Use of 2-bromophenylboronic esters as benzyne precursors in Pd-catalyzed synthesis of triphenylenes.

José-Antonio García-López and Michael F. Greaney ${ }^{*}$

School of Chemistry, University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom Email: michael.greaney@manchester.ac.uk.

Supporting Information

General Remarks S2
Experimental procedure and characterization of compounds S3
References S21
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra S22
GC-MS data S65

General Remarks

Nuclear Magnetic Resonance (NMR) spectra were recorded on 500 or 400 MHz Bruker NMR spectrometers in CDCl_{3} at 298 K (unless stated otherwise). All chemical shift values are reported in parts per million (ppm) relative to the CDCl_{3} solvent signal (${ }^{1} \mathrm{H}$ NMR: $\delta=7.26 \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR: $\delta=77.16 \mathrm{ppm}$) with coupling constant (J) values reported in Hz. The notation of signals is: Proton: δ chemical shift in ppm (number of protons, multiplicity, J value(s), proton assignment). Carbon: δ chemical shift in ppm (carbon assignment). Fluorine: δ chemical shift in ppm (Fluorine assignment). Splitting patterns are assigned $\mathrm{s}=$ singlet, $\mathrm{b}=$ broad, $\mathrm{d}=$ doublet, $\mathrm{td}=$ triplet of doublet, $\mathrm{dt}=$ doublet of triplet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet. Catalytic reactions were carried out on a 0.50 mmol scale under N_{2} using pre-dried glassware. All reactions were carried out in Schlenck glass tubes and heated in oil baths with a thermocouple temperature control. Toluene, THF and dichloromethane were freshly distilled over sodium or calcium hydride and stored under N_{2}. Other solvents, unless otherwise stated, were purchased in reagent grade or anhydrous quality and used as received. Reagents were either purchased directly from commercial suppliers or prepared according to literature procedures. Yields of triphenylene compounds refer to isolated compounds. TLC: Macherey-Nagel, TLC plates Alugram® Sil G/UV254. Detection under UV light at 254 nm . Chromatography: Separations were carried out on Silica gel (Sigma Aldrich, $40-63 \mu, 60 \AA$). High Resolution Mass Spectrometry (HRMS) were recorded on Thermo Finnigan MAT95XP. Melting points were determined using a Buchi M565 melting point apparatus. The GCMS traces were recorded in an Agilent 7890 (GC) $/ 5975 \mathrm{C}$ (MS) using the following parameters: Temperature gradient ($50 \mathrm{deg} \mathrm{C}-3.3 \mathrm{~min}$ hold, $25^{\circ} \mathrm{C} / \mathrm{min}$ to $300^{\circ} \mathrm{C}-20 \mathrm{~min}$ hold and $25^{\circ} \mathrm{C} /$ min to $320^{\circ} \mathrm{C}$), injector temperature $-300^{\circ} \mathrm{C}$ (back injector), column Agilent $\mathrm{H} 5-5 \mathrm{~ms} 30 \mathrm{~m}$ (length) $\times 0.25$ mm (internal diameter) $\times 0.25 \mu \mathrm{~m}$ (film thickness) and carrier gas helium, column flow $1 \mathrm{ml} / \mathrm{min}$.

Synthesis of starting materials

4a

4b

4c

4d

4j

4k

41

10a

10b

10c

2-Bromophenyl pinacol ester derivatives were prepared from the corresponding boronic acids following procedure A. Triflate derivative 10a was prepared from 2-bromo phenol (Aldrich) according to literature methods. ${ }^{1}$ The parent boronic acids of compounds $\mathbf{4 a}$ (Aldrich), $\mathbf{4 h}$ (Alfa Aesar), 4j (Aldrich) and 10c (Frontier Scientific) were purchased from commercial sources. The precursors of compounds $\mathbf{4 c}$ ((2-bromo 5-methoxyphenyl)boronic acid), ${ }^{2} \mathbf{4 d}$ ((2-bromo 5-tertbutylphenyl)boronic acid) $)^{3}$ and $\mathbf{4 k}$ ((3-bromonaphthalen-2-yl)boronic acid) ${ }^{4}$ were prepared following previously reported methods.

Esters $\mathbf{4 b}, \mathbf{4 e}, \mathbf{4 f}, \mathbf{4 g}, \mathbf{4}$ and $\mathbf{4 l}$ were synthesised from the parent boronic acid derivatives, accessed through procedure B. 2-Bromo-4-chloroiodobenzene (Alfa Aesar) and 2-bromo-4(trifluoromethyl)iodobenzene (Fluorochem), precursor iodoarenes for $\mathbf{4 f}$ and $\mathbf{4 g}$ respectively, were purchased from commercial sources, while 2-bromo-4-methyl-iodobenzene, ${ }^{5}$ 2-bromo-4-flouroiodobenzene ${ }^{5}$, 2-bromo 6-methoxy-iodobenzene ${ }^{21}$ and 2-bromo 4,5-dimethoxy-iodobenzene ${ }^{6}$ precursors for $\mathbf{4 b}, \mathbf{4 e}, \mathbf{4 i}$ and $\mathbf{4 l}$ respectively, were prepared following previously described methods.

Procedure A. Representative synthesis of pinacol esters from the corresponding boronic acids. o-Bromo-phenyl boronic acid ($2 \mathrm{~g}, 10 \mathrm{mmol}$) was suspended in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$, and pinacol ($1.42 \mathrm{~g}, 12$ mmol) was added. The mixture was stirred for 15 h at room temperature. The solution was taken to dryness, and the oily crude was purified by column chromatography (silica, petroleum ether/EtOAc: $10 / 1)$ to give the pinacol ester $4 \mathbf{a}(2.53 \mathrm{~g}, 8.94 \mathrm{mmol}, 89 \%)$ as a colorless liquid.

Procedure B. Representative synthesis of (2-bromophenyl)boronic acids from the corresponding 2bromo iodobenzene derivatives: A 2 M solution of $i-\mathrm{PrMgCl}$ in $\mathrm{THF}(4.4 \mathrm{~mL}, 8.85 \mathrm{mmol}, 1 \mathrm{eq})$ was added dropwise to a solution of 2-bromo-4-methyl-iodobenzene ($2.63 \mathrm{~g}, 8.80 \mathrm{mmol}, 1 \mathrm{eq}$) in 40 mL of a mixture of dry THF and $\mathrm{Et}_{2} \mathrm{O}(1: 1)$ at $-78^{\circ} \mathrm{C}$. The mixture was strirred at that temperature for 2 h and $\mathrm{B}(\mathrm{OEt})_{3}(3.5 \mathrm{~mL}, 20 \mathrm{mmol}, 2.3 \mathrm{eq})$ was added. The mixture was allowed to warm up to room temperature and stirred overnight. 40 mL of $\mathrm{HCl}(10 \% \mathrm{aq})$ was added, and the resulting mixture was stirred for 30 min at room temperature. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50$ $\mathrm{mL})$. The organic layer was dried over anhydrous $\mathrm{Mg}_{2} \mathrm{SO}_{4}$ and solvent was removed under reduced pressure. The crude was used without further purification for the pinacol esterification reaction.

Spectroscopic data for novel pinacol esters.

