparation of Alkynes or Enynes	S 13
Alkynes or Enynes isomerization	S 26
One-pot synthesis (3aR,4S,7R,7aR)-4-(benzyloxy)-2,7-diphenyl- 3a,4,7,7a-tetrahydro-1H-isoindole-1,3(2H)-dione 4	
Mechanism Study	S 27
References	S 29
${ }^{\mathbf{1}} \mathbf{H},{ }^{\mathbf{1 3}} \mathbf{C},{ }^{\mathbf{3 1}} \mathbf{P},{ }^{\mathbf{1 9}} \mathbf{F}$ NMR spectra	

General. Ethyl acetate (ACS grade), hexanes (ACS grade) and diethyl ether (ACS grade) and α, α, α-Trifluorotolutene were purchased from Fisher Scientific and used without further purificationAnhydrous dichloromethane (HPLC grade), 1,2-dichloroethane (HPLC grade) was purified by distillation over calcium hydride. Tetrahydrofuran was distilled over sodium/benzophenone. Commercially available reagents were used without further purification. Reactions were monitored by thin layer chromatography (TLC) using Silicycle precoated silica gel plates. Flash column chromatography was performed over Silicycle silica gel (230-400 mesh). ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Varian $400 \mathrm{MHz}, 500 \mathrm{MHz}$ and 600 MHz spectrometers using residue solvent peaks as internal standards ($\left.\mathrm{CHCl} 3,{ }^{1} \mathrm{H}: 7.26 \mathrm{ppm} ;{ }^{13} \mathrm{C}: 77.00 \mathrm{ppm}\right) .{ }^{31} \mathrm{P}$ NMR spectra were recorded on Varian 400 MHz spectrometer calibrated by phosphoric acid peak $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right.$, $\left.{ }^{31} \mathrm{P}: 0.00 \mathrm{ppm}\right) .{ }^{19} \mathrm{~F}$ NMR spectra were recorded on Varian 400 MHz spectrometer calibrated by trifluoroacetic acid peak $\left(\mathrm{CF}_{3} \mathrm{COOH},{ }^{19} \mathrm{~F}: 76.55 \mathrm{ppm}\right)$. Infrared spectra were recorded with a Perkin Elmer FT-IR spectrum 2000 spectrometer and are reported in reciprocal centimeter $\left(\mathrm{cm}^{-1}\right)$. Mass spectra were recorded with Micromass QTOF2 Quadrupole/Time-of-Flight Tandem mass spectrometer using electron spray ionization or Waters GCT Premier time-of-flight mass spectrometer with a field ionization (FI) ion source.

Synthesis of Ligands and Catalysts:

2'-(diadamantylphosphino)- N, N-dimethylbiphenyl-3-amine (L1)

3-Bromo- N, N-dimethylaniline L1b was prepared according to the literature procedure ${ }^{[1]}$ and biaryl compound L1c was obtained by using same literature procedure ${ }^{[2]}$. Under nitrogen atmosphere $2 \mathrm{mmol} \mathbf{L 1 c}$ (1 equiv), $0.1 \mathrm{mmol} \mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%), 0.12 \mathrm{mmol}$ DiPPF (1,1'-bis(diisopropylphosphino)ferrocene, $6 \mathrm{~mol} \%$), 2.4 mmol NaOt - Bu (1.2 equiv) and 5 mL dry toluene were added to a flamed dried Schlenk flask and the resulting
suspension was stirred until apparently homogeneous (around 15 min). Added 2.2 mmol di(1-adamantyl)phosphine (1.1 equiv), the flask was heated at $110{ }^{\circ} \mathrm{C}$ in oil bath overnight, which then was cooled to room temperature, and purified by column chromatography without work-up to yield the final ligand $\mathbf{L} 1$ in 60% yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta: 7.87(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 1 \mathrm{H})$, $6.74-6.67(\mathrm{~m}, 1 \mathrm{H}), 6.62-6.55(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{~s}, 6 \mathrm{H}), 1.90(\mathrm{q}, J=12.2 \mathrm{~Hz}, 18 \mathrm{H}), 1.65$ $(\mathrm{s}, 12 \mathrm{H}).) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta: 152.63(\mathrm{~d}, J=32.5 \mathrm{~Hz}), 149.27,144.77$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}), 136.45(J=3.8 \mathrm{~Hz}), 133.10(\mathrm{~d}, J=26.3 \mathrm{~Hz}), 130.41(\mathrm{~d}, J=6.2 \mathrm{~Hz})$, 127.96, 127.70, 125.08, $119.16(\mathrm{~d}, ~ J=3.0 \mathrm{~Hz}), 115.72(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 110.65,42.00$, $41.95(\mathrm{~d}, J=13.1 \mathrm{~Hz}), 37.18(\mathrm{~d}, J=26.0 \mathrm{~Hz}), 36.98,28.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}) .{ }^{31} \mathbf{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta: 22.88$. IR (neat): 2901, 2847, 1602, 1584, 1498, 1449, 1343, 1301, 1047, 991, 955, 762, 743; HRMS ESI $(\mathrm{m} / \mathrm{z})$: $[\mathrm{MNa}]^{+}$calcd. for $\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{NPNa}$, 520.3109; found, 520.3088.

Gold Complex L1AuCl

To a solution of 1 mmol ligand $\mathbf{L 1}$ in 5 mL anhydrous DCM was added chloro(dimethylsulfide)gold(I) ($294.5 \mathrm{mg}, 1 \mathrm{mmol}$). The mixture was stirred for 30 min at room temperature and the solvent was evaporated off under reduced pressure to give the desired gold complex $\mathbf{L} \mathbf{1 A u C l}$ in quantitative yield. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta$: 7.84 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48$ (dt, $J=21.5,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.33$ (m, 1H), 7.28 (bs, $1 \mathrm{H}), 6.93(\mathrm{bs}, 1 \mathrm{H}), 6.60-6.30(\mathrm{~m}, 2 \mathrm{H}), 3.01(\mathrm{~s}, 6 \mathrm{H}), 2.27-2.05(\mathrm{~m}, 12 \mathrm{H}), 1.98(\mathrm{~d}, \mathrm{~J}=$ $21.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.67(\mathrm{~d}, J=20.9 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta: 151.42$, $142.81,134.24(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 133.12(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 130.17,129.14,125.95(\mathrm{~d}, J=6.2$ $\mathrm{Hz}), 123.90,123.55,117.48,113.95,112.69,42.31(\mathrm{~d}, J=45.5,45 \mathrm{~Hz}), 42.14(\mathrm{dd}, J=$ $45.5,2.7 \mathrm{~Hz}), 40.84,36.28(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 28.58\left(\mathrm{dd}, J_{l}=J_{2}=9.9 \mathrm{~Hz}\right) .{ }^{31} \mathbf{P}$ NMR
$\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta: 63.23$. IR (neat): 2904, 2849, 2803, 1600, 1585, 1500, 1450, 1431, 1355, 1344, 1301, 1260, 1178, 1163, 1124, 1045, 990, 972, 842, 770, 733; HRMS ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{MNa}]^{+}$calcd. for $\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{AuClNPNa}, 754.2463$; found, 754.2451.

2'-(diadamantylphosphino)- N, N-dimethylbiphenyl-4-amine (L2)

Starting with 4-Bromoaniline, ligand $\mathbf{L 2}$ was synthesized the same way with $\mathbf{L} 1 .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta: 7.88(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-$ $7.23(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.75-6.70(\mathrm{~m}, 2 \mathrm{H}), 3.00(\mathrm{~s}, 6 \mathrm{H}), 1.90(\mathrm{q}, J=$ $12.2 \mathrm{~Hz}, 18 \mathrm{H}), 1.66(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta: 152.00(\mathrm{~d}, J=32.1$ $\mathrm{Hz}), 148.83,136.62(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 133.19(\mathrm{~d}, J=26.3 \mathrm{~Hz}), 132.23(\mathrm{~d}, J=7.1 \mathrm{~Hz})$, $131.29(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 131.06(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 128.08,124.62,111.21,41.88(\mathrm{~d}, J=13.1$ $\mathrm{Hz}), 40.52,37.28(\mathrm{~d}, J=25.9 \mathrm{~Hz}), 36.97,28.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}) .{ }^{31} \mathbf{P} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 162\right.$ MHz) $\delta: 22.97$. IR (neat): 3047, 2902, 2847, 1612, 1522, 1450, 1343, 1301, 1224, 1194, 1166, 1047, 970, 947, 814, 768, 743; HRMS ESI (m / z): $[\mathrm{MH}]^{+}$calcd. for $\mathrm{C}_{34} \mathrm{H}_{45} \mathrm{NP}$, 498.3290; found, 498.3280 .

