Supporting Information for

Self-assembly of Supramolecular Light-harvesting Arrays from Symmetric Perylene-3,4-dicarboximide Trefoils

Kelly M. Lefler, Chul Hoon Kim, Yi-Lin Wu, and Michael R. Wasielewski*
Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, IL 60208-3113
*Address correspondence to this author. E-mail: m-wasielewski@northwestern.edu

Table of Contents

$$
\begin{array}{ll}
\text { Synthesis } & \text { S1 }
\end{array}
$$

Additional SAXS/WAXS Models S7
Time-resolved Fluorescence Spectra in THF and MCH S11
References S12

Synthesis

Reagents were purchased at reagent grade and used as received. Column chromatography was carried out with SiO_{2} (particle size $0.040-0.063 \mathrm{~mm}, 230-400 \mathrm{mesh}$) and technical solvents. Size exclusion chromatography was performed with Bio-Beads S-X1 from Bio-Rad Laboratories, Inc. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured on a Bruker AVANCE III 500 spectrometer. Chemical shifts were reported in ppm relative to the signal of $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{4}$. Residual solvent signals in the NMR spectra were used as an internal reference. Coupling constants (J) were given in Hz. The apparent resonance multiplicity was described as s (singlet), d (doublet), t (triplet), and m (multiplet). MALDI-MS were measured on a Bruker Autoflex III

MALDI-TOF mass spectrometer using 2-hydroxy-1-naphthoic acid or dithranol as a matrix, and high-resolution HR-ESI-MS spectra on an Agilent 6210 LC-TOF; signals are reported in m/z units. The synthesis of $\mathbf{P 1}{ }^{1}$ and 1,3,5-tris(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene ${ }^{2}$ have been reported previously.

P2. To a stirring solution of $\mathbf{P} 1(0.610 \mathrm{~g}, 1.407 \mathrm{mmol})$ and 1-dodecene $(3.12 \mathrm{~mL}, 14.07 \mathrm{mmol})$ in mesitylene $(28 \mathrm{~mL})$ that had been purged with N_{2} was added $\mathrm{Ru}\left(\mathrm{H}_{2}\right) \mathrm{CO}\left(\mathrm{PPh}_{3}\right)_{3}(0.155 \mathrm{~g}, 0.169$ mmol). The solution was heated at reflux and stirred under N_{2} for 2 d . The solvent was evaporated to afford a dark orange solid. Column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexanes (4:1) followed by drying under high vacuum afforded the product as an orange solid ($0.986 \mathrm{~g}, 91 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta=8.19(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.91(\mathrm{~s}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.1$ Hz, 2H), 7.49 (apparent $\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 4.13 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.43-3.38 (m, 4H), 2.01$1.88(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.63(\mathrm{~m}, 4 \mathrm{H}), 1.57-1.20(\mathrm{~m}, 44 \mathrm{H}), 0.96-0.88(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta=163.90,150.51,134.78,133.88,132.07,130.07,128.88,127.58,126.64$, $124.29,124.10,122.85,117.85,43.67,37.61,37.26,31.93,31.10,30.57,30.17,29.74,29.73$, 29.70, 29.67, 29.38, 28.55, 23.89, 23.24, 22.69, 14.13, 10.73; HR-ESI-MS: m/z 770.5863 ([M+ $\mathrm{H}]^{+}$, calcd for $\mathrm{C}_{54} \mathrm{H}_{76} \mathrm{NO}_{2}$: 770.5871).

P3. To a stirring solution of $\mathbf{P 2}(0.963 \mathrm{~g}, 1.25 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added $\mathrm{Br}_{2}(0.068$ $\mathrm{mL}, 1.31 \mathrm{mmol}$) dropwise. The mixture was stirred at reflux for 2 h and then washed with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3(\text { aq) }}$ and $\mathrm{H}_{2} \mathrm{O}$. The mixture was concentrated under reduced pressure, and the crude material was passed through a pad of silica with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Evaporation of the filtrate afforded the product as an orange solid $(0.858 \mathrm{~g}, 81 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta=8.26(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.76$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.56(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.42-3.38(\mathrm{~m}, 4 \mathrm{H}), 1.98-1.94(\mathrm{~m}$, 1H), 1.79-1.63 (m, 4H), 1.52-1.15 (m, 44H), 0.96-0.88 (m, 12H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\left.25^{\circ} \mathrm{C}\right): \delta=163.83,150.72,150.64,134.18,134.05,132.49,131.98,130.82,129.35,129.19$, $128.80,128.78,127.80,125.25,124.67,124.37,123.92,123.54,122.93,118.31,118.29,43.75$, $37.61,37.24,31.93,31.14,30.58,30.16,29.73,29.70,29.67,29.38,28.55,23.91,23.23,22.70$, 14.14, 14.10, 10.74; HR-ESI-MS: m/z $870.4782\left([M+\mathrm{Na}]^{+}\right.$, calcd for $\mathrm{C}_{54} \mathrm{H}_{74}{ }^{79} \mathrm{BrNNaO}_{2}$: 870.4795).