(2-Bromophenyl)boronic acid pinacol ester (4a). Prepared according to procedure A. Dense colorless liquid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.52(\mathrm{dd}, J=7.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.44$
 (dd, $J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{td}, J=7.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{td}, J=7.6,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.28(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=136.29(\mathrm{CH}), 132.53(\mathrm{CH}), 131.8$ $(\mathrm{CH}), 127.9\left(\mathrm{C}_{\mathrm{q}}\right), 126.2(\mathrm{CH}), 84.2\left(\mathrm{C}_{\mathrm{q}}\right), 24.7\left(\mathrm{CH}_{3}\right)$. The aromatic quaternary C-Bpin is not observed. HR-MS (EI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{BBr}[\mathrm{M}]^{+}$282.0421, found 282.0434.
(2-Bromo-4-methylphenyl)boronic acid pinacol ester (4b). Prepared according to procedures A and \mathbf{B} from 2-bromo-4-methyl-iodobenzene in 81% overall yield. Dense
 colorless liquid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.53(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38$ $(\mathrm{s}, 1 \mathrm{H}), 7.08(\mathrm{br} \mathrm{d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(101$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=142.4\left(\mathrm{C}_{\mathrm{q}}\right), 136.4(\mathrm{CH}), 133.3(\mathrm{CH}), 128.0\left(\mathrm{C}_{\mathrm{q}}\right), 127.1(\mathrm{CH}), 84.0\left(\mathrm{C}_{\mathrm{q}}\right), 24.7$ $\left(\mathrm{CH}_{3}\right)$, $21.1\left(\mathrm{CH}_{3}\right)$. The aromatic quaternary C-Bpin is not observed. HR-MS (EI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{BBr}[\mathrm{M}]^{+}$296.0567, found 296.0578.
(2-Bromo-4-fluorophenyl)boronic acid pinacol ester (4e). Prepared according to procedures A
 and \mathbf{B} from 2-bromo-4-fluoro-iodobenzene in 75% overall yield. White solid. Mp: $38-40{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.64(\mathrm{dd}, J=8.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ (dd, $J=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{td}, J=8.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=164.0\left(\mathrm{~d}, J_{C F}=254.6 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 138.1\left(\mathrm{~d}, J_{C F}=8.5 \mathrm{~Hz}, \mathrm{CH}\right), 128.7\left(\mathrm{~d}, J_{C F}=\right.$ $\left.9.22 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 120.3\left(\mathrm{~d}, J_{\text {CF }}=24.5 \mathrm{~Hz}, \mathrm{CH}\right), 113.7\left(\mathrm{~d}, J_{\text {CF }}=20.1 \mathrm{~Hz}, \mathrm{CH}\right), 84.3\left(\mathrm{C}_{\mathrm{q}}\right), 24.8\left(\mathrm{CH}_{3}\right)$. The aromatic quaternary $\mathrm{C}-\mathrm{Bpin}$ is not observed. ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-107.8$ (s). HRMS (EI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{BBrF}[\mathrm{M}]^{+} 300.0327$, found 300.0326.
(2-Bromo-4-chlorophenyl)boronic acid pinacol ester (4f). Prepared according to procedures A
 and \mathbf{B} from 2-bromo-4-cloro-iodobenzene in 68% overall yield. Pale orange solid. $\mathrm{Mp}: 34-36{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.51(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~s}$, $1 \mathrm{H}), 7.20(\mathrm{dd}, J=8.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta=137.3(\mathrm{CH}), 137.1\left(\mathrm{C}_{\mathrm{q}}\right), 132.3(\mathrm{CH}), 128.4\left(\mathrm{C}_{\mathrm{q}}\right), 126.6(\mathrm{CH}), 84.3\left(\mathrm{C}_{\mathrm{q}}\right), 24.7\left(\mathrm{CH}_{3}\right)$. The aromatic quaternary $\mathrm{C}-\mathrm{Bpin}$ is not observed. HR-MS (EI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{BBrCl}[\mathrm{M}]^{+}$ 316.0032, found 316.0021 .
(2-Bromo-4-(trifluoromethyl)phenyl)boronic acid pinacol ester (4g). Prepared according to
 procedures \mathbf{A} and \mathbf{B} from 2-bromo-4-(trifluoromethyl)-iodobenzene in 44\% overall yield. White solid. Mp: 32-34 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.80$ $(\mathrm{s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dd}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 12 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=136.6(\mathrm{CH}), 133.5\left(\mathrm{q}, J_{C F}=32.8 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 129.2\left(\mathrm{q}, J_{C F}=4.0 \mathrm{~Hz}\right.$, $\mathrm{CH}), 128.0\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 123.1\left(\mathrm{q}, J_{C F}=272.0 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 122.9\left(\mathrm{q}, J_{C F}=4.0 \mathrm{~Hz}, \mathrm{CH}\right), 84.7\left(\mathrm{C}_{\mathrm{q}}\right), 24.7$ $\left(\mathrm{CH}_{3}\right)$. The aromatic quaternary C -Bpin is not observed. ${ }^{19} \mathrm{~F}$-NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-63.1$ (s). HR-MS (EI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{BBrF}_{3}[\mathrm{M}]^{+} 350.0295$, found 350.0285.
(2-Bromo-6-fluorophenyl)boronic acid pinacol ester (4h). Prepared according to procedure A
 from (2-Bromo-6-fluorophenyl)boronic acid in 83% yield. White solid. Mp: 64-66 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.29(\mathrm{dd}, J=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{td}, J=8.1$, $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{td}, J=8.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=165.3\left(\mathrm{~d}, J_{C F}=248.5 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 132.1\left(\mathrm{~d}, J_{C F}=8.8 \mathrm{~Hz}, \mathrm{CH}\right), 127.8\left(\mathrm{~d}, J_{C F}=4.0 \mathrm{~Hz}\right.$, $\mathrm{CH}), 126.3\left(\mathrm{~d}, J_{C F}=10.5 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 113.6\left(\mathrm{~d}, J_{C F}=24.0 \mathrm{~Hz}, \mathrm{CH}\right), 84.8\left(\mathrm{C}_{\mathrm{q}}\right), 24.2\left(\mathrm{CH}_{3}\right)$. The aromatic quaternary $\mathrm{C}-\mathrm{Bpin}$ is not observed. ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-102.3$ (s). HR-MS (EI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{BBrF}[\mathrm{M}]^{+} 300.0327$, found 300.0322.
(2-Bromo-6-fluorophenyl)boronic acid pinacol ester (4i). Prepared according to procedures A
 and \mathbf{B} from 2-bromo-6-methoxy-iodobenzene in 81% overall yield. White solid. Mp: $82-84{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.13(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 1.40(\mathrm{~s}, 12 \mathrm{H}, \mathrm{Me}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.1\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 131.4(\mathrm{~s}, \mathrm{CH}), 126.1\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 124.1(\mathrm{~s}, \mathrm{CH}), 108.4(\mathrm{~s}, \mathrm{CH}), 84.4$ (s, C_{q}), $55.9\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 24.7\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$. The aromatic quaternary C-Bpin is not observed. HR-MS (EI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{BBr}[\mathrm{M}]^{+} 312.0527$, found 312.0521.
(2-Bromo-4,5-difluorophenyl)boronic acid pinacol ester (4j). Prepared according to procedure A
 in 98% yield. Pale yellow solid. Mp: 56-58 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 7.46 (dd, $J=10.5,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=10.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=151.5\left(\mathrm{dd}, J_{C F}=257.2,14.0 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 149.2\left(\mathrm{dd}, J_{C F}\right.$ $\left.=249.7,12.0 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 124.8\left(\mathrm{dd}, J_{C F}=16.9,1.0 \mathrm{~Hz}, \mathrm{CH}\right), 122.1\left(\mathrm{~d}, J_{C F}=19.2 \mathrm{~Hz}, \mathrm{CH}\right), 121.9(\mathrm{dd}$, $\left.J_{C F}=7.2,3.7 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 84.6\left(\mathrm{C}_{\mathrm{q}}\right), 24.8\left(\mathrm{CH}_{3}\right)$. The aromatic quaternary C-Bpin is not observed. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-131.7(\mathrm{~d}, J=21.1 \mathrm{~Hz}$), $-140.5(\mathrm{~d}, J=20.6 \mathrm{~Hz}) . \mathrm{HR}-\mathrm{MS}(\mathrm{EI}) m / z$ calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{BBrF}_{2}[\mathrm{M}]^{+}$318.0233, found 318.0238.
(3-Bromonaphthalen-2-yl)boronic acid pinacol ester (4k). Prepared according to procedure A
 from (3-bromonaphthalen-2-yl)boronic acid in 65% yield. Pale orange solid. Mp: $52-54{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.19(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{dd}$, $J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{dd}, J=7.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.53(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}$, $12 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=137.6(\mathrm{CH}), 135.4\left(\mathrm{C}_{\mathrm{q}}\right), 131.2\left(\mathrm{C}_{\mathrm{q}}\right), 130.7(\mathrm{CH}), 128.2$ $(\mathrm{CH}), 127.7(\mathrm{CH}), 126.6(\mathrm{CH}), 126.1(\mathrm{CH}), 123.8\left(\mathrm{C}_{\mathrm{q}}\right), 84.3\left(\mathrm{C}_{\mathrm{q}}\right), 24.8\left(\mathrm{CH}_{3}\right)$. The aromatic quaternary C-Bpin is not observed. HR-MS (EI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{BBr}[\mathrm{M}]^{+}$332.0578, found 332.0578 .
(2-Bromo-4,5-dimethoxyphenyl)boronic acid pinacol ester (4I). Prepared according to
 procedures \mathbf{A} and \mathbf{B} from 2-bromo-4,5-(dimethoxy)iodobenzene in 66% overall yield. Pale orange solid. $\mathrm{Mp}: 92-94{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.11$ (s, 1H), $7.00(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(101$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=151.3\left(\mathrm{C}_{\mathrm{q}}\right), 147.5\left(\mathrm{C}_{\mathrm{q}}\right), 119.7\left(\mathrm{C}_{\mathrm{q}}\right), 118.4(\mathrm{CH}), 116.0(\mathrm{CH}), 84.0\left(\mathrm{C}_{\mathrm{q}}\right), 56.0$ $\left(\mathrm{OCH}_{3}\right), 55.9\left(\mathrm{OCH}_{3}\right), 24.7\left(\mathrm{CH}_{3}\right)$. The aromatic quaternary C-Bpin is not observed. HR-MS (EI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{BBr}[\mathrm{M}]^{+}$342.0633, found 342.0629.

Synthesis of (2-triflato-4-methylphenyl)boronic acid pinacol ester (10b). Compound 10b was
 prepared following a similar procedure than that reported for the synthesis of (2-hydroxyphenyl) boronic acid. ${ }^{7}$ A solution of $n-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, 22 $\mathrm{mL}, 35 \mathrm{mmol})$ was slowly added to a cooled $\left(-90^{\circ} \mathrm{C}\right)$ solution of 2-bromo-4methyl phenol ($3.09 \mathrm{~g}, 16.5 \mathrm{mmol}$) in dry ether (50 mL). The mixture was then allowed to warm up and stirred at rt for 2 h under a N_{2} atmosphere. It was then cooled back to $-90^{\circ} \mathrm{C}$ and trimethyl borate ($3.2 \mathrm{~mL}, 28 \mathrm{mmol}$) was rapidly added. The mixture was stirred at $-90^{\circ} \mathrm{C}$ for 0.5 h and then at rt for 15 h under N_{2} atmosphere. A solution of $\mathrm{HCl}(\mathrm{aq})(25 \mathrm{~mL}, 2 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$ (cooled in an ice
bath) was then slowly added into the reaction mixture and stirred for 0.5 h . The ether layer was then separated and the aqueous layer was extracted with ether $(3 \times 100 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed to dryness. The crude was used without further purification for the pinacol esterification step following procedure \mathbf{A}. The resulting crude mixture was purified by column chromatography (silica, petroleum ether/EtOAc: 9:1) to afford 2-hydroxy-4methylphenyl boronic acid pinacol ester $(1.87 \mathrm{~g}, 8 \mathrm{mmol}, 50 \%$ yield from 2-bromo-4-methyl phenol). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.65(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 161.4\left(\mathrm{C}_{\mathrm{q}}\right)$, $135.6(\mathrm{CH}), 134.6(\mathrm{CH}), 128.4\left(\mathrm{C}_{\mathrm{q}}\right), 115.2(\mathrm{CH}), 84.4\left(\mathrm{C}_{\mathrm{q}}\right), 24.8\left(\mathrm{CH}_{3}\right)$, $20.2\left(\mathrm{CH}_{3}\right)$. The (2-hydroxy 4-methylphenyl)boronic acid pinacol ester ($1870 \mathrm{mg}, 8 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15$ mL) under a N_{2} atmosphere and pyridine ($1.9 \mathrm{~mL}, 24 \mathrm{mmol}$) added. The mixture was cooled in an ice bath to $0^{\circ} \mathrm{C}$ and triflic anhydride ($3.3 \mathrm{~g}, 11.7 \mathrm{mmol}$) was added dropwise and stirred at that temperature for 3 h . The reaction mixture was quenched with water $(40 \mathrm{~mL})$ and the organic phase was separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$, the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed to dryness. The crude mixture was purified by column chromatography (silica, petroleum ether/EtOAc: 9:1) to afford the desired (2-triflato 4methylphenyl) boronic acid pinacol ester $\mathbf{1 0 b}(2.54 \mathrm{~g}, 6.9 \mathrm{mmol}, 88 \%$ yield). White solid. Mp: $40-$ $42^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.65(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{br} \mathrm{dd}, J=8.3,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.09(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=152.2\left(\mathrm{C}_{\mathrm{q}}\right)$, $137.7\left(\mathrm{C}_{\mathrm{q}}\right), 137.5(\mathrm{CH}), 133.4(\mathrm{CH}), 120.7,(\mathrm{CH}), 118.9\left(\mathrm{q}, J_{C F}=319.2 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 24.7\left(\mathrm{CH}_{3}\right), 20.6$ $\left(\mathrm{CH}_{3}\right)$. The aromatic quaternary $\mathrm{C}-$ Bpin is not observed. ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-73.1$ (s). HR-MS (EI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{BF}_{3} \mathrm{~S}[\mathrm{M}]^{+}$366.0915, found 366.0907.