Gold Complex L2AuCl

Au complex L2AuCl was obtained in quantitative yield the same way as $\mathbf{L} \mathbf{A A u C l} .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta: 7.83(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dt}, J=23.5,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.36$
$-7.29(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~s}, 2 \mathrm{H}), 3.05(\mathrm{~s}, 6 \mathrm{H}), 2.24-2.05(\mathrm{~m}, 12 \mathrm{H})$, $1.98(\mathrm{~s}, 6 \mathrm{H}), 1.67(\mathrm{~s}, 12 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta: 151.06,134.35,133.85$ $(\mathrm{d}, J=7.7 \mathrm{~Hz}), 130.27,129.90,129.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 125.94(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 124.12(\mathrm{~d}$, $J=45.1 \mathrm{~Hz}), 113.37(\mathrm{~d}, J=61.3 \mathrm{~Hz}), 42.45(\mathrm{~d}, J=23.5 \mathrm{~Hz}), 42.09(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 36.25$, $28.57(\mathrm{~d}, J=9.8 \mathrm{~Hz}) .{ }^{31} \mathbf{P} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta: 63.49$. IR (neat): 2904, 2849, 2798, 1611, 1523, 1448, 1347, 1301, 1223, 1166, 1126, 1045, 972, 913, 815, 773, 744. HRMS ESI $(\mathrm{m} / \mathrm{z})$: $[\mathrm{MNa}]^{+}$calcd. for $\mathrm{C}_{34} \mathrm{H}_{45} \mathrm{AuClNPNa}, 752.2463$; found, 752.2448.
N-(2'-(diadamantylphosphino)biphenyl-3-yl)piperidine (L3)

2'-bromobiphenyl-3-amine L3a was prepared according to the literature procedure ${ }^{[3]}$ and biaryl compound L3b was obtained by using the reported procedure ${ }^{[4]}$. L3 was synthesized the same way as $\mathbf{L} 1$ in the yield of $63 \% .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta$: $7.87(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{td}, J=7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28$ (ddd, J $=7.4,4.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{dd}, J=8.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~s}$, $1 \mathrm{H}), 6.70(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.21-3.15(\mathrm{~m}, 4 \mathrm{H}), 1.95-1.82(\mathrm{~m}, 18 \mathrm{H}), 1.69(\mathrm{q}, J=5.8$ $\mathrm{Hz}, 4 \mathrm{H}), 1.65(\mathrm{~m}, 12 \mathrm{H}), 1.60-1.54(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta:$ 152.37 (d, $J=32.9 \mathrm{~Hz}), 150.71,144.60(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 136.48(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 133.16(\mathrm{~d}$, $J=27.8 \mathrm{~Hz}), 130.36(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 128.00(\mathrm{~d}, J=1.2 \mathrm{~Hz}), 127.56,125.11,121.59(\mathrm{~d}, J$ $=3.5 \mathrm{~Hz}), 119.69(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 114.36,50.72,41.94(\mathrm{~d}, J=13.2 \mathrm{~Hz}), 37.19(\mathrm{~d}, J=$ $26.3 \mathrm{~Hz}), 36.98,28.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 25.85,24.43 .{ }^{31} \mathbf{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta:$ 22.00. IR (neat): 3049, 2901, 2847, 1599, 1451, 1383, 1343, 1301, 1239, 1218, 933, 763, 742. MS ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{37} \mathrm{H}_{49} \mathrm{NP}, 538.36$; found, 538.33.

Gold Complex L3AuCl

Au complex L3AuCl was obtained in quantitative yield the same way as $\mathbf{L} \mathbf{A} \mathbf{A u C l} .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta: 7.86(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{td}, J$ $=7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{dd}, J=8.2,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.79(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.21-3.15(\mathrm{~m}, 4 \mathrm{H}), 1.96-1.79$ $(\mathrm{m}, 18 \mathrm{H}), 1.72-1.62(\mathrm{~m}, 18 \mathrm{H}), 1.60-1.55(\mathrm{~m}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta:$ $151.34,142.81,134.23(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 133.20(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 130.19(\mathrm{~d}, J=2.3 \mathrm{~Hz})$, $129.26,126.03,125.99,123.72(\mathrm{~d}, ~ J=43.9 \mathrm{~Hz}), 119.60$, $117.69,115.86,50.21$, $42.38(\mathrm{~d}, ~ J=23.6 \mathrm{~Hz}), 42.15(\mathrm{dd}, J=22.5,2.7 \mathrm{~Hz}), 36.30(\mathrm{dd}, J=7.4,1.6 \mathrm{~Hz}), 28.60(\mathrm{dd}$, $J=9.8,5.3 \mathrm{~Hz}), 25.56,24.30 .{ }^{31} \mathbf{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta: 62.35$. IR (neat): 3049, 2907, 2851, 1957, 1586, 1573, 1496, 1466, 1450, 1383, 1344, 1301, 1265, 1243, 1026, 973, 933, 772, 735. MS ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{37} \mathrm{H}_{49} \mathrm{AuClNP}, 770.30$; found, 770.29 .

N-(2'-(diadamantylphosphino)biphenyl-6-methoxy-3-yl)piperidine (L4)

2'-bromo-2-methoxybiphenyl L4a was prepared the same way as L3a.
To a solution of 10 mmol L4a (1 equiv) in 20 mL of acetonitrile, 11 mmol N iodosuccinimide (1.1 equiv) and 10 mmol trifluoroacetic acid (1 equiv) were added sequentially. The mixture was stirred under ambient condition for 5 h . After diluted with ethyl acetate, washed by aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and water and concentrated under reduced pressure, the product 2^{\prime}-bromo-5-iodo-2-methoxybiphenyl $\mathbf{L 4 b}$ was purified by flash chromatography (ethyl acetate/hexanes $=1 / 50$) in 85% yield .

A solution of $5 \mathrm{mmol} \mathbf{L 4 b}$ (1 equiv), 10 mmol piperidine (2 equiv), $0.5 \mathrm{mmol} \mathrm{CuI}(0.1$ equiv), 1 mmol L-proline (0.2 equiv) and $10 \mathrm{mmol} \mathrm{K}_{2} \mathrm{CO}_{3}$ (2 equiv) in 5 mL DMSO was heated at $90{ }^{\circ} \mathrm{C}$ for 20 h under N_{2}. After cooling to room temperature, the reaction mixture was diluted with water and extracted three times with ethyl ether. Dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the ether was evaporated under reduced pressure. The crude product was purified flash chromatography (ethyl acetate/hexanes $=1 / 15$), giving biaryl piperidine L4c in 71% yield.
$\mathbf{L 4}$ was synthesized the same way as L1 in the yield of 56%. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$ $\delta: 7.82(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.21$ $(\mathrm{m}, 1 \mathrm{H}), 6.93-6.88(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}$, $3 \mathrm{H}), 3.09-2.93(\mathrm{~m}, 4 \mathrm{H}), 2.01-1.76(\mathrm{~m}, 20 \mathrm{H}), 1.76-1.57(\mathrm{~m}, 18 \mathrm{H}), 1.53(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ $\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta: 150.49,148.56(\mathrm{~d}, J=34.5 \mathrm{~Hz}), 145.21,136.21(\mathrm{~d}, J$ $=2.9 \mathrm{~Hz}), 134.22(\mathrm{~d}, J=26.2 \mathrm{~Hz}), 132.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 130.47(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 128.22$, $125.27,123.14(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 116.70,110.07,55.02,52.31,41.86(\mathrm{dd}, J=48.1,13.1$ $\mathrm{Hz}), 37.05(\mathrm{~d}, ~ J=10.4 \mathrm{~Hz}), 36.96(\mathrm{dd}, J=91.8,24.9 \mathrm{~Hz}), 28.92(\mathrm{dd}, J=24.5,8.6 \mathrm{~Hz})$, $26.10,24.26 .{ }^{31} \mathbf{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta: 25.71$. IR (neat): 3049, 2901, 2848, 1501, 1463, 1301, 1235, 1048, 1028, 935, 801, 736. MS ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{38} \mathrm{H}_{51} \mathrm{NOP}, 568.37$; found, 568.36.

