Supporting information

Interfacial structure of immobilized antibodies and perdeuterated HSA in model pregnancy tests measured with neutron reflectivity

Benjamin J. Cowsill, ^a Xiubo Zhao, ^b Thomas A. Waigh, ^a Saji Eapen, ^c Robert Davies, ^c Valerie Laux, ^d Michael Haertlein, ^d V. Trevor Forsyth, ^{d,e} and Jian R. Lu* ^a

^aBiological Physics Group, School of Physics and Astronomy, The University of Manchester, Schuster Building, Manchester, M13 9PL,UK.

^bDepartment of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK

°SPD Development Company Ltd., Bedford, UK

* To whom all correspondence should be made. E-mail: j.lu@manchester.ac.uk; Tel: +44 (0)161 3063926

^d Institut Laue Langevin, 6 rue Jules Horowitz, 38042 Grenoble, France

^e EPSAM/ISTM, Keele University, Staffordshire ST5 5BG, UK

The immunoassay described in the main text was repeated but with the d-HSA blocker replaced with h-HSA. The fitted parameters are shown in table S1.

Table S1.Fitted parameters for an antibody/h-HSA/hCG immunoassay using the best fitting models and the optical matrix method. A D₂O buffer was used throughout.

	Layer	Thickness	SLD	Volume fraction	Surface coverage
	No.	(nm)	$(x 10^{-6} A^{-2})$		(mg/m ²)
Antibody	1	3.5	5.26	0.361	1.91
	2	2.5	6.06	0.096	0.36
h-HSA	1	3.2	4.90	0.119	0.53
	2	2.9	6.00	0.020	0.08
hCG	1	3.2	4.70	0.068	0.17
	2	2.9	6.00	0	0

Tables S2 and S3 show the fitted parameters for the low and high antibody surface coverages shown in Figure 7 in the main text. Both experiments were performed in D_2O .

Table S2. Fitted parameters for a low surface coverage antibody film with subsequent d-HSA coadsorption and hCG binding.

	Layer	Thickness	SLD	Volume fraction	Surface coverage
	No.	(nm)	$(x 10^{-6} A^{-2})$		(mg/m ²)
Antibody	1	3.5	6.15	0.066	0.35
d-HSA	1	4.5	6.34	0.181	1.13
hCG	1	4.4	6.19	0.051	0.18

Table S3. Fitted parameters for a high surface coverage antibody film with subsequent d-HSA coadsorption and hCG binding.

	Layer	Thickness	SLD	Volume fraction	Surface coverage
	No.	(nm)	$(x 10^{-6} A^{-2})$		(mg/m ²)
Antibody	1	3.4	5.28	0.354	1.82
	2	2.8	5.96	0.136	0.57
d-HSA	1	2.2	5.72	0.286	0.88
	2	2.8	5.94	0	0
hCG	1	3.1	5.50	0.075	0.19
	2	2.9	5.94	0	0