Optimization study: Representative procedure for the synthesis of triphenylene from (2bromophenyl)boronic pinacol ester

To an oven dried 25 mL Schlenk tube containing a stir bar was added the pinacol ester of (2-bromo phenyl)boronic acid ($\mathbf{4 a}$) ($141 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.00$ equiv), Pd catalyst ($\mathrm{mol} \%$) and ligand ($\mathrm{mol} \%$). A vacuum / N_{2} cycle was applied three times to the tube to ensure the removal of air from the reaction vessel. Dry solvent (mL) was added and the mixture was stirred for 1 min before adding the base (equiv). The tube was sealed and heated with stirring in a preheated oil bath at different temperatures for stipulated time. After allotted time the mixture was cooled to room temperature,
diluted with EtOAc (5 mL) and filtered through celite pad. The pad was further washed with EtOAc (40 mL) and the combined organic solvent was evaporated in vacuo to afford a crude mixture. The NMR yields were determined by using 1,3,5-trimethoxy benzene as internal standard added to the crude reaction mixture. The reaction mixture could be purified by column chromatography (silica, pet.ether) to yield triphenylene $\mathbf{6 a}$.

Control experiments and screening of solvents

Table S1

entry	$\begin{array}{\|l} \hline \begin{array}{l} \text { Pd source } \\ (\mathrm{mol} \%) \end{array} \\ \hline \end{array}$	ligand (mol \%)	base (equiv)	solvent (mL)	T (${ }^{\text {a }}$)	t (h)	yield ${ }^{a}$
1	-	-	$\begin{gathered} { }^{\mathrm{t}} \mathrm{BuOK} \\ \text { (2) } \end{gathered}$	toluene (2)	100	16	-
2	$\begin{gathered} \mathrm{Pd}(\mathrm{dba})_{2} \\ (5) \\ \hline \end{gathered}$	$\mathrm{PPh}_{3}(10)$	-	toluene (2)	100	16	-
3	$\begin{gathered} \mathrm{Pd}(\mathrm{dba})_{2} \\ (5) \\ \hline \end{gathered}$	-	${ }^{\text {t }} \mathrm{BuOK}$ (2)	toluene (2)	100	16	33
4	$\begin{gathered} \mathrm{Pd}(\mathrm{dba})_{2} \\ (5) \\ \hline \end{gathered}$	$\mathrm{PPh}_{3}(10)$	${ }^{\text {t }} \mathrm{BuOK}$ (2)	toluene (2)	100	16	60^{b}
5	$\begin{gathered} \hline \mathrm{Pd}(\mathrm{dba})_{2} \\ (5) \\ \hline \end{gathered}$	$\mathrm{PPh}_{3}(10)$	${ }^{\text {t }} \mathrm{BuOK}$ (2)	toluene (5)	100	16	36
6	$\begin{gathered} \mathrm{Pd}(\mathrm{dba})_{2} \\ (5) \\ \hline \end{gathered}$	$\mathrm{PPh}_{3}(10)$	${ }^{t} \mathrm{BuOK}$ (2)	MeCN (2)	100	16	0
7	$\begin{gathered} \hline \mathrm{Pd}(\mathrm{dba})_{2} \\ (5) \\ \hline \end{gathered}$	$\mathrm{PPh}_{3}(10)$	${ }^{\text {t }} \mathrm{BuOK}$ (2)	DMSO (2)	100	16	0
8	$\begin{gathered} \hline \mathrm{Pd}(\mathrm{dba})_{2} \\ (5) \\ \hline \end{gathered}$	$\mathrm{PPh}_{3}(10)$	$\begin{gathered} { }^{t} \mathrm{BuOK} \\ (2) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { DCE } \\ (2) \\ \hline \end{gathered}$	100	16	2
9	$\begin{gathered} \hline \mathrm{Pd}(\mathrm{dba})_{2} \\ (5) \\ \hline \end{gathered}$	$\mathrm{PPh}_{3}(10)$	${ }^{\mathrm{t}} \mathrm{BuOK}$ (2)	HFIP (2)	100	16	0^{c}
10	$\begin{gathered} \hline \mathrm{Pd}(\mathrm{dba})_{2} \\ (5) \\ \hline \end{gathered}$	$\mathrm{PPh}_{3}(10)$	$\begin{gathered} { }^{t} \mathrm{BuOK} \\ (2) \\ \hline \end{gathered}$	$\begin{gathered} \text { THF } \\ \text { (2) } \\ \hline \end{gathered}$	100	16	$58^{\text {c }}$
11	$\begin{gathered} \hline \mathrm{Pd}(\mathrm{dba})_{2} \\ (5) \\ \hline \end{gathered}$	$\mathrm{PPh}_{3}(10)$	${ }^{\mathrm{t}} \mathrm{BuOK}$ (2)	1,4-dioxane (2)	100	16	57

Reactions carried out with 0.5 mmol of $\mathbf{4 a}$ in a Schlenk tube under N_{2} atmosphere. a : NMR yields. b : isolated yield. c : reaction carried out in a sealed microwave vial after purging with N_{2}.

Comments: toluene, THF and 1,4-dioxane afforded the best results.

Screening of temperature and bases

Table S2

entry	Pd source (mol \%)	ligand (mol \%)	base (equiv)	solvent (mL)	T (${ }^{\circ} \mathrm{C}$)	t (h)	yield a
1	$\begin{gathered} \hline \mathrm{Pd}(\mathrm{dba})_{2} \\ (5) \\ \hline \end{gathered}$	$\mathrm{PPh}_{3}(10)$	${ }^{\text {t }} \mathrm{BuOK}$ (2)	toluene (2)	RT	16	3
2	$\begin{gathered} \hline \mathrm{Pd}(\mathrm{dba})_{2} \\ (5) \\ \hline \end{gathered}$	$\mathrm{PPh}_{3}(10)$	${ }^{\text {t }} \mathrm{BuOK}$ (2)	toluene (2)	50	16	7
3	$\begin{gathered} \hline \mathrm{Pd}(\mathrm{dba})_{2} \\ (5) \\ \hline \end{gathered}$	$\mathrm{PPh}_{3}(10)$	$\begin{gathered} \hline \mathrm{K}_{2} \mathrm{CO}_{3} \\ (2) \\ \hline \end{gathered}$	toluene (2)	100	16	traces
4	$\begin{gathered} \hline \mathrm{Pd}(\mathrm{dba})_{2} \\ (5) \\ \hline \end{gathered}$	$\mathrm{PPh}_{3}(10)$	NaOMe (2)	toluene (2)	100	16	traces
5	$\mathrm{Pd}(\mathrm{dba})_{2}$ (5)	$\mathrm{PPh}_{3}(10)$	tBuOLi (2)	1,4-dioxane (2)	100	16	traces
6	$\begin{aligned} & \mathrm{Pd}(\mathrm{dba})_{2} \\ & (5) \end{aligned}$ (5)	$\mathrm{PPh}_{3}(10)$	$\begin{gathered} \hline \mathrm{Cs}_{2} \mathrm{CO}_{3} \\ (2) \\ \hline \end{gathered}$	1,4-dioxane (2)	100	16	34
7	$\begin{gathered} \hline \mathrm{Pd}(\mathrm{dba})_{2} \\ (5) \\ \hline \end{gathered}$	$\mathrm{PPh}_{3}(10)$	$\begin{gathered} \hline \mathrm{CsF} \\ (2) \\ \hline \end{gathered}$	1,4-dioxane (2)	100	16	19
8	$\begin{gathered} \hline \mathrm{Pd}(\mathrm{dba})_{2} \\ (5) \\ \hline \end{gathered}$	$\mathrm{PPh}_{3}(10)$	$\begin{gathered} \hline \mathrm{Cs}_{2} \mathrm{CO}_{3} \\ (2) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { THF } \\ (2) \\ \hline \end{gathered}$	100	16	7
9	$\begin{gathered} \mathrm{Pd}(\mathrm{dba})_{2} \\ (5) \end{gathered}$	$\mathrm{PPh}_{3}(10)$	$\mathrm{K}_{3} \mathrm{PO}_{4}$ (2)	THF (2)	100	16	9

Reactions carried out with 0.5 mmol of $\mathbf{4 a}$ in a Schlenk tube under N_{2} atmosphere. a : NMR yields.
Comments: Lower temperatures lead to low product yield. Any other base different from ${ }^{\text {t }} \mathrm{BuOK}$ was less effective.