Gold complex L4AuCl

Au complex $\mathbf{L 4 A u C l}$ was obtained in quantitative yield the same way as $\mathbf{L 1 A u C l} .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta: 7.83(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.42$ (m, 1H), $7.29-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=9.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.56(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{t}, J=5.5 \mathrm{~Hz}, 4 \mathrm{H}), 2.21-2.07(\mathrm{~m}, 12 \mathrm{H}), 2.01-1.93(\mathrm{~m}$, $6 \mathrm{H}), 1.66(\mathrm{~m}, 16 \mathrm{H}), 1.56-1.48(\mathrm{~m}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta: 150.17$, 147.73 , $145.81,134.18(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 133.26(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 130.90(\mathrm{~d}, J=6.9 \mathrm{~Hz})$, $130.42(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 125.93(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 124.71(\mathrm{~d}, J=45.1 \mathrm{~Hz}), 121.06,118.29$, $112.31,55.31,51.92,42.42(\mathrm{dd}, J=31.4,23.9 \mathrm{~Hz}), 42.09(\mathrm{dd}, J=30.4,2.7 \mathrm{~Hz}), 36.29$ $(\mathrm{d}, J=4.4 \mathrm{~Hz}), 28.58(\mathrm{dd}, J=23.0,9.8 \mathrm{~Hz}), 25.79,24.17 .{ }^{31} \mathbf{P} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right)$ $\delta: 62.96$. IR (neat): $3048,2905,2850,1505,1466,1459,1451,1302,1271,1254,1234$, 1046, 735. MS ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{38} \mathrm{H}_{51} \mathrm{AuClNOP}, 800.31$; found, 800.31 $[\mathrm{M}+\mathrm{H}]^{+}$.

N-(2'-(dicyclohexylphosphino)biphenyl-6-methoxy-3-yl)piperidine (L5)

L4c

L5

Under nitrogen atmosphere $0.5 \mathrm{mmol} \mathbf{L 4 c}$ (1 equiv) was dissolved in 2 ml dry THF in a flame dried flask. The resulting solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and $0.6 \mathrm{mmol} n$-butyl lithium (1.6 M in THF) (1.2 equiv) was added dropwise. After the reaction mixture was stirred under $-78{ }^{\circ} \mathrm{C}$ for $40 \mathrm{~min}, 0.65 \mathrm{mmol}$ chlorodicyclohexylphosphine (1.3 equiv) was added by syringe and the reaction temperature was slowly raised up to room temperature
for $c a .2 \mathrm{~h}$. After quenching the reaction with a few drops of saturated $\mathrm{NH}_{4} \mathrm{Cl}$, the reaction mixture was extracted with DCM 3 times. After removing the solvent under reduced pressure, pure ligand $\mathbf{L 5}$ was obtained by flash chromatography in 35% yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta: 7.57-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.31(\mathrm{~m}$, $1 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=8.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}$, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.12-2.95(\mathrm{~m}, 4 \mathrm{H}), 1.99(\mathrm{ddd}, J=11.7,7.9,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.82-1.49(\mathrm{~m}, 18 \mathrm{H}), 1.37-0.82(\mathrm{~m}, 10 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta:$ $150.47,147.42(\mathrm{~d}, J=31.5 \mathrm{~Hz}), 145.64,135.26(\mathrm{~d}, J=19.4 \mathrm{~Hz}), 132.28(\mathrm{~d}, J=3.7 \mathrm{~Hz})$, $132.24,130.01(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 128.31,126.27,122.35(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 117.01,110.39$, $55.35,52.27,35.20(\mathrm{~d}, J=15.4 \mathrm{~Hz}), 33.27(\mathrm{~d}, J=13.5 \mathrm{~Hz}), 31.01(\mathrm{~d}, J=16.4 \mathrm{~Hz})$, $29.84(\mathrm{dd}, J=27.3,15.3 \mathrm{~Hz}), 28.48(\mathrm{~d}, J=4.7 \mathrm{~Hz}), 27.61-27.10(\mathrm{~m}), 26.54(\mathrm{~d}, J=20.1$ Hz), $26.12,24.28$ (observed complexity due to P-C coupling, which haven't been assigned definitively). ${ }^{31} \mathbf{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta:-9.66$. IR (neat): 3050, 2926, 2850, 2791, 1731, 1586, 1501, 1465, 1457, 1448, 1340, 1295, 1272, 1238, 1157, 1049, $1028,936,748,744,737$. MS ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{30} \mathrm{H}_{43} \mathrm{NOP}, 464.31$; found, 464.34 .

Gold Complex L5AuCl

Au complex L5AuCl was obtained in quantitative yield the same way as $\mathbf{L 1 A u C l}{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta: 7.60(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.42(\mathrm{~m}$, $1 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=9.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}$, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{t}, J=5.4 \mathrm{~Hz}, 4 \mathrm{H}), 2.27-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.01$ $(\mathrm{m}, 1 \mathrm{H}), 2.01-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.61(\mathrm{~m}, 12 \mathrm{H}), 1.54(\mathrm{q}, ~ J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.39-1.09$ $(\mathrm{m}, 10 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta: 150.17,146.34,146.26,132.66(\mathrm{~d}, \mathrm{~J}=$ $7.8 \mathrm{~Hz}), 132.59(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 130.70(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 130.12(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 127.10(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}), 125.72(\mathrm{~d}, J=53.0 \mathrm{~Hz}), 120.64,118.34,112.30,55.45,51.90,36.26(\mathrm{dd}$,
$J=79.5,33.9 \mathrm{~Hz}), 30.79(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 30.36(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 29.82(\mathrm{~d}, J=1.6 \mathrm{~Hz})$, 28.99 , $26.76-26.25(\mathrm{~m}), 25.98,25.65$ (dd, $J=5.8,1.7 \mathrm{~Hz}$), 24.1528 (observed complexity due to P-C coupling, which haven't been assigned definitively). ${ }^{31} \mathbf{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta: 41.13$. IR (neat): 3051, 2852, 1505, 1465, 1449, 1271, 1237, 1180, 1125, 1047, 1026, 935, 817, 734. MS ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{30} \mathrm{H}_{43} \mathrm{AuClNOP}$, 696.24; found, 696.25.

1-(2'-(di(adamantan-1-yl)phosphino)-6-methoxy-5'-(trifluoromethyl)-[1,1'-

biphenyl]-3-yl)piperidine (L6)

NIS (N -iodosuccinimide, 11 mmol) was added in small portions to a well-stirred solution of 1-bromo-4-(trifluoromethyl)benzene (10 mmol) in Triflic acid (50 mmol) which was cooled by an ice bath. The reaction mixture was stirred for 2 h at room temperature and then quenched by ice-water. After extraction with $\mathrm{Et}_{2} \mathrm{O}$, the combined organic extracts were washed with aqueous sodium bisulfite solution, dried over MgSO_{4}, and evaporated under reduced pressure. The crude product was used directly for the next step without further purification.

Starting from above product, L6 was prepared following the same route as L4. ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta: \delta 7.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=8.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J$ $=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J=8.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.10-2.91(\mathrm{~m}, 4 \mathrm{H}) .2 .00-1.87(\mathrm{~m}, 9 \mathrm{H}), 1.87-1.75(\mathrm{~m}, 9 \mathrm{H}), 1.75-$ $1.57(\mathrm{~m}, 16 \mathrm{H}), 1.56-1.50(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta: 150.23,149.08$ $(\mathrm{d}, J=35.1 \mathrm{~Hz}), 145.42,139.49(\mathrm{~d}, J=30.6 \mathrm{~Hz}), 136.42(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 131.52(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}), 130.00(\mathrm{q}, J=32.2 \mathrm{~Hz}), 127.30-127.10(\mathrm{~m}), 124.25(\mathrm{q}, J=272.3 \mathrm{~Hz}), 123.00$
$(\mathrm{d}, J=2.1 \mathrm{~Hz}), 121.68(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 117.26,54.93,52.30,41.81(\mathrm{dd}, J=66.9 \mathrm{~Hz}, 13.1$ $\mathrm{Hz}), 37.12(\mathrm{dd}, J=126 \mathrm{~Hz}, 26 \mathrm{~Hz}), 36.95(\mathrm{~d}, J=15.4 \mathrm{~Hz}), 28.85(\mathrm{dd}, J=30 \mathrm{~Hz}, 8.6 \mathrm{~Hz})$, 26.10, 24.23. ${ }^{31} \mathbf{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta: 19.89 .{ }^{19} \mathbf{F} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 376 \mathrm{MHz}\right) \delta:-$ 66.69. MS ESI $(m / z):[\mathrm{MH}]^{+}$calcd. for $\mathrm{C}_{39} \mathrm{H}_{50} \mathrm{~F}_{3} \mathrm{NOP}, 636.36$; found, 636.33 .