P4. $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(0.048 \mathrm{~g}, 0.059 \mathrm{mmol})$ and potassium acetate $(0.306 \mathrm{~g}, 3.12 \mathrm{mmol})$ were added to a solution of $\mathbf{P} 3(0.100 \mathrm{~g}, 0.118 \mathrm{mmol})$ and bis(pinacolato)diboron $(0.345 \mathrm{~g}, 1.36$ mmol) in 1,4-dioxane (12 mL). The solution was purged with N_{2}, and stirred at reflux for 14 h under N_{2}. The cooled mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes (1:1) afforded the product $(0.090 \mathrm{~g}, 85 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=8.84(\mathrm{dd}, J=$ $8.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{dd}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.18-8.14(\mathrm{~m}, 3 \mathrm{H})$, $7.66(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.52-3.40(\mathrm{~m}, 4 \mathrm{H}), 2.00-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.80-$ $1.69(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.17(\mathrm{~m}, 44 \mathrm{H}), 1.46(\mathrm{~s}, 12 \mathrm{H}), 0.95-0.86(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta=164.08,150.92,150.77,137.83,136.13,135.44,134.97,132.22,131.74$, $131.02,128.99,127.65,127.11,125.02,124.52,122.96,122.02,118.42,117.87,84.11,43.71$, $37.59,37.26,31.92,31.20,30.59,30.15,29.72,29.68,29.66,29.57,29.37,29.32,28.56,25.60$, 24.99, 23.92, 23.21, 22.69, 14.13, 14.07, 10.75; HR-ESI-MS: m/z $895.6711\left([M+\mathrm{H}]^{+}\right.$, calcd for $\mathrm{C}_{60} \mathrm{H}_{87} \mathrm{BNO}_{4}$: 895.6759).

1. $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.008 \mathrm{~g}, 0.007 \mathrm{mmol})$ was added to a deaerated solution of $\mathbf{P} 3(0.062 \mathrm{~g}, 0.073$ mmol), 1,3,5-tris(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene ($0.010 \mathrm{~g}, 0.022 \mathrm{mmol}$), and $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.014 \mathrm{~g}, 0.132 \mathrm{mmol})$ in a mixture of toluene $(2.5 \mathrm{~mL})$, $\mathrm{EtOH}(1 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}$ $(0.75 \mathrm{~mL})$. The solution was stirred at $80^{\circ} \mathrm{C}$ for 2 d . The mixture was extracted with CHCl_{3} and $\mathrm{H}_{2} \mathrm{O}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexanes (1:1) yielded the product as a red solid ($0.037 \mathrm{~g}, 71 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta=8.50(\mathrm{~d}, J=8.0,2.4 \mathrm{~Hz}, 3 \mathrm{H}), 8.46(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H})$, $8.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 3 \mathrm{H}), 8.19(\mathrm{~s}, 3 \mathrm{H}), 8.17(\mathrm{~s}, 3 \mathrm{H}), 7.89(\mathrm{~s}, 3 \mathrm{H}), 7.78(\mathrm{~d}, J=7.8,3 \mathrm{H}), 7.69-7.61$ (m, 3H), $4.16(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}), 3.48-3.43(\mathrm{~m}, 12 \mathrm{H}), 2.01-1.62(\mathrm{~m}, 15 \mathrm{H}), 1.56-1.20(\mathrm{~m}, 132 \mathrm{H})$, $0.95-0.85(\mathrm{~m}, 36 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=164.02,151.92,150.94,141.37$, $140.78,134.84,132.35,129.71,129.16,128.46,127.20,124.58,124.52,122.83,118.32,43.75$, $37.51,37.24,31.87,31.83,30.07,29.94,29.61,29.56,29.40,29.36,29.33,29.27,29.07,28.85$, 28.73, 28.60, 28.45, 23.80, 23.58, 22.64, 14.14, 14.02, 10.63; MALDI-MS: m/z 2381.257 ([M+ $\mathrm{H}]^{+}$, calcd for $\mathrm{C}_{168} \mathrm{H}_{226} \mathrm{~N}_{3} \mathrm{O}_{6}$: 2381.747).