Screening of Pd catalyst

Table S3

entry	Pd source ($\mathrm{mol} \%$)	$\begin{gathered} \text { ligand } \\ (\mathrm{mol} \%) \end{gathered}$	$\begin{gathered} \text { base } \\ \text { (equiv) } \end{gathered}$	solvent (mL)	T (${ }^{\circ} \mathrm{C}$)	t (h)	yield ${ }^{a}$
1	$\begin{gathered} \hline \mathrm{Pd}_{2}(\mathrm{dba})_{3} \\ (2.5) \\ \hline \end{gathered}$	$\mathrm{PPh}_{3}(10)$	${ }^{\text {t}} \mathrm{BuOK}$ (2)	toluene (2)	100	16	21
2	$\begin{gathered} \mathrm{Pd}(\mathrm{dmba})_{2} \\ (5) \end{gathered}$	$\mathrm{PPh}_{3}(10)$	${ }^{\text {t }} \mathrm{BuOK}$ (2)	toluene (2)	100	16	32
3	$\begin{gathered} \hline \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4} \\ (5) \\ \hline \end{gathered}$	-	${ }^{\text {t}} \mathrm{BuOK}$ (2)	toluene (2)	100	16	35
4	$\begin{gathered} \mathrm{Pd}(\mathrm{OAc})_{2} \\ (5) \end{gathered}$	$\mathrm{PPh}_{3}(20)$	${ }^{\text {t}} \mathrm{BuOK}$ (2)	toluene (2)	100	16	20
5	PdCl_{2} (5)	$\mathrm{PPh}_{3}(20)$	${ }^{\text {t }} \mathrm{BuOK}$ (2)	toluene (2)	100	16	traces
6	HermanBeller cat.	-	${ }^{\text {t}} \mathrm{BuOK}$ (2)	toluene (2)	100	16	27
7	$\begin{gathered} \hline \mathrm{Pd}(\mathrm{dba})_{2} \\ (10) \\ \hline \end{gathered}$	$\mathrm{PPh}_{3}(20)$	${ }^{\text {t }} \mathrm{BuOK}$ (2)	toluene (2)	100	16	38
8	$\begin{gathered} \mathrm{Pd}(\mathrm{dba})_{2} \\ (2.5) \end{gathered}$	$\mathrm{PPh}_{3}(5)$	${ }^{\text {t}} \mathrm{BuOK}$ (2)	toluene (2)	100	16	10

Reactions carried out with 0.5 mmol of $\mathbf{4 a}$ in a Schlenk tube under N_{2} atmosphere. a : NMR yields.
Comment: Other palladium sources different from $\mathrm{Pd}(\mathrm{dba})_{2}$ were less effective.

Screening of ligands and stoichiometry of the base

Table S4

entry	Pd source (mol \%)	ligand (mol \%)	$\begin{gathered} \hline \text { base } \\ \text { (equiv) } \end{gathered}$	solvent (mL)	T (${ }^{\circ} \mathrm{C}$)	t (h)	yield ${ }^{a}$
1	$\begin{gathered} \mathrm{Pd}(\mathrm{dba})_{2} \\ (5) \end{gathered}$	PPh_{3} (20)	${ }^{\text {t }} \mathrm{BuOK}$ (2)	toluene (2)	100	16	15
2	$\overline{\mathrm{Pd}(\mathrm{dba})_{2}}$ (5)	dppe (5)	${ }^{\text {t }} \mathrm{BuOK}$ (2)	toluene (2)	100	16	46
3	$\begin{gathered} \mathrm{Pd}(\mathrm{dba})_{2} \\ (5) \\ \hline \end{gathered}$	$\mathrm{PPh}_{3}(10)$	${ }^{\text {t }} \mathrm{BuOK}$ (1)	toluene (2)	100	16	$73^{\text {b }}$
4	$\begin{gathered} \mathrm{Pd}(\mathrm{dba})_{2} \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{P}(o-\mathrm{Tol})_{3} \\ (10) \end{gathered}$	$\begin{gathered} \hline{ }^{\mathrm{t}} \mathrm{BuOK} \\ (1.1) \end{gathered}$	toluene (2)	100	16	38
5	$\begin{gathered} \hline \mathrm{Pd}(\mathrm{dba})_{2} \\ (5) \\ \hline \end{gathered}$	dppb (5)	$\begin{gathered} \hline{ }^{\mathrm{t}} \mathrm{BuOK} \\ (1.1) \end{gathered}$	toluene (2)	100	16	50
6	$\mathrm{Pd}(\mathrm{dba})_{2}$ (5)	$\begin{gathered} \mathrm{DBBP} \\ \text { (5) } \end{gathered}$	$\begin{gathered} { }^{\mathrm{t}} \mathrm{BuOK} \\ (1.1) \end{gathered}$	toluene (2)	100	16	47
7	$\begin{gathered} \mathrm{Pd}(\mathrm{dba})_{2} \\ (5) \\ \hline \end{gathered}$	DPE (5)	$\begin{gathered} { }^{\mathrm{t}} \mathrm{BuOK} \\ (1.1) \end{gathered}$	toluene (2)	100	16	78^{b}
8	$\begin{gathered} \mathrm{Pd}(\mathrm{dba})_{2} \\ (5) \\ \hline \end{gathered}$	DPE (6)	$\begin{gathered} { }^{\mathrm{t}} \mathrm{BuOK} \\ (1.1) \end{gathered}$	toluene (2)	100	16	$76^{\text {b }}$
9	$\begin{gathered} \hline \mathrm{Pd}(\mathrm{dba})_{2} \\ (5) \end{gathered}$	XantPhos (5)	$\begin{gathered} \hline{ }^{\mathrm{t}} \mathrm{BuOK} \\ (1.1) \end{gathered}$	toluene (2)	100	16	64
10	$\operatorname{Pd}(\mathrm{dba})_{2}$ (5)	DPPF (5)	$\begin{gathered} \hline{ }^{\mathrm{t}} \mathrm{BuOK} \\ (1.1) \end{gathered}$	toluene (2)	100	16	54

Reactions carried out with 0.5 mmol of $\mathbf{4 a}$ in a Schlenk tube under N_{2} atmosphere. a : NMR yields. b : isolated yield.

Comment: Bulky phosphines such as $\mathrm{P}(o-\mathrm{Ttol})_{3}$ or DBBP gave lower yields. Reducing equivalents of base from 2 to 1.1 equiv afforded better results. DPEphos showed the best results.

Miscellaneous screening
Table S5

entry	Pd source (mol \%)	ligand (mol \%)	$\begin{gathered} \hline \text { base } \\ \text { (equiv) } \end{gathered}$	solvent (mL)	T (${ }^{\circ} \mathrm{C}$)	t (h)	yield ${ }^{a}$
1	$\mathrm{Pd}(\mathrm{dba})_{2}$ (5)	DPE (5)	$\begin{gathered} { }^{\mathrm{t}} \mathrm{BuOK} \\ (1.1) \end{gathered}$	1,4-dioxane (2)	100	16	73^{b}
2	$\overline{\mathrm{Pd}(\mathrm{dba})_{2}}$ (5)	DPE (5)	tBuONa (1.1)	toluene (2)	100	16	46
3	PdPEPPSI (5)	-	$\begin{gathered} { }^{\text {t}} \mathrm{BuOK} \\ (1.1) \end{gathered}$	toluene (2)	100	16	35
4	$\begin{gathered} \hline \mathrm{Pd}(\mathrm{dba})_{2} \\ (5) \end{gathered}$	DPE (5)	$\begin{gathered} { }^{\text {t}} \mathrm{BuOK} \\ (1.1) \end{gathered}$	toluene (1)	100	16	67
5	$\begin{gathered} \mathrm{Pd}(\mathrm{dba})_{2} \\ (2.5) \end{gathered}$	$\begin{aligned} & \hline \text { DPE } \\ & (2.5) \end{aligned}$	$\begin{gathered} \hline \text { t } \mathrm{BuOK} \\ (1.1) \end{gathered}$	toluene (2)	100	16	75^{b}
6	$\begin{gathered} \mathrm{Pd}(\mathrm{dba})_{2} \\ (2.5) \end{gathered}$	$\begin{aligned} & \hline \text { DPE } \\ & (2.5) \end{aligned}$	$\begin{gathered} { }^{\mathrm{t}} \mathrm{BuOK} \\ (1.1) \end{gathered}$	toluene (2)	100	7	$73^{\text {b }}$
7	$\begin{gathered} \mathrm{Pd}(\mathrm{dba})_{2} \\ (1) \end{gathered}$	$\begin{aligned} & \hline \text { DPE } \\ & (1.1) \end{aligned}$	$\begin{gathered} { }^{\text {t}} \mathrm{BuOK} \\ (1.1) \end{gathered}$	toluene (2)	100	7	60

Reactions carried out with 0.5 mmol of $\mathbf{4 a}$ in a Schlenk tube under N_{2} atmosphere. a : NMR yields. b : isolated yield.

Comment: Lowering the Pd catalyst loading was tolerated, but slightly less effective.

Representative procedure \mathbf{C} for the synthesis of triphenylene compounds 6a-61

To an oven dried 25 mL Schlenck tube containing a stir bar was added the pinacol ester of 2-bromo phenylboronic acid (4a) ($141 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.00$ equiv), $\mathrm{Pd}(\mathrm{dba})_{2}(15 \mathrm{mg}, 0.026 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and DPE phos ($14 \mathrm{mg}, 0.026 \mathrm{mmol}, 5 \mathrm{~mol} \%$). A vacuum / N_{2} cycle was applied three times to the tube in order to ensure the removal of air from the reaction vessel. Dry toluene distilled under N_{2} (2 mL) was added and the mixture was stirred for 1 min before adding ${ }^{\mathrm{t}} \mathrm{BuOK}(63 \mathrm{mg}, 0.56 \mathrm{mmol}, 1.1$ equiv). The tube was sealed and heated with stirring in a preheated oil bath at $100^{\circ} \mathrm{C}$ for 16 h . After that time the mixture was cooled to room temperature, diluted with EtOAc (5 mL) and filtered through celite pad. The pad was further washed with EtOAc (40 mL) and the combined organic solvent was evaporated in vacuo to afford a crude mixture that was latter purified by column chromatography (silica, petroleum ether) to yield triphenylene $\mathbf{6 a}$ ($29.8 \mathrm{mg}, 0.129 \mathrm{mmol}, 78 \%$ yield).

Spectroscopic data for triphenylenes $6 \mathbf{a}-6 \mathrm{k}$.