Gold Complex L6AuCl

Au complex $\mathbf{L 6 A u C l}$ was obtained in quantitative yield the same way as $\mathbf{L 1 A u C l}{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta: 7.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=$ $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{bs}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{bs}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{~s}$, $2 \mathrm{H}), 2.21-2.08(\mathrm{~m}, 12 \mathrm{H}), 2.00(\mathrm{~s}, 6 \mathrm{H}), 1.71-1.61(\mathrm{~m}, 18 \mathrm{H}), 1.53(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta: 149.98,148.66,146.04,134.59(\mathrm{~d}, J=2.6 \mathrm{~Hz})$, 132.16 (q, $J=32.8 \mathrm{~Hz}$), 130.30-130.00 (m), 129.61, 129.34, $123.47(\mathrm{~d}, J=273.1 \mathrm{~Hz}$), $122.46,120.85,118.91,112.50,55.23,51.94,42.61(\mathrm{dd}, J=28.1,22.9 \mathrm{~Hz}), 42.15(\mathrm{dd}, J$ $=32.1,2.8 \mathrm{~Hz}), 36.24(\mathrm{dd}, J=5.5,1.6 \mathrm{~Hz}), 28.59(\mathrm{dd}, J=23.9,9.9 \mathrm{~Hz}), 25.82$, 24.16. ${ }^{31} \mathbf{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta: 57.59 .{ }^{\mathbf{1 9}} \mathbf{F}$ NMR $\left(\mathrm{CDCl}_{3}, 376 \mathrm{MHz}\right) \delta:-67.23$. MS ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{MH}]^{+}$calcd. for $\mathrm{C}_{39} \mathrm{H}_{50} \mathrm{AuClF}_{3} \mathrm{NOP}, 868.29$; found, 868.30.

1-(2'-(di(adamantan-1-yl)phosphino)-6-methoxy-5'-(trifluoromethyl)-[1,1'-

 biphenyl]-3-yl)-3,5-dimethylpiperidine (L7)

L7

L7 was prepared in the same manner as L6. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta: 7.93(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J=8.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}$, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.48-3.32(\mathrm{~m}, 2 \mathrm{H}), 2.11(\mathrm{dt}, J=$ $36.3,11.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.97-1.74(\mathrm{~m}, 21 \mathrm{H}), 1.72-1.55(\mathrm{~m}, 13 \mathrm{H}), 0.89(\mathrm{dd}, J=34.2,6.4$ $\mathrm{Hz}, 6 \mathrm{H}), 0.62(\mathrm{q}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta: 150.28,149.05$ $(\mathrm{d}, J=34.5 \mathrm{~Hz}), 144.91,139.41(\mathrm{~d}, J=29.7 \mathrm{~Hz}), 136.43(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 131.61(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}), 129.98(\mathrm{q}, ~ J=32.0 \mathrm{~Hz}), 127.35-127.15(\mathrm{~m}), 125.34,123.14(\mathrm{~d}, J=2.5 \mathrm{~Hz})$, $121.71(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 117.30,110.31 .{ }^{31} \mathbf{P} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta: 24.80 .{ }^{\mathbf{1}} \mathbf{F} \mathbf{~ N M R}$ $\left(\mathrm{CDCl}_{3}, 376 \mathrm{MHz}\right) \delta:-61.40$. MS ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{MH}]^{+}$calcd. for $\mathrm{C}_{41} \mathrm{H}_{54} \mathrm{~F}_{3} \mathrm{NOP}$, 664.39; found, 664.37.

Gold Complex L7AuCl

Au complex $\mathbf{L 7 A u C l}$ was obtained in quantitative yield the same way as $\mathbf{L 1 A u C l} .{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta: 7.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~s}$, $1 \mathrm{H}), 7.26(\mathrm{~s}, 0 \mathrm{H}), 7.13(\mathrm{dd}, J=9.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=2.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~s}, 1 \mathrm{H}), 2.27(\mathrm{q}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.22-2.08(\mathrm{~m}, 10 \mathrm{H}), 2.02$ $-1.96(\mathrm{~m}, 6 \mathrm{H}), 1.90-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.62(\mathrm{~m}, 13 \mathrm{H}), 0.87(\mathrm{dd}, J=32.7,6.6 \mathrm{~Hz}$, $6 \mathrm{H}), 0.66(\mathrm{q}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta: 149.78,148.75(\mathrm{~d}, J$ $=13.7 \mathrm{~Hz}), 145.49,134.57(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 132.14(\mathrm{q}, J=31.8 \mathrm{~Hz}), 130.25-130.00(\mathrm{~m})$, $129.69(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 129.46(\mathrm{~d}, J=41.8 \mathrm{~Hz}), 123.48(\mathrm{~d}, J=273.0 \mathrm{~Hz}), 122.55-$ 122.30 (m), 120.84, 118.33, 112.53, 59.44, 57.35, 55.27, 42.63 (dd, $J=29.0,22.8 \mathrm{~Hz}$), $42.14(\mathrm{dd}, J=42.2,2.8 \mathrm{~Hz}), 41.92,36.24(\mathrm{dd}, J=8.5,1.6 \mathrm{~Hz}), 30.85(\mathrm{~d}, J=5.9 \mathrm{~Hz})$, $28.60(\mathrm{dd}, J=23.0,9.9 \mathrm{~Hz}), 19.45(\mathrm{~d}, J=22.8 \mathrm{~Hz}) .{ }^{31} \mathbf{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta:$
62.85. . ${ }^{19}$ F NMR $\left(\mathrm{CDCl}_{3}, 376 \mathrm{MHz}\right) \delta:-61.95$. MS ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{MH}]^{+}$calcd. for $\mathrm{C}_{41} \mathrm{H}_{54} \mathrm{AuClF}_{3} \mathrm{NOP}, 896.32$; found, 896.33.

Dimerized gold complex [(L7Au) $\left.{ }_{2}\right]_{B A R F}^{2}$

In a vial, $0.16 \mathrm{mmol} \operatorname{NaBARF}(1$ equiv) was added to a solution of $0.16 \mathrm{mmol} \operatorname{L7AuCl}(1$ equiv) in 5 mL dichloromethane. After stirring for 10 min , the reaction mixture was left to stand for 1 h . The resulting suspension was filtered through a short silica pad. The filtrate was collected in a sealed clean vial wrapped with aluminum foil and left to stand for 1 d , giving 72 mg desired product as colorless crystals. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 500 \mathrm{MHz}\right)$ $\delta: 8.16(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{dd}, J=8.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.70$ (d, $J=2.8 \mathrm{~Hz}, 8 \mathrm{H}), 7.54(\mathrm{~s}, 4 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.03-6.98(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $4 \mathrm{H}), 3.43-3.36(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.73(\mathrm{~m}, 3 \mathrm{H}), 2.46(\mathrm{td}, J=12.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-1.21$ $(\mathrm{m}, 30 \mathrm{H}), 1.05(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.92-0.84(\mathrm{~m}, 4 \mathrm{H}), 0.75(\mathrm{q}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{31} \mathbf{P}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 162 \mathrm{MHz}\right) \delta: 58.18 .{ }^{19} \mathbf{F} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 376 \mathrm{MHz}\right) \delta:-61.62,-62.58$.

Preparation of Alkynes or Enynes:

General Procedure A: Preparation of aryl internal alkynes via Sonogashira reaction

A dry round bottle was charged with 10.0 mmol aryl iodide or vinyl iodide (1 equiv), $\mathrm{Pd}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Cl}_{2}(5 \mathrm{~mol} \%), \mathrm{CuI}(10 \mathrm{~mol} \%)$. The mixture was vacuumed and flushed with N_{2} for three times. $20 \mathrm{~mL} \mathrm{Et}_{3} \mathrm{~N}$ and 12 mmol corresponding alkyne substrate (1.2 equiv) was
then added. The mixture was stirred at room temperature until all the aryl iodide or vinyl iodide was consumed. The reaction mixture was diluted with diethyl ether, washed with water and brine, dried with anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under vacuum. The residue was purified through silica gel flash chromatography, giving the desired product in 80-95\% yield.

Hex-1-ynylbenzene (1a)

The known compound was prepared according to the general procedure A (eluents: hexanes) and its spectroscopic data were in accordance with the literature data ${ }^{[5]}$.

1-(hex-1-ynyl)-4-methoxybenzene (1b)

The known compound was prepared according to the general procedure A (eluents: hexanes) and its spectroscopic data were in accordance with the literature data ${ }^{[5]}$.

1-(hex-1-ynyl)-4-(trifluoromethyl)benzene (1c)

The known compound was prepared according to the general procedure A (eluents: hexanes) and its spectroscopic data were in accordance with the literature data ${ }^{[6]}$.
ethyl 3-(hex-1-yn-1-yl)benzoate (1d)

1d
The known compound was prepared according to the general procedure A (eluents: hexanes/ethyl acetate $=10 / 1$) and its spectroscopic data were in accordance with the literature data ${ }^{[7]}$.