2. $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.0043 \mathrm{~g}, 0.0037 \mathrm{mmol})$ was added to a deaerated solution of $\mathbf{P} 4(0.035 \mathrm{~g}, 0.039$ mmol), 1,3,5-tris(4-bromophenyl)benzene $(0.0067 \mathrm{~g}, 0.0124 \mathrm{mmol})$, and $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.0081 \mathrm{~g}$, $0.0760 \mathrm{mmol})$ in a mixture of toluene $(1.50 \mathrm{~mL}), \mathrm{EtOH}(0.60 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.45 \mathrm{~mL})$. The solution was stirred at $80{ }^{\circ} \mathrm{C}$ for 2 d . The mixture was extracted with CHCl_{3} and $\mathrm{H}_{2} \mathrm{O}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Column chromatography with $\mathrm{CHCl}_{3} /$ hexanes $(4: 1)$ afforded the product as a red solid $(0.011 \mathrm{~g}, 34 \%)$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta=8.55(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 3 \mathrm{H}), 8.52(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 3 \mathrm{H}), 8.27$ $(\mathrm{s}, 3 \mathrm{H}), 8.26(\mathrm{~s}, 3 \mathrm{H}), 8.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 3 \mathrm{H}), 8.08(\mathrm{~s}, 3 \mathrm{H}), 7.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.61-7.45$ $(\mathrm{m}, 15 \mathrm{H}), 4.19(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 3.55-3.50(\mathrm{~m}, 12 \mathrm{H}), 2.10-1.20(\mathrm{~m}, 147 \mathrm{H}), 0.98-0.70(\mathrm{~m}$, $36 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=164.02,150.85,140.37,132.30,130.58,129.90$, $129.62,128.40,128.01,127.39,126.87,124.59,122.79,118.11,43.71,37.52,37.20,31.83$, $31.14,30.50,30.06,29.61,29.57,29.42,29.27,29.22,29.13,29.01,28.47,23.82,23.13,23.08$, 22.60, 14.11, 14.04, 10.65; MALDI-MS: m/z $2609.394\left([M+\mathrm{H}]^{+}\right.$, calcd for $\mathrm{C}_{186} \mathrm{H}_{238} \mathrm{~N}_{3} \mathrm{O}_{6}$: 2609.841).

Additional SAXS/WAXS Models

Figure S1. A) Pair-distance distribution function (PDF) of the experimental data of $\mathbf{1}$ compared with the PDFs calculated based on the structural models with varying numbers of partially stacked molecules. B) Top view of the dimer structure of two partially π-stacked 1 , where only one PMI stacks with one PMI of an adjacent monomer. C) Side view of the dimer structure of two partially π-stacked $\mathbf{1}$, where only one PMI stacks with one PMI of an adjacent monomer. Hydrogen atoms are omitted for clarity.

Figure S2. A) Pair-distance distribution function (PDF) of the experimental data of $\mathbf{2}$ compared with the PDFs calculated based on the structural models with varying numbers of partially stacked molecules. B) Top view of the trimer of three partially π-stacked 2, where one PMI from each monomer overlaps with an adjacent molecule. C) Side view of the trimer of three partially π-stacked 2, where one PMI from each monomer overlaps with an adjacent molecule. Hydrogen atoms are omitted for clarity.

Figure S3. Time-resolved fluorescence spectra of $\mathbf{1}$ in (\mathbf{A}) THF $\left(1 \times 10^{-4} \mathrm{M}\right)$ and (B) MCH ($\left.6 \times 10^{-4} \mathrm{M}\right)$ following $390 \mathrm{~nm}, 100-\mathrm{fs}$ pulsed excitation.

Figure S4. Time-resolved fluorescence spectra of $\mathbf{2}$ in (\mathbf{A}) THF $\left(1 \times 10^{-4} \mathrm{M}\right)$ and (B) MCH $\left(1 \times 10^{-3} \mathrm{M}\right)$ following $390 \mathrm{~nm}, 100$-fs pulsed excitation.

References

(1) Keerthi, A.; Liu, Y.; Wang, Q.; Valiyaveettil, S. Chem. Eur. J. 2012, 18, 11669-11676.
(2) Biqing, B.; Yuwen, L.; Zhan, X.; Wang, L. J. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 3431-3439.