Triphenylene (6a). White solid. Mp: 196-198 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.69-8.65(\mathrm{~m}, 6$
 H), 7.69-7.65 (m, 6 H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 129.7\left(\mathrm{C}_{\mathrm{q}}\right), 127.2(\mathrm{CH})$, $123.25(\mathrm{CH})$. HR-MS (EI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{12}[\mathrm{M}]^{+}$228.0934, found 228.0927. The data are in agreement with those previously reported in the literature. ${ }^{8}$
$\mathbf{2 , 6 , 1 0}$-Trimethyltriphenylene (6b) and 2,6,11-trimethyltriphenylene ($\mathbf{6 b}$ '). The representative

 procedure \mathbf{C} was followed. The crude was purified by column chromatography (silica, pet. ether) to give a mixture (1:3) of triphenylenes $\mathbf{6 b}$ and $\mathbf{6} \mathbf{b}^{\prime}$ ($30 \mathrm{mg}, 0.111 \mathrm{mmol}, 66 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.53(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.52$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.48$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 8.43 (br s, 2H), 8.39 (br s, 2H), 7.43-7.47 (m, 4H), $2.62(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H})$, $2.61(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=136.6\left(\mathrm{C}_{\mathrm{q}}\right), 136.5\left(\mathrm{C}_{\mathrm{q}}\right), 136.3\left(\mathrm{C}_{\mathrm{q}}\right)$, $136.2\left(\mathrm{C}_{\mathrm{q}}\right), 130.0\left(\mathrm{C}_{\mathrm{q}}\right), 129.8\left(\mathrm{C}_{\mathrm{q}}\right), 129.5\left(\mathrm{C}_{\mathrm{q}}\right), 129.5\left(\mathrm{C}_{\mathrm{q}}\right), 128.5(\mathrm{CH}), 128.4(\mathrm{CH}), 128.16(\mathrm{CH})$, $128.1(\mathrm{CH}), 127.7\left(\mathrm{C}_{\mathrm{q}}\right), 127.5\left(\mathrm{C}_{\mathrm{q}}\right), 127.2\left(\mathrm{C}_{\mathrm{q}}\right), 127.0\left(\mathrm{C}_{\mathrm{q}}\right), 123.2(\mathrm{CH}), 123.19(\mathrm{CH}), 123.18(\mathrm{CH})$, $123.13(\mathrm{CH}), 123.07(\mathrm{CH}), 123.02(\mathrm{CH}), 122.99(\mathrm{CH}), 122.95(\mathrm{CH}), 21.82\left(\mathrm{br} \mathrm{s}, 2 \mathrm{CH}_{3}\right), 21.80(\mathrm{br}$ s, $2 \mathrm{CH}_{3}$). HR-MS (EI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{18}[\mathrm{M}]^{+}$270.1403, found 270.1397. The data are in agreement with those previously reported in the literature., ${ }^{90}, 11,12,13$

2,6,10-Trimethoxytriphenylene (6c) and 2,6,11-trimethyltriphenylene ($\mathbf{6 c}$ '). The representative
 procedure \mathbf{C} was followed. The crude was purified by column chromatography (silica, pet.ether/EtOAc: 15/1) to give a mixture (1:3) of triphenylenes $\mathbf{6 c}$ and $\mathbf{6 c}(26 \mathrm{mg}, 0.082$ $\mathrm{mmol}, 49 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 MHz, CDCl_{3}): $\delta=8.40-8.47(\mathrm{~m}, 4 \mathrm{H}), 7.91-7.94(\mathrm{~m}$, $4 \mathrm{H}), 7.23-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 4.01$ (s, 3H, OMe), 4.01 (s, 3H, OMe), 4.00 (s, 3H, OMe). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 159.0\left(\mathrm{C}_{\mathrm{q}}\right)$, $158.8\left(\mathrm{C}_{\mathrm{q}}\right), 158.2\left(\mathrm{C}_{\mathrm{q}}\right), 158.0\left(\mathrm{C}_{\mathrm{q}}\right), 131.8\left(\mathrm{C}_{\mathrm{q}}\right), 131.3\left(\mathrm{C}_{\mathrm{q}}\right), 130.2\left(\mathrm{C}_{\mathrm{q}}\right), 129.7\left(\mathrm{C}_{\mathrm{q}}\right), 125.0(\mathrm{CH}), 124.9$ $(\mathrm{CH}), 124.4(\mathrm{CH}), 124.35\left(\mathrm{C}_{\mathrm{q}}\right), 124.3(\mathrm{CH}), 123.9\left(\mathrm{C}_{\mathrm{q}}\right), 122.9\left(\mathrm{C}_{\mathrm{q}}\right), 122.5\left(\mathrm{C}_{\mathrm{q}}\right), 115.6(\mathrm{CH}), 115.4$ $(\mathrm{CH}), 114.9(\mathrm{CH}), 114.7(\mathrm{CH}), 106.13(\mathrm{CH}), 106.11(\mathrm{CH}), 105.3(\mathrm{CH}), 105.2(\mathrm{CH}), 55.48(\mathrm{OMe})$,
55.46 (OMe), 55.42 (OMe), $55.40(\mathrm{OMe})$. HR-MS (EI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{3}[\mathrm{M}]^{+}$318.1250, found 318.1242. The data are in agreement with those previously reported in the literature. ${ }^{9,14}$

2,6,10-Tri-tert-butyltriphenylene (6d) and 2,6,11-trimethyltriphenylene (6d'). The
 representative procedure \mathbf{C} was followed. The crude was purified by column chromatography (silica, pet. ether) to give a mixture (1:3) of triphenylenes 6d and 6d' ($49 \mathrm{mg}, 0.124 \mathrm{mmol}$, 74% yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=8.71$ $(\mathrm{d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.69(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.67-$ $8.64(\mathrm{~m}, 4 \mathrm{H}), 8.58(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.56(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.77(\mathrm{~m}, 4 \mathrm{H}), 1.56(\mathrm{~s}, 9 \mathrm{H})$, $1.55(\mathrm{~s}, 9 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 149.5\left(\mathrm{C}_{\mathrm{q}}\right), 149.4\left(\mathrm{C}_{\mathrm{q}}\right)$, $149.3\left(\mathrm{C}_{\mathrm{q}}\right), 149.2\left(\mathrm{C}_{\mathrm{q}}\right), 129.7\left(\mathrm{C}_{\mathrm{q}}\right), 129.5\left(\mathrm{C}_{\mathrm{q}}\right), 129.3\left(\mathrm{C}_{\mathrm{q}}\right), 129.1\left(\mathrm{C}_{\mathrm{q}}\right), 127.9\left(\mathrm{C}_{\mathrm{q}}\right), 127.6\left(\mathrm{C}_{\mathrm{q}}\right), 127.5$ $\left(\mathrm{C}_{\mathrm{q}}\right), 127.2\left(\mathrm{C}_{\mathrm{q}}\right), 124.9(\mathrm{CH}), 124.8(\mathrm{CH}), 124.7(\mathrm{CH}), 124.6(\mathrm{CH}), 123.0(\mathrm{CH}), 122.98(\mathrm{CH}), 122.9$ $(\mathrm{CH}), 122.8(\mathrm{CH}), 119.1(\mathrm{CH}), 119.0(\mathrm{CH}), 118.9(\mathrm{CH}), 118.8(\mathrm{CH}), 35.01\left(\mathrm{br} \mathrm{s}, \mathrm{C}_{\mathrm{q}}\right), 35.00(\mathrm{br} \mathrm{s}$, C_{q}), $31.50\left(\mathrm{CH},{ }^{\mathrm{t}} \mathrm{Bu}\right)$, $31.49\left(\mathrm{CH},{ }^{\mathrm{t}} \mathrm{Bu}\right), 31.47\left(\mathrm{CH},{ }^{\mathrm{t}} \mathrm{Bu}\right), 31.45\left(\mathrm{CH},{ }^{\mathrm{t}} \mathrm{Bu}\right)$. HR-MS (EI) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{36}[\mathrm{M}]^{+}$396.2812, found 396.2815 . The data are in agreement with those previously reported in the literature. ${ }^{9,11,15}$
$\mathbf{2 , 6 , 1 0}-\mathrm{Trifluorotriphenylene}$ ($\mathbf{6 e}$) and 2,6,11-trimethyltriphenylene ($\mathbf{6} \mathbf{e}^{\prime}$). The representative

 procedure \mathbf{C} was followed. The crude was purified by column chromatography (silica, pet. ether) to give a mixture ($1: 3$) of triphenylenes $\mathbf{6 e}$ and $\mathbf{6 e}$ (34 mg , $0.120 \mathrm{mmol}, 72 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=8.51-8.47(\mathrm{~m}, 2 \mathrm{H}), 8.46-8.41(\mathrm{~m}, 2 \mathrm{H})$, $8.13(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.08$ (dd, $J=4.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{dd}, J=4.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 162.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=248.2 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 162.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=247.2 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 162.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=247.2 \mathrm{~Hz}\right.$, $\left.\mathrm{C}_{\mathrm{q}}\right), 161.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=246.5 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 131.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.4 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 131.4\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=8.0,3.6 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right)$, $130.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.0 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 130.3\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=8.0,3.6 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 126.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.0 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 125.91$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=8.0 \mathrm{~Hz}, \mathrm{CH}\right), 125.87\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.0 \mathrm{~Hz}, \mathrm{CH}\right), 125.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.3 \mathrm{~Hz}, \mathrm{CH}\right), 125.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $8.3 \mathrm{~Hz}, \mathrm{CH}), 125.3\left(\mathrm{br} \mathrm{s}, \mathrm{C}_{\mathrm{q}}\right), 124.9\left(\mathrm{br} \mathrm{s}, \mathrm{C}_{\mathrm{q}}\right), 116.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=22.3 \mathrm{~Hz}, \mathrm{CH}\right), 116.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=22.8\right.$ $\mathrm{Hz}, \mathrm{CH}), 115.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=23.0 \mathrm{~Hz}, \mathrm{CH}\right), 115.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=23.0 \mathrm{~Hz}, \mathrm{CH}\right), 109.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.0 \mathrm{~Hz}, \mathrm{CH}\right)$, $108.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.0 \mathrm{~Hz}, \mathrm{CH}\right), 108.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=6.9 \mathrm{~Hz}, \mathrm{CH}\right), 108.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=6.3 \mathrm{~Hz}, \mathrm{CH}\right) .{ }^{19} \mathrm{~F}-\mathrm{NMR}$ $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-112.59(\mathrm{~s}),-112.65(\mathrm{~s}),-113.84(\mathrm{~d}, J=1.7 \mathrm{~Hz}),-113.89(\mathrm{~d}, J=1.7 \mathrm{~Hz})$.