2-(3-(hex-1-yn-1-yl)phenyl)propan-2-ol (1e)

To a solution of ethyl 3-(hex-1-yn-1yl)benzoate ($254 \mathrm{mg}, 1.1 \mathrm{mmol}$) in dry diethyl ether (5 mL) was added dropwise to excess of methylmagnesium iodide solution ($2.5 \mathrm{M}, 3.3$ mmol). The reaction was monitored by TLC. Upon completion, $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$ was added and the aqueous phase was extracted with dichloromethane ($20 \mathrm{~mL} \times 3$). The combined extract was dried over MgSO_{4} and the solvent was evaporated. The crude product was purified by flash chromatography, giving 192 mg desired product in 81% yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta: 7.52(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dt}, J=7.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.23$ (m, 2H), $2.41(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.63-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{~s}, 6 \mathrm{H}), 1.49(\mathrm{dp}, J=9.4,7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta: 149.14,129.83$, 128.12, 127.64, 123.89, 123.67, 90.20, 80.69, 72.37, 31.67, 30.87, 22.03, 19.09, 13.64. IR (neat): 3369, 3064, 2961, 2933, 2873, 2226, 1599, 1482, 1460, 1417, 1364, 1174, 954, 891, 796. GCMS (m/z): $216\left(\mathrm{M}^{+}\right)$.

1-bromo-2-(hex-1-ynyl)benzene (1f)

The known compound was prepared according to the general procedure A (eluents: hexanes) and its spectroscopic data were in accordance with the literature data ${ }^{[8]}$.

1-iodo-2-(hex-1-ynyl)benzene (1g)

The known compound was prepared according to the general procedure A. In this case, 1 equiv. 1-hexyne and 1.2 equiv. o-diiodobenzene were used. Its spectroscopic data were in accordance with the literature data ${ }^{[9]}$.

3-(hex-1-yn-1-yl)thiophene (1h)

The known compound was prepared according to the general procedure A. Its spectroscopic data were in accordance with the literature data ${ }^{[10]}$.

(5-(benzyloxy)pent-1-ynyl)benzene (1i)

$1 i$
The known compound was prepared according to the general procedure A. Its spectroscopic data were in accordance with the literature data ${ }^{[11]}$.

(4-(benzyloxy)but-1-ynyl)benzene (1j)

1j

The known compound was prepared according to the general procedure A. Its spectroscopic data were in accordance with the literature data ${ }^{[11]}$.

(E)-ethyl undec-2-en-4-ynoate (1k)

1k
This known compound was prepared according to the literature. Its spectroscopic data were in accordance with the literature data ${ }^{[12]}$.

(E)-hex-1-en-2-yl non-2-en-4-ynoate (11)

(E)-Non-2-en-4-ynoic acid was prepared according to the literature ${ }^{[13]}$.

In a sealed 1 dr reaction vial equipped with a magnetic stirring bar, $3 \mathrm{mmol}(E)$-Non-2-en-4-ynoic acid (1 equiv), 3.9 mmol 1 -hexyne (1.3 equiv) and $3.1 \mathrm{mg} \mathbf{L A u N T f}_{2}$ (0.003 mmol) were added to 2 mL fluorobenzene and then the reaction mixture stireed at room temperature for 12 h . Once the reaction finished by TLC, it was concentrated and then further purified through silica gel flash chromatography to give the desired product in 92% yield. ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta: 6.81(\mathrm{dt}, J=15.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=15.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.75(\mathrm{dt}, J=3.8,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{td}, J=7.1,2.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.27-2.17(\mathrm{~m}, 2 \mathrm{H})$, $1.59-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.38(\mathrm{~m}, 4 \mathrm{H}), 1.38-1.30(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H})$, $0.90(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta: 164.02,156.21,128.48$, 127.22, 101.65, 100.90, 77.67, 32.83, 30.12, 28.35, 21.86, 21.74, 19.28, 13.61, 13.33. MS

ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{MNa}]^{+}$calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NaO}_{2}, 257.15$; found, 257.15.

(E)-dodec-3-en-5-yn-2-one (1m)

This known compound was prepared according to the literature. Its spectroscopic data were in accordance with the literature data ${ }^{[14]}$.

but-3-yn-2-ylbenzene (10)

10
This known compound was prepared according to the literature. Its spectroscopic data were in accordance with the literature data ${ }^{[15]}$.
((pent-4-yn-1-yloxy)methyl)benzene (1p)

1p
This known compound was prepared according to the literature. Its spectroscopic data were in accordance with the literature data ${ }^{[16]}$.

3-methyldodec-1-yne (1q)

This compound was prepared according to the literature ${ }^{[15]}$. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$ $\delta: 2.46-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.50-1.34(\mathrm{~m}, 4 \mathrm{H}), 1.33-1.21(\mathrm{~m}$, $12 \mathrm{H}), 1.17(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$ $\delta: 89.31,67.97,36.77,31.91,29.60,29.58,29.45,29.33,27.26,25.67,22.69,20.97$, 14.10. GCMS (m/z): $179.20(\mathrm{M}-1)^{+}$.

1q-D

${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta:{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}) \delta 2.46-2.34(\mathrm{~m}, 0.06 \mathrm{H}), 2.02(\mathrm{~s}$, $1 \mathrm{H}), 1.50-1.34(\mathrm{~m}, 4 \mathrm{H}), 1.33-1.21(\mathrm{~m}, 12 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta: 89.29,67.97,36.66,31.91,29.60,29.58,29.45$, 29.33, 27.23, $25.31(\mathrm{t}, \mathrm{J}=20 \mathrm{~Hz}), 22.69,20.85,14.10$.

3-methyldodeca-1,2-diene (7)

This known compound was prepared according to the literature ${ }^{[17]}$.

Alkynes or Enynes isomerization:

General Procedure B: Alkynes or Enynes Isomerization into Dienes or Trienes.

To a 3 dram vial were added sequentially 0.3 mmol alkyne or enyne, 0.006 mmol or 0.015 mmol L7AuCl ($2 \mathrm{~mol} \%$ or $5 \mathrm{~mol} \%$), 0.03 mmol NaBARF ($10 \mathrm{~mol} \%$) and 3 mL α, α, α-trifluorotoluene as solvent. The reaction was then heated at the indicated temperature monitored by TLC using p-anisaldehyde staining reagent (anisaldehyde/perchloric acid/acetone/water $=1 / 10 / 20 / 80$, v / v) or GCMS. Upon completion, the reaction was concentrated under reduced pressure. The residue was purified through silica gel flash chromatography to obtain pure product.

(1E,3E)-hexa-1,3-dienylbenzene (2a)

2a

The desired product was obtained in 92% yield $((1 \mathrm{E}, 3 \mathrm{E}) /(1 \mathrm{E}, 3 \mathrm{Z})=49 / 1)$ by added 2 $\mathrm{mol} \%$ catalyst and heated at $60^{\circ} \mathrm{C}$ for 12 h according to general procedure B . The spectra match the reported data ${ }^{[18]} .{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 7.38(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.30(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=15.7,10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.45(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=15.0,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{dt}, J=15.1,6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.17(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$ $\delta: 137.66,137.36,129.95,129.53,129.45,128.50,127.02,126.09,25.86,13.52$.

1-(($1 E, 3 E)$-hexa-1,3-dienyl)-4-methoxybenzene (2b)

The product was obtained in 68% yield $((1 \mathrm{E}, 3 \mathrm{E}) /(1 \mathrm{E}, 3 \mathrm{Z})=49 / 1)$ by added $2 \mathrm{~mol} \%$ catalyst and heated at $60^{\circ} \mathrm{C}$ for 17 h according to general procedure B . The spectra match the reported data ${ }^{[19]} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 7.31(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{dd}, J=15.6,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{dd}, J=$ $15.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{dt}, J=15.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{p}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.04(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta: 158.86,136.20,130.52$, $129.67,129.50,127.50,127.25,114.00,55.28,25.85,13.62$.

1-(($1 E, 3 E$)-hexa-1,3-dienyl)-4-(trifluoromethyl)benzene (2c)

2c
The product was obtained in 87% yield $((1 \mathrm{E}, 3 \mathrm{E}) /(1 \mathrm{E}, 3 \mathrm{Z})>50: 1)$ by added $2 \mathrm{~mol} \%$ catalyst and heated at $60{ }^{\circ} \mathrm{C}$ for 41 h according to general procedure $\mathrm{B} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta: 7.54(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=15.7,10.4$ $\mathrm{Hz}, 0 \mathrm{H}$), $6.47(\mathrm{~s}, 0 \mathrm{H}), 6.22$ (ddtd, $J=15.2,10.4,1.6,0.7 \mathrm{~Hz}, 0 \mathrm{H}), 5.96(\mathrm{dt}, J=15.2,6.6$ $\mathrm{Hz}, 0 \mathrm{H}), 2.24-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ $\delta: 141.18,139.35,131.91,129.13,128.34,126.11,125.47(\mathrm{q}, J=3.8 \mathrm{~Hz}), 25.91$, 13.39. ${ }^{19}$ F NMR $\left(\mathrm{CDCl}_{3}, 376 \mathrm{MHz}\right) \delta:-61.33$. IR (neat): $3015,2975,1614,1415,1325$, $1172,1120,1109,994,954,879,843,811$. GCMS (m/z): $226\left(\mathrm{M}^{+}\right)$.

Ethyl 3-((1E,3E)-hexa-1,3-dien-1-yl)benzoate (2d)

The product was obtained in 92% yield $((1 \mathrm{E}, 3 \mathrm{E}) /(1 \mathrm{E}, 3 \mathrm{Z})=20 / 1)$ by added $2 \mathrm{~mol} \%$ catalyst and heated at $60{ }^{\circ} \mathrm{C}$ for 24 h according to general procedure $\mathrm{B} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta: 7.82(\mathrm{dd}, J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.27$ $(\mathrm{m}, 1 \mathrm{H}), 6.89(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.66-6.62(\mathrm{~m}, 2 \mathrm{H}), 6.32-6.25(\mathrm{~m}, 1 \mathrm{H}), 5.93(\mathrm{dt}$, $J=15.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{pd}, J=7.4,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.07(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta: 140.48,139.58,138.71,133.35,132.32,129.35,128.46$, 128.24, 125.82, 100.02, 25.89, 13.41. IR (neat): 2966, 2935, 1720, 1599, 1581, 1443, 1368, 1284, 1201, 1106, 988, 751. GCMS (m/z): $230\left(\mathrm{M}^{+}\right)$.

2-(3-((1E,3E)-hexa-1,3-dien-1-yl)phenyl)propan-2-ol (2e)

The product was obtained in 88% yield $((1 \mathrm{E}, 3 \mathrm{E}) /(1 \mathrm{E}, 3 \mathrm{Z})=33 / 1)$ by added $2 \mathrm{~mol} \%$ catalyst and heated at $60{ }^{\circ} \mathrm{C}$ for 24 h according to general procedure $\mathrm{B} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $600 \mathrm{MHz}) \delta: 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.25(\mathrm{~m}, 3 \mathrm{H}), 6.79(\mathrm{dd}, J=15.7,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}$, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=15.1,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{dt}, J=15.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-$ $2.14(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~s}, 6 \mathrm{H}), 1.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta$: $149.35,137.62,137.45,130.03,129.60,129.51,128.43,124.46,123.21,122.19,72.54$, 31.70, 25.87, 13.53. IR (neat): 3377, 3018, 2970, 2932, 2873, 1599, 1460, 1364, 1168, 987, 789. GCMS (m/z): $216\left(\mathrm{M}^{+}\right)$.

1-bromo-2-((1E,3E)-hexa-1,3-dienyl)benzene (2f)

The product was obtained in 96% yield $((1 \mathrm{E}, 3 \mathrm{E}) /(1 \mathrm{E}, 3 \mathrm{Z})=16: 1)$ by using $2 \mathrm{~mol} \%$ catalyst and heated at $60{ }^{\circ} \mathrm{C}$ for 12 h according to general procedure $\mathrm{B} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $600 \mathrm{MHz}) \delta: 7.59-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{td}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.80(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 0 \mathrm{H}), 6.70(\mathrm{dd}, J=15.6,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.31-6.23(\mathrm{~m}, 1 \mathrm{H}), 5.93(\mathrm{dt}$, $J=14.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~h}, J=6.8,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{td}, J=7.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta: 138.68,137.28,132.97,132.11,129.46,128.38,128.21$, $127.34,126.26,123.63,25.88,13.40$. GCMS (m/z): $236.3\left(\mathrm{M}^{+}\right)$.

Ethyl 3-((1E,3E)-hexa-1,3-dien-1-yl)benzoate (2g)

The product was obtained in 92% yield $((1 \mathrm{E}, 3 \mathrm{E}) /(1 \mathrm{E}, 3 \mathrm{Z})=8.3 / 1)$ by added $2 \mathrm{~mol} \%$ catalyst and heated at $60{ }^{\circ} \mathrm{C}$ for 24 h according to general procedure $\mathrm{B} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta: 8.05(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{dt}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{dt}, J=7.8,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=15.7,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=15.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.25-6.18(\mathrm{~m}, 1 \mathrm{H}), 5.92(\mathrm{dt}, J=15.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.23-$ $2.14(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}) \delta: 166.59,138.33,137.98$, 130.81, 130.61, 130.23, 129.27, 128.84, 128.51, 127.94, 127.09, 60.98, 25.88, 14.34, 13.46. IR (neat): 3019, 2964, 2930, 2871, 1642, 1580, 1460, 1432, 1278, 1009, 985, 943, 747. GCMS (m/z): $284\left(\mathrm{M}^{+}\right)$.

3-((1E,3E)-hexa-1,3-dien-1-yl)thiophene (2h)

The product was obtained in 77% yield $((1 \mathrm{E}, 3 \mathrm{E}) /(1 \mathrm{E}, 3 \mathrm{Z})=24 / 1)$ by added $5 \mathrm{~mol} \%$ catalyst and heated at $80{ }^{\circ} \mathrm{C}$ for 12 h according to general procedure $\mathrm{B} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $600 \mathrm{MHz}) \delta: 7.25(\mathrm{dd}, J=5.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=5.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=$
$3.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{dd}, J=15.6,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.16$ (ddt, J $=15.1,10.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{dt}, J=15.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{pd}, J=7.4,1.5 \mathrm{~Hz}, 2 \mathrm{H})$, $1.05(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta: 140.37,136.84,129.52$, 129.40, 125.84, 124.86, 124.14, 121.14, 25.85, 13.55. IR (neat): 3103, 2966, 2931, 2877, 1675, 1462, 1379, 1247, 1121, 966, 866, 775. GCMS (m/z): $164\left(\mathrm{M}^{+}\right)$.

((1E,3E)-5-(benzyloxy)penta-1,3-dienyl)benzene (2i)

The product was obtained in 88% yield $((1 \mathrm{E}, 3 \mathrm{E}) /(1 \mathrm{E}, 3 \mathrm{Z})>99 / 1)$ by added $2 \mathrm{~mol} \%$ catalyst and heated at $60{ }^{\circ} \mathrm{C}$ for 12 h according to general procedure B. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta: 7.44-7.28(\mathrm{~m}, 9 \mathrm{H}), 7.24(\mathrm{td}, J=7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.78(\mathrm{~m}, 1 \mathrm{H})$, $6.57(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.50-6.42(\mathrm{~m}, 1 \mathrm{H}), 5.94(\mathrm{dt}, J=15.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J$ $=1.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta: 138.26$, $137.14,132.95,132.69,130.08,128.58,128.38,128.24,127.76,127.61,127.57,126.37$, 72.13, 70.41. IR (neat): 3061, 3026, 2925, 2852, 1496, 1450, 1362, 1111, 1071, 1028, 745. GCMS (m/z): $250\left(\mathrm{M}^{+}\right)$.

((1E,3E)-4-(benzyloxy)buta-1,3-dienyl)benzene (2j)

The product was obtained in 53% yield by adding $2 \mathrm{~mol} \%$ catalyst and heating at $60{ }^{\circ} \mathrm{C}$ for 22 h according to general procedure B . The spectra match the reported data ${ }^{[20]}$. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta: 7.48-7.06(\mathrm{~m}, 10 \mathrm{H}), 6.78(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{dd}, J$ $=15.6,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{dd}, J=12.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~s}$, $2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta: 150.88,138.02,136.55,128.59,128.51$, 128.13, 127.56, 127.38, 126.52, 125.62, 125.59, 108.09, 72.02.

2k
The product was obtained in 73% yield $((2 \mathrm{E}, 4 \mathrm{E}, 6 \mathrm{E}) /(2 \mathrm{E}, 4 \mathrm{E}, 6 \mathrm{Z})=12 / 1)$ with 10% starting material recovered by adding $3 \mathrm{~mol} \%$ catalyst plus $8 \mathrm{~mol} \% \mathrm{NaBARF}$ and heated at $60^{\circ} \mathrm{C}$ for 24 h and another $2 \mathrm{~mol} \%$ catalyst plus $8 \mathrm{~mol} \% \mathrm{NaBARF}$ for another 24 h according to general procedure B . This compound is known and its spectroscopic data were in accordance with the literature data ${ }^{[13]}$.

(2E,4E,6E)-hex-1-en-2-yl nona-2,4,6-trienoate (2l)

The product was obtained in 82% yield $((2 \mathrm{E}, 4 \mathrm{E}, 6 \mathrm{E}) /(2 \mathrm{E}, 4 \mathrm{E}, 6 \mathrm{Z})=9.6 / 1)$ by adding 2 $\mathrm{mol} \%$ catalyst and $8 \mathrm{~mol} \% \mathrm{NaBARF}$ and heated at $60^{\circ} \mathrm{C}$ for 1 day, another $2 \mathrm{~mol} \%$ catalyst plus $8 \mathrm{~mol} \% \mathrm{NaBARF}$ for one more day, then another $2 \mathrm{~mol} \%$ catalyst plus 4 $\mathrm{mol} \% \mathrm{NaBARF}$ for 1 day according to general procedure B. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$ $\delta: 7.35(\mathrm{dd}, J=15.2,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{dd}, J=14.9,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{dd}, J=14.9$, $11.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{dd}, J=15.2,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{dt}, J=15.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~d}, J$ $=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.78-4.69(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $1.51-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta: 165.29,156.65,146.07,142.50,141.93,128.83$, $127.60,119.28,100.87,33.15,28.62,26.01,22.11,13.83,13.12$. MS ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{MNa}]^{+}$ calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NaO}_{2}, 257.15$; found, 257.15.