HR-MS (EI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{9} \mathrm{~F}_{3}[\mathrm{M}]^{+}$282.0651, found 282.0640. The data are in agreement with those previously reported in the literature. ${ }^{9}$

2,6,10-Triclorotriphenylene (6f) and 2,6,11-trimethyltriphenylene (6f'). The representative

 procedure \mathbf{C} was followed. The crude was purified by column chromatography (silica, pet. ether) to give a mixture (1:3) of triphenylenes $\mathbf{6 f}$ and $\mathbf{6} \mathbf{f}^{\prime}(27.5 \mathrm{mg}$, $0.083 \mathrm{mmol}, 50 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=8.42-8.35(\mathrm{~m}, 8 \mathrm{H}), 7.61-7.53(\mathrm{~m}, 4 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 134.3\left(\mathrm{C}_{\mathrm{q}}\right), 134.27\left(\mathrm{C}_{\mathrm{q}}\right), 133.9\left(\mathrm{C}_{\mathrm{q}}\right), 133.86\left(\mathrm{C}_{\mathrm{q}}\right), 130.7\left(\mathrm{C}_{\mathrm{q}}\right), 130.3$ (br s, $2 \mathrm{C}_{\mathrm{q}}$), $129.8\left(\mathrm{C}_{\mathrm{q}}\right)$, $128.3(\mathrm{CH}), 128.2(\mathrm{CH}), 127.9(\mathrm{CH}), 127.85(\mathrm{CH}), 127.76\left(\mathrm{C}_{\mathrm{q}}\right), 127.3\left(\mathrm{C}_{\mathrm{q}}\right)$, $127.28\left(\mathrm{C}_{\mathrm{q}}\right), 126.8\left(\mathrm{C}_{\mathrm{q}}\right), 124.93(\mathrm{CH}), 124.92(\mathrm{CH}), 124.8(\mathrm{CH}), 124.77(\mathrm{CH}) 123.1(2 \mathrm{CH}), 123.0$ (2 CH). HR-MS (EI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{9} \mathrm{Cl}_{3}[\mathrm{M}]^{+}$329.9764, found 329.9776. The data are in agreement with those previously reported in the literature. ${ }^{16}$
$\mathbf{2 , 6 , 1 0}-\mathrm{Tri}($ triflouromehtyl)triphenylene (6 g) and 2,6,11-trimethyltriphenylene ($\mathbf{6 g}$ '). The
 representative procedure \mathbf{C} was followed. The crude was purified by column chromatography (silica, pet. ether) to give a mixture (1:3) of triphenylenes $\mathbf{6 g}$ and $\mathbf{6 g}$ ($43.5 \mathrm{mg}, 0.101 \mathrm{mmol}$, 60% yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, d_{6}\right.$-acetone): $\delta=$ 9.25 (br s, 2H), $9.15-9.12(\mathrm{~m}, 4 \mathrm{H}), 9.05(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 8.11-8.08 (br m, 4 H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, d_{6}\right.$-acetone): $132.2\left(\mathrm{C}_{\mathrm{q}}\right), 131.9\left(\mathrm{C}_{\mathrm{q}}\right), 131.8$ $\left(\mathrm{C}_{\mathrm{q}}\right)$, $131.5\left(\mathrm{C}_{\mathrm{q}}\right)$, 130.2-129.2 (overlapped m, several C_{q}), $129.0(\mathrm{CH}), 125.6(\mathrm{CH}), 125.5(\mathrm{CH})$, $125.4(\mathrm{CH}), 125.3(\mathrm{CH}), 124.7-124.6$ (overlapped m, CH), 124.5-124.4 (overlapped m, CH), 124.42 $\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=272.6 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 124.39\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=272.1 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 124.36\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=271.6 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right) .{ }^{19} \mathrm{~F}-\mathrm{NMR}$ ($471 \mathrm{MHz}, d_{6}$-acetone) $\delta=-114.88$ (s), -114.84 (s), -114.78 (s), -114.74 (s). HR-MS (EI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{9} \mathrm{~F}_{9}[\mathrm{M}]^{+} 432.0555$, found 432.0573. The data are in agreement with those previously reported in the literature. ${ }^{9}$

1,5,9-Trifluorotriphenylene ($\mathbf{6 h}$). The representative procedure \mathbf{C} was followed. The crude was
 purified by column chromatography (silica, pet. ether) to give triphenylenes $\mathbf{6 h}$ and $\mathbf{6 h}$ ' which could be separated by column chromatography. Triphenylene $\mathbf{6 h}$, $\mathrm{R}_{\mathrm{f}}=0.6,\left(1 \mathrm{mg}, 0.003 \mathrm{mmol}, 2 \%\right.$ yield). White solid. $\mathrm{Mp}: 180-182^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.86$ (dd, J = $8.5,3.9 \mathrm{~Hz}, 3 \mathrm{H}$), $7.63-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.40$
(ddd, $J=14.4,7.7,0.9 \mathrm{~Hz}, 3 \mathrm{H}$) ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 160.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=251.8 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$), $130.4\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=5.7,2.8 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 128.1\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=10.9,2.4 \mathrm{~Hz}, \mathrm{CH}\right), 124.0\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=29.9,4.1\right.$ $\mathrm{Hz}, \mathrm{CH}), 119.2\left(\mathrm{~m}, \mathrm{C}_{\mathrm{q}}\right), 115.3\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=26.5,2.5 \mathrm{~Hz}, \mathrm{CH}\right) .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-$ 107.67 (s). IR (vcm^{-1}, intensity): 2923 (w), 1607 (m), 1577 (br), 1491 (w), 1420 (s), 1294 (w), 1260 (w), 1228 (s), 1105 (w), 1057 (w), 871 (w), 799 (br), 736 (s). HR-MS (EI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{9} \mathrm{~F}_{3}$ $[\mathrm{M}]^{+}$282.0651, found 282.0639.
$\mathbf{1 , 5 , 1 2}$-Trifluorotriphenylene ($\mathbf{6 h}$ '). $\mathrm{R}_{\mathrm{f}}=0.4$. ($15 \mathrm{mg}, 0.053 \mathrm{mmol}, 32 \%$ yield). White solid. Mp : $136-138{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.80$ (ddd, $J=8.5,3.9,1.0 \mathrm{~Hz}$,
 $1 \mathrm{H}), 8.33(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.57$ (td, $J=8.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $161.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=252.5 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 160.2\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=212.2,42.7 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 159.9(\mathrm{dd}$, $\left.J_{\mathrm{C}-\mathrm{F}}=232.4,21.0 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 132.6\left(\mathrm{~m}, 2 \mathrm{C}_{\mathrm{q}}\right), 130.55\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=5.1,3.2 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right)$, $128.8\left(\mathrm{br} \mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=8.6 \mathrm{~Hz}, \mathrm{CH}\right), 128.7\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=8.5,1.1 \mathrm{~Hz}, \mathrm{CH}\right), 128.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=10.5 \mathrm{~Hz}, \mathrm{CH}\right)$, 122.7 (dd, $\left.J_{\mathrm{C}-\mathrm{F}}=27.0,3.2 \mathrm{~Hz}, \mathrm{CH}\right), 119.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.5 \mathrm{~Hz}, \mathrm{CH}\right), 119.1\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=8.6,2.3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right)$, $118.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.7 \mathrm{~Hz}, \mathrm{CH}\right), 115.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=25.5 \mathrm{~Hz}, \mathrm{CH}\right), 115.6$ (partially overlapped d, $J_{\mathrm{C}-\mathrm{F}}=$ $8.4 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}$), $115.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.9 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$), $114.8(\mathrm{~m}, \mathrm{CH}), 114.6(\mathrm{~m}, \mathrm{CH}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}(471 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=-102.63\left(\mathrm{AB}\right.$ system, $\left.\mathrm{J}_{\mathrm{AB}}=141.8 \mathrm{~Hz}\right),-108.10(\mathrm{~s})$. IR $\left(\mathrm{v} \mathrm{cm}^{-1}\right.$, intensity): $2925(\mathrm{w})$, 2359 (br), 1608 (m), 1577 (br), 1547 (m), 1482 (w), 1442 (m), 1424 (w), 1406 (m), 1278 (w), 1250 (m), 1232 (s), 1140 (w), 958 (m), 837 (w), 750 (s), 730 (s), 705 (m), 532 (m). HR-MS (EI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{9} \mathrm{~F}_{3}[\mathrm{M}]^{+}$282.0651, found 282.0642.
$\mathbf{1 , 5 , 9}$-Trimethoxytriphenylene (6i). The representative procedure \mathbf{C} was followed. The crude was
 purified by column chromatography (silica, pet.ether/EtOAc: 20/1) to give triphenylenes $\mathbf{6 i}$ and $\mathbf{6} \mathbf{i}^{\prime}$ which could be separated by column chromatography. Triphenylene $\mathbf{6 i}, \mathrm{R}_{\mathrm{f}}=0.22$, ($11.5 \mathrm{mg}, 0.036 \mathrm{mmol}, 21 \%$ yield). Colorless dense oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.00(\mathrm{dd}, J=$ $8.5,1.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.48(\mathrm{t}, J=8.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.14(\mathrm{dd}, J=8.2,1.0 \mathrm{~Hz}, 3 \mathrm{H})$, 4.02 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{OMe}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.2$ (s, Cq), 131.7 (s, Cq), 126.3 (s, CH), $121.1(\mathrm{~s}, \mathrm{Cq}), 121.0(\mathrm{~s}, \mathrm{CH}), 110.0(\mathrm{~s}, \mathrm{CH}), 56.1\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$. IR ($\mathrm{v} \mathrm{cm}^{-1}$, intensity): 2940 (br), 2934 (w), 2833 (w), 1593 (m), 1575 (s), 1482 (m), 1461 (w), 1412 (s), 1284 (m), 1241 (vs), 1180 (w), 1123 (m), 1077 (s), 1011 (vs), 821 (m), 744 (s), 573 (m). HR-MS (EI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{3}[\mathrm{M}]^{+}$ 318.1250, found 318.1241. The data are in agreement with those previously reported in the literature. ${ }^{18}$