(3E,5E,7E)-dodeca-3,5,7-trien-2-one (2m)

The product was obtained in 46% yield ($2 \mathrm{E}, 4 \mathrm{E}, 6 \mathrm{E}$) / ($2 \mathrm{E}, 4 \mathrm{E}, 6 \mathrm{Z}$) > 8/1) with 21% starting material recovered by adding $3 \mathrm{~mol} \%$ catalyst plus $8 \mathrm{~mol} \% \mathrm{NaBARF}$ and heated at $70^{\circ} \mathrm{C}$ for 24 h and then another $2 \mathrm{~mol} \%$ catalyst plus $8 \mathrm{~mol} \% \mathrm{NaBARF}$ for another 24
h according to general procedure B. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta: 7.14(\mathrm{dd}, J=15.5$, $11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{dd}, J=14.9,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{dd}, J=14.9,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{dd}$, $J=15.3,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{dt}, J=14.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}$, $3 \mathrm{H}), 2.15(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.44-1.26(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta: 198.43,143.77,142.16,141.17,129.84,129.36,128.10$, 32.66, 31.04, 27.24, 22.22, 13.86. GCMS (m/z): $178\left(\mathrm{M}^{+}\right)$.

1-vinylcyclohex-1-ene (2n)

The volatile product was obtained in 80% yield by using $2 \mathrm{~mol} \%$ catalyst in DCM at 40 ${ }^{\circ} \mathrm{C}$ for 12 h according to general procedure B . This compound is known and its spectroscopic data were in accordance with the literature data ${ }^{[21]}$.

buta-1,3-dien-2-ylbenzene (20)

20
The product was obtained in 84% yield by using $2 \mathrm{~mol} \%$ catalyst and heated at $40^{\circ} \mathrm{C}$ for 12 h according to general procedure B . This compound is known and its spectroscopic data were in accordance with the literature data ${ }^{[22]}$.

((penta-3,4-dien-1-yloxy)methyl)benzene (2p')

$2 p^{\prime}$
The product was obtained in 30% yield (NMR yield determined by using diethyl phthalate as internal references) using $2 \mathrm{~mol} \%$ catalyst and heated at $60{ }^{\circ} \mathrm{C}$ for 8 h according to general procedure B. This compound is known and its spectroscopic data were in accordance with the literature data ${ }^{[23]}$.

((pent-3-yn-1-yloxy)methyl)benzene (4)

4
The product was obtained in 52% yield (NMR yield determined by using diethyl phthalate as internal references) using $2 \mathrm{~mol} \%$ catalyst and heated at $60{ }^{\circ} \mathrm{C}$ for 8 h according to general procedure B . This compound is known and its spectroscopic data were in accordance with the literature data ${ }^{[24]}$.

One-pot \quad synthesis (3aR,4S,7R,7aR)-4-(benzyloxy)-2,7-diphenyl-3a,4,7,7a-

 tetrahydro-1H-isoindole-1,3(2H)-dione (3)

To a 3 dram vial were added sequentially 0.3 mmol (4-(benzyloxy)but-1-ynyl)benzene, 0.33 mmol N -phenylmaleimide (1.1 equiv), $0.015 \mathrm{mmol} \mathbf{L 7 A u C l}$ ($5 \mathrm{~mol} \%$), 0.03 mmol $\mathrm{NaBAr}^{\mathrm{F}}{ }_{4}(10 \mathrm{~mol} \%)$ and $3 \mathrm{~mL} \alpha, \alpha, \alpha$-trifluorotoluene as solvent. The reaction was then heated at the indicated temperature monitored by TLC using p-anisaldehyde staining reagent (anisaldehyde/perchloric acid/acetone/water $=1 / 10 / 20 / 80$, v/v). Upon completion, the reaction was concentrated under reduced pressure. The residue was purified through silica gel flash chromatography to obtain pure product in 62% yield. ${ }^{1} \mathbf{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 7.48-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.26(\mathrm{~m}, 11 \mathrm{H}), 7.13-7.08(\mathrm{~m}$, $2 \mathrm{H}), 6.34$ (ddd, $J=9.8,4.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.27$ (ddd, $J=9.8,3.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=$ $11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{ddt}, J=6.8,3.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.80$ $(\mathrm{m}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=9.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=9.1,7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}$ $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta: 175.00,174.18,138.91,137.55,132.19,131.82,129.03,128.98$, 128.87, 128.44, 128.31, 128.16, 128.05, 127.85, 127.05, 126.54, 71.45, 71.10, 43.83, 43.39, 40.57. IR (neat): 3063, 3032, 2864, 1778, 1714, 1598, 1499, 1455, 1382, 1034, 1176, 1128, 1073, 1038, 913, 752. MS ESI: $432.11[\mathrm{M}+\mathrm{Na}]^{+}$.

Mechanistic Study

Silver salt and Conteranion effects: To rule out the possibility that AgCl generated in situ is detrimental to this reaction an experiment was conducted in which AgCl was filtered off with Celite (Entry 3), giving a poor yield ($\sim 1 \%$) as the reaction without filtration (Entry 2). On the other hand, the reaction wasn't hampered totally (43% yield) by adding commercial available AgCl (Entry 5), comparing 54\% yield without AgCl (Entry 4). A loss of yield was observed possibly due to inevitable Cl^{-}residue in AgCl . Moreover, the reactivity can be restored by adding NaBARF (Entry 6), giving a reasonable 74% yield, which can be ascribed to the reaction: $\mathrm{L}^{2} \mathrm{AuNTf}_{2}+\mathrm{NaBARF} \rightarrow$ $[$ L7AuBARF $]+\operatorname{NaNTf}_{2}(\mathrm{~s})$.

Entry	Method	Yield (Conv.) ${ }^{\text {a }}$
1	L7AuCl (5 mol\%), NaBARF (10\%) (In Table 1, Entry 7)	90\% (96\%)
2	L7AuCl ($6 \mathrm{~mol} \%$), AgNTf_{2} ($5 \mathrm{~mol} \%$), no fitration (In Table 1, Entry 9)	$\sim 1 \%$ ($<4 \%$)
3	$\mathrm{L} 7 \mathrm{AuCl}(6 \mathrm{~mol} \%), \mathrm{AgNTf}_{2}(5 \mathrm{~mol} \%)$, filter through Celite	$\sim 1 \%$ (<4\%)
4	$\left[(\mathrm{L} 7 \mathrm{Au})_{2}\right]^{2+}$ 2BARF $^{-}(2.5 \mathrm{~mol} \%)$ (In Table 1, Entry 8)	54\% (55\%)
5	$\left[(\mathrm{L} 7 \mathrm{Au})_{2}\right]^{2+} 2 \mathrm{BARF}^{-}(2.5 \mathrm{~mol} \%), \mathrm{AgCl}(5 \mathrm{~mol} \%)$	43\% (44\%)
6	$\mathrm{L} 7 \mathrm{AuCl}(6 \mathrm{~mol} \%), \mathrm{AgNTf}_{2}$ ($5 \mathrm{~mol} \%$), filter through Celite, NaBARF (10\%)	74\% (77\%)
7	L7AuPh (4 mol\%), HA (3.3 mol\%, $\mathrm{A}=\mathrm{NTf}_{2}$, OTf, OMs)	$(<3 \%)^{\text {b }}$
8	L7AuPh (4 mol\%), HNTf_{2} ($3.3 \mathrm{~mol} \%$), NaBARF (10\%)	(>99\%) ${ }^{\text {b }}$

${ }^{\bar{a}}$ Yield using diethyl phthalate as internal reference. ${ }^{\text {b }}$ Conversion determined by terminal methyl group.

To further investigate the effect of counter anion, we synthesized gold complex L7AuPh by mixing L 7 AuCl with PhMgCl (ACIE, 2012, 51, 2452). $\mathrm{L}^{2} \mathrm{AuNTf}_{2}$ can be generated in
situ by reaction: $\mathrm{L} 7 \mathrm{AuPh}+\mathrm{HA} \rightarrow \mathrm{L} 7 \mathrm{AuA}+\mathrm{PhH}$ (A: Counter anion), which would remove any possible effect of silver salts. As we proposed, poor reactivity ($<3 \%$ conversion) was observed for counter anions OTf, NTf_{2}, OMs (Entry 7), while the catalyst was rejuvenated, again, by adding NaBARF, giving a clean reaction with high yield (Entry 8).In summary, it was confirmed that the lack of reactivity was resulted from the counter anions.

Intermediate study: 3-Methyl-1-dodecane 1q was subjected to general procedure B by adding $2 \mathrm{~mol} \%$ catalyst plus $10 \mathrm{~mol} \%$ NaBARF and heating at $40^{\circ} \mathrm{C}$ for 6 h to give 86% yield of 3-methylenedodec-1-ene, (E)-3-methyldodeca-1,3-diene and (Z)-3-methyldodeca-1,3-diene (19.3/1.8/1).

3-methyldodeca-1,2-diene 7 was subjected to general procedure B by adding $2 \mathrm{~mol} \%$ catalyst plus $10 \mathrm{~mol} \% \mathrm{NaBARF}$ and heating at $40^{\circ} \mathrm{C}$ for 45 min to give 95% yield of 3-methylenedodec-1-ene, (E)-3-methyldodeca-1,3-diene and (Z)-3-methyldodeca-1,3-diene (20.8/1.8/1).

Deuterium labeling study: To provide further support for the mechanism, we performed deuterium labeling studies. As shown in Eq. 1, with 1q-D, in which its propargylic position was 94% deuterated, the major diene product $\mathbf{2 q}$ possessed significant amount of deuterium labeling at the vinyl methylene while little at the vinyl methine. Importantly, little product with the methylene moiety fully deuterated was detected, and there were deuterium loss in the process. The latter observation is consistent with that in this gold catalysis the hydrogens migrate in the form of protons instead of metal hydrides as deuteron/proton exchange with residual water in the reaction mixture could readily explain the outcome (Eq. 2). With 1a as the substrate, the addition of $\mathrm{D}_{2} \mathrm{O}$ (5 equiv) to the reaction run in PhCF_{3} resulted in observable deuterium incorporation at the $\mathrm{C}-\mathrm{C}$ double
bond proximal to the benzene ring. When the reaction was run in DCE, a solvent of higher polarity (normalized parameter: 0.327 vs. 0.241 of PhCF_{3}) ${ }^{25}$ and hence likely of being more capable of dissolving water $\left(0.15 \% \mathrm{w} / \mathrm{w}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$ than PhCF_{3}, the amount of deuterium labeling at the same C-C double bond of the product more than doubled. These results confirmed proton migration in the reaction and supported the proposed mechanism.

To a Schlenk tube were added $0.004 \mathrm{mmol} \mathbf{L 7 A u C l}(2 \mathrm{~mol} \%), 0.02 \mathrm{mmol} \mathrm{NaBAr}{ }_{4}{ }_{4}(10$ $\mathrm{mol} \%$), 0.2 mmol 1-phenyl-1-hexyne and 2 mL anhydrous solvent. The mixture was stirred at room temperature for 10 min and then $1 \mathrm{mmol}_{\mathrm{D}_{2} \mathrm{O}}$ was added. The reaction was then heated at $60{ }^{\circ} \mathrm{C}$ for 24 h and then the reaction was concentrated under reduced pressure. The ratio of deuterium was determined by crude NMR.

To a 1 dr vial were added $0.004 \mathrm{mmol} \mathbf{L 7 A u C l}(2 \mathrm{~mol} \%), 0.02 \mathrm{mmol} \mathrm{NaBAr}{ }_{4}{ }_{4}(10 \mathrm{~mol}$ $\%$), $0.2 \mathrm{mmol} \mathbf{1 q}-\mathbf{D}$ and $2 \mathrm{~mL} \mathrm{PhCF}_{3}$. The mixture was stirred at $40^{\circ} \mathrm{C}$ for 15 h and then the reaction was concentrated under reduced pressure. The yield and ratio of deuterium were determined by crude NMR.

References

1. Samanta, D.; Sawoo, S.; Patra, S.; Ray, M.; Salmain, M.; Sarkar, A. J. Organomet. Chem. 2005, 690, 5581-5590.
2. Cheng, X.; Hou, G.-H.; Xie, J.-H.; Zhou, Q.-L. Org. Lett. 2004, 6, 2381-2383.
3. Cho, S. H.; Yoon, J.; Chang, S. J. Am. Chem. Soc. 2011, 133, 5996-6005.
4. Willem, V.; Reinhoudt, D. N.; Visser, R.; Harkema, S. J. Org. Chem. 1984, 49, 269276.
5. Lu, B.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 14070-14072.
6. Cao, C.; Chen, Q.; Du, Y.; Li, Y. S.; Yang, L.; Shi, Y.; Pang, G. Tetrahedron 2013, 69 , 5178-5184.
7. Roesch, K. R.; Larock, R. C. J. Org. Chem. 2001, 66, 412-420.
8. Körner, C.; Starkov, P.; Sheppard, T. D. J. Am. Chem. Soc. 2010, 132, 5968-5969.
9. Chuda, Y.; Hamura, T.; Nakatsuji, Y.; Suzuki, K. Angew. Chem. Int. Ed. 2012, 51, 3368-3372.
10. Hierso, J.; Meunier, P.; Picquet, M.; Saleh, S. Tetrahedron 2009, 65, 7146-7150.
11. Fuji, K.; Kakiuchi, K.; Morimoto, T.; Tsutsumi, K. Chem. Commun. 2005, 32953297.
12. Kwong, C. K.-W.; Fu, M. Y.; Law, H. C.-H.; Toy, P. H. Synlett 2010, 2617-2620.
13. Takeuchi, R.; Tanabe, K.; Tanaka, S. J. Org. Chem. 2000, 65, 1558-1561.
14. Nakamura, S.; Hayakawa, T.; Nishi, T.; Watanabe, Y.; Toru, T. Tetrahedron 2001, 57, 6703-6711.
15. Henrion, G.; Chavas T. E. J.; Le Goff, X., Gagosz, F. Angew. Chem., Int. Ed. 2013, 52, 6277-6282.
16. Fisher, T. J.; Cañete, S. J. T.; Lai, R. Y.; Dussault, P. H. Eur. J. Org. Chem. 2013, 3263-3270.
17. Hadfield, M. S.; Lee, A.-L. Org. Lett. 2010, 12, 484-487.
18. Shintani, R.; Duan, W.-L.; Park, S.; Hayashi, T. Chem. Commun. 2006, 3646-3647.
19. Scheuplein, S. W.; Brueckner, R. Chemische Berichte 1991, 124, 1871-1874.
20. Ates, A.; Kumps, L.; Marko, I. E.; Murphy, F.; Touillaux, R.; Carballares, S.; Craig, D.; Dolan, S. Tetrahedron 2001, 57, 2609-2619.
21. Watkins, A. L.; Landis, C. R. Org. Lett. 2010, 13, 164-167.
22. Zhu, S.; Lu, X.; Luo, Y.; Zhang, W.; Jiang, H.; Yan, M.; Zeng, W. Org. Lett. 2013, 15, 1440-1443.
23. Ozawa, T.; Kanematsu, M.; Yokoe, H.; Yoshida, M.; Shishido, K. J. Org. Chem. 2012, 77, 9240-9249.
24. Ilardi, E. A.; Stivala, C. E.; Zakarian, A. Org. Lett., 2008, 10, 1727-1730.
25. Reichardt, C. Chem. Rev. 1994, 94, 2319-2358.

N

Spectrometer Frequency 599.64 २7-દ-unx!पz

Spectrometer Frequency 150.79

$$
\begin{aligned}
& \text { Parameter } \\
& \text { Solvent } \\
& \text { Spectrometer Frequency } 125.70
\end{aligned}
$$

	Parameter
	Value
1 Title	zhixun-2-L4-C13
2 Solvent	CDCI3
3	Spectrometer Frequency
	125.70

Parameter	Value
1 Title	zhixun-3-078B
2 Solvent	CDCI3
3 Spectrometer Frequency	499.86

(

Parameter	Value
Title	zhixun-3-083B-C13check
Solvent	"CDCI3"
Spectrometer Frequency	125.70

Spectrometer Frequency 125.70 $\begin{array}{ll}\text { Title } & \text { zhixun-3-082A-C13 } \\ \text { Solvent } & \text { CDC13 }\end{array}$

Parameter	Value
Title	zhixun-3-085B-C13
Solvent	cdcl3
Spectrometer Frequency	150.79

$\begin{array}{ll}\text { Solvent } \quad \text { CDCl3 } \\ \text { Spectrometer Frequency } & 499.86\end{array}$
zhixun-2-303A-Product

Parameter	Value
Title	wyz8-246-pro3-c13
Solvent	CDCI3
Relaxation Delay	1.0000
Spectrometer Frequency	125.70

f1 (ppm)

[^0]

[^0]: Relaxation Spectromer Frequency 150.79

 Title