1,5,12-Trimethoxytriphenylene (6i'). $\mathrm{R}_{\mathrm{f}}=0.17$. ($13 \mathrm{mg}, 0.041 \mathrm{mmol}, 24 \%$ yield). Pale yellow
 solid. Mp: $184-186{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.05(\mathrm{dd}, J=8.5,1 \mathrm{~Hz}$, $1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.13$ (dd, $J=8.0,1 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=8.0,1 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, J=8.1,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.06 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.99 ($\mathrm{br} \mathrm{s}, 6 \mathrm{H}, \mathrm{OMe}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.2$ (s, $\mathrm{Cq}), 157.8(\mathrm{~s}, \mathrm{Cq}), 157.0(\mathrm{~s}, \mathrm{Cq}), 133.0(\mathrm{~s}, \mathrm{Cq}), 132.6(\mathrm{~s}, \mathrm{Cq}), 131.9(\mathrm{~s}, \mathrm{Cq}), 127.2$ (s, CH), 127.0 (s, CH), 126.8 (s, CH), 121.1 (s, Cq), 118.8 (s, CH), 118.4 (s, Cq), 118.0 (s, Cq), $115.9(\mathrm{~s}, \mathrm{CH}), 115.0(\mathrm{~s}, \mathrm{CH}), 110.4(\mathrm{~s}, \mathrm{CH}), 108.6(\mathrm{~s}, \mathrm{CH}), 108.5(\mathrm{~s}, \mathrm{CH}), 56.0\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 55.9(\mathrm{~s}$, CH_{3}), 55.8 ($\mathrm{s}, \mathrm{CH}_{3}$). IR ($\mathrm{v} \mathrm{cm}^{-1}$, intensity): 2940 (br), 2933 (w), 2832 (w), 1573 (m), 1546 (w), 1478 (w), 1460 (m), 1426 (w), 1248 (vs), 1179 (w), 1151 (w), 1066 (w), 1019 (vs), 862 (w), 776 (s), 732 (m). HR-MS (EI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{3}[M]^{+}$318.1250, found 318.1247. The data are in agreement with those previously reported in the literature. ${ }^{18}$
$\mathbf{2 , 3 , 6}, \mathbf{7}, \mathbf{1 0 , 1 1}$-Hexafluorotriphenylene ($\mathbf{6 j} \mathbf{)}$. The representative procedure \mathbf{C} was followed. The
 crude reaction mixture was taken to dryness, cold $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$ was added and the resulting suspension was filtered. The solid was washed with cold $\mathrm{CHCl}_{3}(2 \mathrm{~mL})$ and loaded in a chromatography column for purification (silica, petroleum ether/EtOAc: 4/1) to yield the $\mathbf{6 j}$ as a white solid (18.5 mg , $0.055 \mathrm{mmol}, 33 \%$ yield). $\mathrm{Mp}:>320{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $8.18(\mathrm{t}, J=10.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{19} \mathrm{~F}$-NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-135.5(\mathrm{~s})$. The low solubility of the product in all common deuterated solvents prevented us from measuring the ${ }^{13} \mathrm{C}$-NMR spectra. HR-MS (EI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{6} \mathrm{~F}_{6}[\mathrm{M}]^{+} 336.0368$, found 336.0363. The data are in agreement with those previously reported in the literature. ${ }^{18}$

Trinaphthylene ($\mathbf{6 k}$). The representative procedure \mathbf{C} was followed. The reaction mixture was
 cooled in an ice bath. The supension was filtered and the solid was washed with cold $\mathrm{MeCN}(3 \times 5 \mathrm{~mL})$ and cold $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. The grey solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ and filtered through a pad of Celite. The solvent from the filtrate was removed to dryness to afford trinaphthylene $\mathbf{6 k}$ as a white solid ($29.5 \mathrm{mg}, 0.078 \mathrm{mmol}, 47 \%$ yield). $\mathrm{Mp}:>320^{\circ} \mathrm{C}{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.13(\mathrm{~s}, 6 \mathrm{H}), 8.11-8.09(\mathrm{~m}, 6 \mathrm{H}), 7.59-7.57(\mathrm{~m}, 6$ H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 132.8\left(\mathrm{C}_{\mathrm{q}}\right), 129.0\left(\mathrm{C}_{\mathrm{q}}\right), 128.1(\mathrm{CH}), 126.4(\mathrm{CH}), 122.7(\mathrm{CH})$. HR-MS (EI) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{18}[\mathrm{M}]^{+}$378.1403, found 378.1409. The data are in agreement with those previously reported in the literature. ${ }^{19}$
$\mathbf{2 , 3}, \mathbf{6}, \mathbf{7}, \mathbf{1 0}, 11-$ Hexamethoxytriphenylene (61, not in paper). The representative procedure \mathbf{C} was
 followed. The reaction mixture was cooled in an ice bath. The supension was filtered and the solid was washed with cold MeCN ($3 \times$ $3 \mathrm{~mL})$. The grey solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ and filtered through a pad of Celite. The solvent from the filtrate was removed to dryness to afford triphenylene $6 \mathbf{1}$ as a white solid ($24.5 \mathrm{mg}, 0.060$ $\mathrm{mmol}, 36 \%$ yield). $\mathrm{Mp}: 324-326{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $7.73(\mathrm{~s}, 6 \mathrm{H}), 4.11(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 148.7\left(\mathrm{C}_{\mathrm{q}}\right), 123.2\left(\mathrm{C}_{\mathrm{q}}\right), 104.3(\mathrm{CH})$, 56.0 (OMe). HR-MS (EI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{6}[\mathrm{M}]^{+}$408.1567, found 408.1569. The data are in agreement with those previously reported in the literature. ${ }^{17}$

Cyclotrimerization of 2-triflato derivative 10b:

a) When the substrate $\mathbf{1 0 b}$ was submitted to the standard reaction conditions (procedure \mathbf{C}) a 55% isolated yield of triphenylenes $\mathbf{6} \mathbf{b}: \mathbf{6 b}^{\prime}(1: 3)$ was obtained.
b) To an oven dried 25 mL Schlenk tube containing a stir bar was added the pinacol ester $\mathbf{1 0 b}$ (92 $\mathrm{mg}, 0.25 \mathrm{mmol}, 1.00$ equiv). Vacuum $/ \mathrm{N}_{2}$ cycle was applied three times to the tube in order to ensure the removal of air from the reaction vessel. Dry THF distilled under $\mathrm{N}_{2}(2 \mathrm{~mL})$ was added and the mixture was cooled to $-78^{\circ} \mathrm{C}$. Then, a 1.6 M solution of $n-\mathrm{BuLi}$ in hexane ($170 \mu \mathrm{~L}, 0.27 \mathrm{mmol}, 1.1$ equiv) was added. After $5 \mathrm{~min} \operatorname{Pd}(\mathrm{dba})_{2}(7.5 \mathrm{mg}, 0.013 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and DPE phos ($7 \mathrm{mg}, 0.013$ $\mathrm{mmol}, 5 \mathrm{~mol} \%$) were added. the tube was removed from the cooling bath and allowed to reach r.t and stirred for 16 h . The reaction mixture was purified by column chromatrograpy using petroleum ether to afford a 50% yield ($11.5 \mathrm{mg}, 0.042 \mathrm{mmol}$) of a mixture of triphenylenes $\mathbf{6 b}: \mathbf{6 b}^{\prime}(1: 3)$.

Cyclotrimerization of the benzyne precursor 4-methyl 2-(trimethylsilyl)phenyl triflate.

To an oven dried 25 mL Schlenck tube containing a stir bar was added the benzyne precursor 4methyl 2-(trimethylsylil) triflatobenzene (1b), prepared according to ref. 20, ($156 \mathrm{mg}, 0.50 \mathrm{mmol}$, 1.00 equiv), CsF ($152 \mathrm{mg}, 1 \mathrm{mmol}, 2$ equiv) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(60 \mathrm{mg}, 0.05 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. Vacuum $/ \mathrm{N}_{2}$ cycle was applied three times to the tube in order to ensure the removal of air from the reaction vessel. Dry acetonitrile (3 mL) was added and the mixture was stirred at r.t. for 16 h . The usual purification procedure afforded a 75% isolated yield ($34 \mathrm{mg}, 0.126 \mathrm{mmol}$) of a mixture of triphenylenes $\mathbf{6 b}: \mathbf{6 b}^{\prime}(1: 3)$.

Suzuki-Miyaura mechanism

An alternative Suzuki-Miyaura mechanism is set out in Scheme S1. Three successive SuzukiMiyaura processes are not consistent with the isolation of triphenylene regio-isomers, as this pathway would yield the C_{3}-symmetric compound $\mathbf{6}$ exclusively.

Suzuki-Miyaura
pathway

Coupling

12

$$
\begin{aligned}
& \mathrm{Pd}^{0} \mathrm{~L}_{2}, \\
& \mathrm{t} \text {-BuOK }
\end{aligned}
$$

$\mathrm{d}(0) \mathrm{L}_{2}$

Coupling 2

6

ii) inc coupling transmetallation

An alternative inter / intra / inter-molecular process, via palladacycle 7b, is possible, but unlikely. It would require a high energy $\operatorname{Pd}(\mathrm{IV})$ intermediate (14), and yield mixtures of palladacycles $\mathbf{1 5}$ and 16 according to the respective relative rates of reductive elimination. A consistent product ratio of 1:3 would not be expected to arise for a range of different R groups in this scenario.

References

(1) Sumida, Y.; Kato, T.; Hosoya, T. Org. Lett. 2013, 15, 2806-2809.
(2) Al-Zoubi, R. M.; Hall, D. G. Org. Lett. 2010, 12, 2480-2483.
(3) Wegner, H. A.; Reisch, H.; Rauch, K.; Demeter, A. Zachariasse, K. A.; Meijere, A.; Scott, L. T. J. Org. Chem. 2006, 71, 9080-9087.
(4) Yoichi, I; Masatoshi, S.; Hidetsugu, I.; Hiroaki, N.; Hirofumi, K.; Naoki, K.; Kota. T. Japanese Patent 2011- WO 20110930067 A1.
(5) van Klink, G. P. M.; de Boer, H. J. R.; Schat, G.; Akkerman, O. S.; Bickelhaupt, F.; Spek, A. L. Organometallics, 2002, 21, 2119-2135.
(6) Xiong, C.; Changgeng, Q. U. S. Patent. 2010-WO 2010083403 A1.
(7) Konakahara, T.; Kiran, Y. B.; Okuno, Y.; Ikeda, R.; Sakai. N. Tetrahedron. Lett. 2010, 51, 2335-2338.
(8) a) Sukumaran, K. B.; Harvey, R.G.; J. Org. Chem. 1981,46, 2740-2745. b) Fossatelli, M.; Brandsma. L. Synthesis, 1992, 756.
(9) Cant, A. A.; Lee, R.; Greaney, M. F. Chem. Commun. 2010, 46, 8671-8673.
(10) Bock, H.; Rajaoarivelo, M.; Clavaguera, S.; Grelet. E. Eur. J. Org. Chem. 2006, 2889-2893.
(11) Shirai, H.; Amano, N.; Hashimoto, Y.; Fukui, E.; Ishii, Y.; Ogawa, M. J. Org. Chem. 1991, 56, 22532256.
(12) Choi, J. Y.; Kim, J.; Furukawa, H.; Chae. H. K. Chem. Lett. 2006, 1054-1055.
(13) Jafarpour, F.; Hazrati, H.; Nouraldinmousa, S. Org. Lett. 2013, 15, 3816-3819.
(14) Kim, H. S.; Gowrisankar, S.; Kim, E. S.; Kim, J. N. Tetrahedron Lett. 2008, 49, 6569-6572.
(15) King, B. T.; Kroulı'k, J.; Robertson, C. R.; Rempala, P.; Hilton, C. L.; Korinek, J. D.; Gortari, L. M. J. Org. Chem. 2007, 72, 2279-2288.
(16) Wang, J.; Pomerantz, M. Tetrahedron Lett. 1995, 36, 2571-2574.
(17) a) Jen-Chieh, H.; Cheng, C. H. Chem. Commun. 2008, 2992-2994. b) Kearleya, G. J.; Muldera, F. M.; Pickenb, S. J.; Kouwerb, P. H. J.; Stride. J. Chem. Phys. 2003, 292 , 185-190.
(18) Peña, D.; Escudero, S.; Pérez, D.; Guitián, E.; Castedo, L. Angew. Chem. Int. Ed. 1998, 37, 2659-2661.
(19) Soe, W. H.; Manzano, C.; Renaud, N.; de Mendoza, P.; De Sarkar, A.; Ample, F.; Hliwa, M.; Echavarren, A. M.; Chandrasekhar, N.; Joachim, C. ACS Nano, 2011, 5, 1436-1440.
(20) Peña, D.; Cobas, A.; Pérez, D.; Guitián, E. Synthesis, 2002, 10, 1454-1458.
(21) Sanz, R.; Castroviejo, M. P.; Guilarte, V.; Perez, A.; Fañanás, F. J. J. Org. Chem. 2007, 72, 5113-5118.

Spectroscopic Data

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compound $\mathbf{4 a}$ (500 and 125 MHz respectively, CDCl_{3}).

$$
1 / 1
$$

\qquad

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compound $\mathbf{4 b}$ (400 and 101 MHz respectively, CDCl_{3}).

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR data of compound $\mathbf{4 e}\left(400,101\right.$ and 376 MHz respectively, $\left.\mathrm{CDCl}_{3}\right)$.

||

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compound $\mathbf{4 f}\left(400\right.$ and 101 MHz respectively, $\left.\mathrm{CDCl}_{3}\right)$.

Abstract

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR data of compound $\mathbf{4 g}\left(400,101\right.$ and 376 MHz respectively, $\left.\mathrm{CDCl}_{3}\right)$.

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR data of compound $\mathbf{4 h}\left(400,101\right.$ and 376 MHz respectively, $\left.\mathrm{CDCl}_{3}\right)$.

200	190	180	170	160	150	140	130	120	110	100	${ }_{90}$	80	70	60	50	40	30	20	10	0
				160	150		130	12	10	f1 (ppm)	90	80	7	60	50	40	30	20	10	O

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compound $\mathbf{4 i}\left(400\right.$ and 101 MHz respectively, $\left.\mathrm{CDCl}_{3}\right)$.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compound $\mathbf{4 I}$ (400 and 101 MHz respectively, CDCl_{3}).

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR data of compound $\mathbf{4 j}\left(400,101\right.$ and 376 MHz respectively, $\left.\mathrm{CDCl}_{3}\right)$.

/1

[^0]${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compound $\mathbf{4 k}$ (400 and 101 MHz respectively, CDCl_{3}).

11111

200	190	180	170	160	150	140	130	120	110	100	${ }_{90}$	80	70	60	50	40	30	20	10
				160	10	140	130		10	f1 (ppm)	90	80	7	60	50	40	30	20	10

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR data of compound $\mathbf{1 0 b}\left(500,125\right.$ and 471 MHz respectively, $\left.\mathrm{CDCl}_{3}\right)$.

\section*{| $1 / 1$ | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| -25 | -30 | -35 | -40 | -45 | -50 | -55 | -60 | -65 | -7 |}

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compound $\mathbf{6 a}$ (500 and 125 MHz respectively, CDCl_{3}).

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of the 1:3 mixture of compounds $\mathbf{6 b}: \mathbf{6 b}{ }^{\mathbf{~}}(500$ and 125 MHz respectively, CDCl_{3}).

\qquad

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of the 1:3 mixture of compounds $\mathbf{6 c}: \mathbf{6 c}{ }^{\text { }}$ (500 and 125 MHz respectively, CDCl_{3}).


```
Mcccc
```


${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of the 1:3 mixture of compounds $\mathbf{6 d}: \mathbf{6 d}{ }^{\prime}$ (500 and 125 MHz respectively, CDCl_{3}).

200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10
													む̇	© \ddagger ニิฟ					Mă oig od ou
	－																		
゙く					ごリ														

[^1]

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ data of the 1:3 mixture of compounds $\mathbf{6 e}: \mathbf{6 e}{ }^{\prime}(500,125$ and 471 MHz respectively, CDCl_{3}).

$\xrightarrow[+i t]{\circ}$																		
	-20	-30	-40	-50	-60	-70	-80	-90	-100	$\begin{gathered} -110 \\ \mathrm{f}(\mathrm{ppm}) \end{gathered}$	-120	-130	-140	-150	-160	-170	-180	-190

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of the 1:3 mixture of compounds $\mathbf{6 f}: \mathbf{6 f}{ }^{\prime}$ (500 and 125 MHz respectively, CDCl_{3}).

					$\stackrel{1}{15}$			1				1	70	60		10				
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

®.

$\begin{array}{lll}134.5 & 134.0 & 133.5 & 133.0 & 132.5 & 132.0 & 131.5 & 131.0 & 130.5 & 130.0 & 129.5 & 129.0 & 128.5 & 128.0 & 127.5 & 127.0 & 126.5 & 126.0 & 125.5 & 125.0 & 124.5 & 124.0 & 123.5 & 123.0 & 122.5\end{array}$
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ data of the 1:3 mixture of compounds $\mathbf{6 g}: \mathbf{6 g}$ ’ ${ }^{(500,} 125$ and 471 MHz respectively, d_{6}-acetone).

200	190	180	170	160	150	140	130	120			90	80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR data of compound $\mathbf{6 h}\left(500,100\right.$ and 471 MHz respectively, $\left.\mathrm{CDCl}_{3}\right)$.

100	190	180	170	$\stackrel{1}{160}$	150	140	130			1	1	1	10	1	1	10	1	1	
? 00	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

$\stackrel{\circ}{\circ}$

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ data of compound $\mathbf{6 h}{ }^{\prime}\left(500,125\right.$ and 471 MHz respectively, $\left.\mathrm{CDCl}_{3}\right)$.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compound $\mathbf{6 i}$ (500 and 125 MHz respectively, CDCl_{3}).

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compound $\mathbf{6 i}$ ' (500 and 125 MHz respectively, CDCl_{3}).

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compound $\mathbf{6 1}\left(500\right.$ and 125 MHz respectively, CDCl_{3}).

${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR data of compound $\mathbf{6 j}$ (500 and 475 MHz respectively, CDCl_{3}).

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compound $\mathbf{6 k}$ (500 and 125 MHz respectively, CDCl_{3}).

GC-MS Data

GCMS traces of mixtures of compounds $\mathbf{6 b} / \mathbf{6} \mathbf{b}^{\prime}, \mathbf{6 c} / \mathbf{6} \mathbf{c}^{\prime}$ and $\mathbf{6 d} / \mathbf{6 d} \mathbf{d}^{\prime}$

```
E11a :U:\smmdata\curront_data\msd2\data\0713714_a1_rpt2.D
parator
Accrulrad
Instrument :
Sample Nana: TAG291
M1sc Info
V1al Numbor: 14
```



```
    Method : C: \(\backslash \mathrm{msch}\) chem \(\backslash 1 \backslash \mathrm{METHODS} \backslash\) default.m
    Title :
```

 Signal : TIC: 1213449_ei.D\data.ms
 | peak $\#$ | $\begin{aligned} & \mathrm{R} \cdot \mathrm{~T} \\ & \mathrm{~min} \end{aligned}$ | first scan | $\begin{array}{r} \max \\ \operatorname{scan} \end{array}$ | last scan | $\begin{aligned} & \text { PK } \\ & \mathrm{TY} \end{aligned}$ | $\begin{gathered} \text { peak } \\ \text { height } \end{gathered}$ | $\begin{aligned} & \text { corr. } \\ & \text { area } \end{aligned}$ | corr.
 of max. | 8 of total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 31.932 | 4215 | 4249 | 4302 | M3 | 570189 | 59828219 | 100.008 | 75.7448 |
| 2 | 32.571 | 4315 | 4343 | 4407 | M2 | 191853 | 19158894 | 32.028 | 24.2568 |

[^0]:

[^1]:

