A General and Enantioselective Approach to Pentoses: A Rapid Synthesis of PSI-6130, the Nucleoside Core of Sofosbuvir

Manuel Peifer,[†] Raphaëlle Berger, [†] Valerie W. Shurtleff, Jay C. Conrad, and David W. C. MacMillan*

Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544

Supporting Information

Table of Contents

I. General Information

II. Synthesis of Starting Materials

- Synthesis of Organocatalyst
- Synthesis of Enantioenriched α -OTMP-Aldehyde
- Alternative Preparation of Enantioenriched α -OTMP-Aldehyde
- Synthesis of Dichlorotitanium Diisopropoxide

III. Synthesis of Derivatives of Ribose from Enol Silanes

- General Procedure for the Synthesis of Enol Silanes
- General Procedure for the Mukaiyama Aldol Reaction of Enantioenriched α -OTMP-Aldehyde and Enol Silanes followed by OTMP-Cleavage and Cyclization

IV. Synthesis of Derivatives of Ribose and Arabinose from Silyl Ketene Acetals

- General Procedure for the Synthesis of Isopropyl Esters
- General Procedure for the Synthesis of Silyl ketene Acetals with an α -O-Atom
- \bullet General Procedure for the Synthesis of Silyl ketene Acetals with an $\alpha\text{-C-Atom}$
- \bullet General Procedure for the Mukaiyama Aldol Reaction of Enantioenriched $\alpha\mbox{-}OTMP\mbox{-}Aldehyde$ and Silyl ketene Acetals
- General Procedure for the OTMP-Cleavage and Cyclization of the Mukaiyama Aldol Products to the Corresponding Ribono- and Arabinolactones
- General Procedure for the Reduction of Ribono- and Arabinolactones to the Corresponding Lactols

[†] These authors contributed equally to this work.

• Alternative Procedure for the Synthesis of Ribono- and Arabinolactols from Mukaiyama Aldol Products

V. Synthesis of C-Nucleosides

- Synthesis of Fully Protected Lactone Substrate
- Preparation of C(1)-Arylated Lactols
- Reduction of Lactols to α-C-Nucleosides
- Reduction of Lactols to β-C-Nucleosides

VI. Synthesis of Fluorinated Pentose Derivatives

- Preparation of C(2)-Fluorinated Lactols
- Synthesis of Gemcitabine from Aldehyde 1
- Synthesis of PSI-6130 from Aldehyde 1

VII. Tables

VIII. Appendix A: X-ray Crystallographic Analysis

IX. Appendix B: ¹H and ¹³C NMR Spectra

I. General Information. Commercial reagents were purified prior to use following the guidelines of Perrin and Armarego.¹ All solvents were purified according to the method of Grubbs.² Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator. Chromatographic purification of products was accomplished using flash chromatography on Silicycle, Davisil, or Fluka silica gel according to the method of Still.³³ Analytical thin-layer chromatography (TLC) was performed on Silicycle or Analtech 250 mm silica gel plates; preparative thin-layer chromatography on Silicycle or Analtech 1000 mm silica gel plates. TLC visualization was performed by fluorescence quenching or KMnO₄, ceric ammonium molybdate, or anisaldehyde stains. ¹H NMR spectra were recorded on a Bruker 500 (500 MHz) and are referenced relative to residual CDCl₃ proton signals at δ 7.26, C_6D_6 at δ 7.16 ppm, or D_2O at δ 4.79 ppm. Data for ¹H NMR spectra are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, h = heptet, sept = septet, m = multiplet), integration, coupling constant (Hz), and assignment. 13 C spectra were recorded on a Bruker 500 (125 MHz) and are referenced relative to CDCl₃ at δ 77.16 ppm, C₆D₆ at δ 128.06 ppm, or DMSO at δ 39.52. Data for ¹³C NMR are reported in terms of chemical shift and assignment. IR spectra were recorded on a Perkin Elmer Paragon 1000 spectrometer and are reported in terms of frequency of absorption (cm⁻¹). High-resolution mass spectra were obtained from the

¹ Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals; 3rd ed., Pergamon Press, Oxford, 1988.

² Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics **1996**, 15, 1518.

³ Still, W. C.; Kahn, M.; Mitra, A. J. J. Org. Chem. **1978**, 43, 2923.

Princeton University Mass Spectral Facility. High-performance liquid chromatography (HPLC) was performed on Hewlett-Packard 1100 Series chromatographs using a chiral column (25 cm) and guard column (5 cm). Optical rotations were measured on a Jasco P-1010 polarimeter with [a]_D values reported in degrees; concentration (c) is in g/100 mL.

II. Synthesis of Starting Materials.

Synthesis of Organocatalyst.

ЧИ

(R)-5-((1-Benzyl-1H-indol-3-yl)methyl)-2,2,3-trimethylimidazolin-4-one·HBF₄.⁴ Metallic Na (2.59 g, 113 mmol, 2.3 equiv.) was added, in small pieces, to liquid NH₃ (250 mL) Me containing $Fe(NO_3)_3$ ·9H₂O (158 mg, 0.39 mmol, 0.8 mol%) cooled to -78 °C. Me The mixture was stirred for 30 minutes, over which time it turned gray/black in color. D-tryptophan (10.0 g, 49.0 mmol, 1.0 equiv.) was then added in small •HBF4 portions. The mixture was allowed to come to reflux, treated dropwise with benzyl chloride (5.64 mL, 49.0 mmol, 1.0 equiv.) over 10 minutes and stirred overnight to allow the solvent to evaporate. The resulting grey solid was

dissolved in hot water (375 mL) and the product was precipitated by the addition of glacial acetic acid (17.5 mL). The solid was filtered and washed with water (100 mL), 1:1 EtOH:H₂O (100 mL), 19:1 EtOH:H₂O (100 mL), and Et₂O (100 mL). The product was dried under vacuum to yield D-1-benzyltryptophan (12.8 g, 89% yield) as a tan solid. To a dried round bottom flask were added crude D-1benzyl-tryptophan (12.8 g, 43.5 mmol, 1.0 equiv.), SOCl₂ (6.31 mL, 86.9 mmol, 2.0 equiv.), and MeOH (87 mL). The resulting mixture was stirred vigorously at room temperature for 40 h, over which time it turned clear then heterogeneous again. The mixture was concentrated under vacuum to provide the solid ester HCl salt as a pale brown solid. This solid was treated with MeNH₂ (40% in MeOH, 30 mL), and the resulting solution was stirred at room temperature for 16 hours. The mixture was concentrated under vacuum, treated with Et₂O, and concentrated again. This procedure was performed three times to remove excess MeNH₂. The crude amide was then suspended in CH₂Cl₂ (200 mL) and washed with of sat. aq. NaHCO₃ (200 mL). The aqueous layer was extracted with CH₂Cl₂ (2 \times 100 mL), and the combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum to yield a pale brown foam. The crude, freebased amide was dissolved in MeOH (87 mL), and treated with TSA·H₂O (414 mg, 2.18 mmol, 5 mol%) and acetone (15.9 mL, 218 mmol, 5.0 equiv.). The mixture was stirred at reflux for 16 h then cooled to room temperature and concentrated under vacuum. The crude catalyst was purified by flash chromatography using EtOAc to yield the freebase catalyst (12.5 g, 73% yield over four steps from D-tryptophan) as a pale brown oil. The experimental data is in agreement with the literature.⁴ The catalyst (12.5 g, 35.9 mmol, 1.0 equiv.) was then added to a dried round bottom flask with 300 mL of Et₂O and was cooled to -78 °C. While stirring vigorously, HBF₄·Et₂O (5.57 mL, 37.7 mmol, 1.05 equiv.) was added dropwise over 15 minutes, and the cooling

⁴ Simonovich, S. P.; Van Humbeck, J. F.; MacMillan, D. W. C. Chem. Sci. 2012, 3, 58.

bath was removed. The mixture was stirred for 30 minutes until it reached room temperature, then decanted. The residue was dissolved in a minimum amount of MeOH and added dropwise to stirring Et_2O (1 L). The off-white precipitate was filtered and the solid washed with small quantities of Et_2O . The filtrate was evaporated, dissolved in a minimum amount of MeOH and precipitated from Et_2O again. The suspension was filtered, washed with small quantities of Et_2O and the solids were combined with the ones of the first precipitation. The solid was transferred into a round bottom flask and dissolved in a minimum added at reflux until small amounts of a white solid started to precipitate. The title compound crystallized as colorless crystals at 0 °C. These crystals were filtered off and dried under vacuum.

Synthesis of Enantioenriched α-OTMP-Aldehyde.

3-(Benzyloxy)propanal.⁴ To a suspension of NaH (7.89 g, 197 mmol, 1.5 equiv., 60% in mineral oil) in DMF (260 mL) at 0 °C was added dropwise 1,3-propanediol (9.52 mL, 131 mmol, 1.0 equiv.) and the mixture was stirred for 30 minutes at 0 °C. Benzyl bromide (16.4 mL, 138 mmol, 1.05 equiv.) was added dropwise and the reaction was warmed to room temperature and stirred for 16 h. The yellow solution was poured over ice/sat. aq. NH₄Cl and extracted with EtOAc ($3 \times 100 \text{ mL}$). The combined organic fractions were washed with brine (3×100 mL), dried over MgSO₄, filtered and concentrated under vacuum. The crude product was purified by flash chromatography using 4:1 to 1:1 hexanes:EtOAc to yield 1-(benzyloxy)-3-propanol (9.50 g, 87% yield) as a yellow liquid. The experimental data is in agreement with the literature.⁵ ¹H NMR (500 MHz, CDCl₃): δ 8.01 (s, 1H, OH), 7.39–7.27 (m, 5H, ArH), 4.52 (s, 2H, CH₂Ph), 3.79 (dt, 2H, J = 5.4, 5.4 Hz, OHCH₂), 3.67 (t, 2H, J = 5.8 Hz, CH₂OBn), 1.87 (tt, 2H, J = 5.4, 5.8 Hz, CH₂CH₂OBn). To a solution of TEMPO (940 mg, 6.02 mmol, 10 mol%) and (diacetoxy)iodobenzene (23.3 g, 72.2 mmol, 1.2 equiv.) in CH₂Cl₂ (120 mL) was added 1-(benzyloxy)-3-propanol (10.0 g, 60.2 mmol, 1.0 equiv.) in one portion and the resulting red solution was stirred at room temperature for 16 h. The crude mixture was washed with sat. aq. NaHCO₃ (100 mL), dried over MgSO₄, filtered, and concentrated under vacuum. The crude product was purified by flash chromatography using 7:1 to 4:1 hexanes:EtOAc to yield the title compound (8.79 g, 89% yield) as a colorless oil. The experimental data is in agreement with the literature.⁶ ¹H NMR (500 MHz, CDCl₃): δ 9.80 (t, 1H, J = 1.8 Hz, CH(O)), 7.39–7.27 (m, 5H, ArH), 4.54 (s, 2H, CH₂Ph), 3.82 (t, 2H, J = 6.1 Hz, CH₂OBn), 2.71 (dt, 2H, J = 1.9, 6.1 Hz, $CH_2CH(O)).$

(R)-3-(Benzyloxy)-2-(2,2,6,6-tetramethylpiperidin-1-yloxy)propanal (1, 90% ee).⁴ To an oven dried vial were added (R)-5-((1-benzyl-1H-indol-3-yl)methyl)-2,2,3-trimethylimidazolin-4-one·HBF₄ (87.0 mg, 0.20 mmol, 0.2 equiv.), oven-dried 4Å molecular sieves (5 mg), CuCl₂ (13.5 mg, 0.10 mmol, 0.1 equiv.), and ethyl acetate (0.60 mL). 3-(Benzyloxy)propanal (164 mg, 1.00 mmol 1.00 equiv.) was added in one

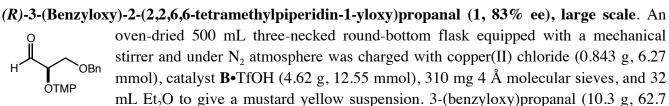
⁵ Anchoori, R. K.; Harikumar, K. B.; Batchu, V. R.; Aggerwal, B. B.; Khan, S. R. *Bioorg. Med. Chem.* 2010, 18, 229.

⁶ Nielsen, L.; Lindsay, K. B.; Faber, J.; Nielsen, N. C.; Skrydstrup, T. J. Org. Chem. **2007**, 72, 10035.

portion and the resulting brown suspension was cooled to -30 °C. The mixture was treated dropwise with a solution of TEMPO (188 mg, 1.20 mmol, 1.2 equiv.) in ethyl acetate (0.32 mL). An ambient air inlet line was then pierced through the septum and the mixture was stirred for 24 h. The reaction was quenched with 2 mL of sat. aq. NH₄Cl and the aqueous layer was extracted with Et₂O (3 × 5 mL). The combined organic layers were dried over Na₂SO₄ and concentrated under vacuum. The residue was dissolved in toluene and washed vigorously with a 1 M solution of NaOH/ascorbic acid. The organic layer was immediately subjected to flash chromatography using 9:1 hexanes:Et₂O to give the title compound (247 mg, 77% yield, 90% ee) as a colorless liquid. The experimental data is in agreement with the literature.⁴ The enantiomeric excess was determined from the corresponding TMP-deprotected

BzO OBn

benzoyl ester. This compound was prepared by treating the corresponding alcohol (1.0 equiv.) with triethylamine (2.0 equiv.), benzoyl chloride (1.2 equiv.), and DMAP (5 mol%) in CH_2Cl_2 (0.5 M) at 0 °C. Upon complete consumption of


starting material (1 h), the reaction mixture was diluted with CH_2Cl_2 and quenched with water. The organic layer was dried over Na_2SO_4 and concentrated under vacuum. The crude mixture was purified by flash chromatography. The ester was then treated with Zn (10 equiv.) and 1:1 AcOH:H₂O (0.5 M) at 50 °C until the starting material was consumed. The mixture was cooled to room temperature and extracted with CH_2Cl_2 . The organic layer was washed with sat. aq. NaHCO₃ and the organic layer was dried over Na_2SO_4 , filtered, and concentrated under vacuum. The crude mixture was purified by preparative TLC. HPLC analysis of the alcohol (AS, 10% IPA/hexanes, 1.0 mL/min, 233 nm) indicated 90% ee: t_R (minor) = 14.2 minutes, t_R (major) = 17.0 minutes. Aldehyde **1** prepared using these conditions was employed in the synthesis of compounds **2a–16c**.

Alternative Preparation of Enantioenriched α -OTMP-Aldehyde. As illustrated above, our laboratory recently reported a general approach to the enantioselective α -oxidation of aldehydes via the merger of amine catalysis and copper catalysis.⁴ In this report, the synthesis of aldehyde **1** from commercially available β -benzyloxypropanal was reported in high yield and enantioselectivity using imidazolidinone catalyst **A** (entry 1). This catalyst provided high yield and asymmetric induction for a broad scope of aldehydes; however, it is not currently commercially available. In order to increase the utility and practicality of our method for the synthetic community, we investigated the replacement of catalyst **A** with the commercially available organocatalyst **B**.⁷ Evaluation of the reaction conditions afforded a synthetically useful level of efficiency and enantiomeric excess (entries 3 and 4, 56% yield, 87% ee and 68% yield, 86% ee) with catalyst **B**. Higher levels of enantiocontrol (93% ee, entry 5) was obtained using Cu(OTf)₂, albeit in lower yield (36% yield). We found that our modified conditions were quite scaleable, facilitating the synthesis of large amounts of aldehyde **1** in one synthetic operation (see below).

⁷ Sigma-Aldrich catalogue number 569763 (HCl salt).

O II	amine catalyst (20 mol%) CuX ₂ (10 mol%), TEMPO			0 1 ↓		O Me
н		4 Å molecular sieves solvent, –30 °C		H OTMP		
entry	catalyst [salt]	CuX ₂	solvent	yield	ee	- NH
1	A [HBF ₄]	CuCl ₂	EtOAc	77%	90%	
2	B [HBF ₄]	CuCl ₂	EtOAc	59%	82%	O Me
3	B [HBF ₄]	CuCl ₂	Et ₂ O	56%	87%	B M. Me
4	B [TfOH]	CuCl ₂	Et ₂ O	68%	86%	I I N Me
5	B [TfOH]	Cu(OTf) ₂	Et ₂ O	36%	93%	
^a Yields dete	ermined by ¹ H NMR	analysis of cru	de reaction mi	xtures. ^b ee d	letermined	-

^{*a*}Yields determined by ¹H NMR analysis of crude reaction mixtures. ^{*b*} ee determined by chiral HPLC analysis after chemical derivatization.

mmol) was then added as a solution in 16 mL Et₂O and the stirring suspension was cooled to -30 °C. TEMPO (11.76 g, 75 mmol) was then added dropwise as a solution in 16 mL Et₂O to give a brown suspension. The flask was fitted with a drying tube packed with CaCl₂ and the suspension was allowed to stir open to air for 48 h. The reaction was quenched with sat. aq. NH₄Cl and poured over H₂O. The aqueous layer was extracted with three portions of Et₂O. The combined organic layers were then dried over MgSO₄, filtered, and concentrated. The residue was taken up in toluene, washed with a 1 M ascorbic acid/NaOH solution, and immediately chromatographed on silica eluting with 10% Et₂O/hexanes to afford the title compound as a colorless liquid (11.6 g, 36.3 mmol, 58% yield). The experimental data is in agreement with the literature.⁴ The enantiomeric excess was determined from the corresponding TMP-deprotected benzoyl ester (see above). HPLC analysis of the alcohol (AS, 10% IPA/hexanes, 1.0 mL/min, 233 nm) indicated 83% ee: t_R (minor) = 14.2 minutes, t_R (major) = 17.0 minutes. Aldehyde **1** prepared using these conditions was employed in the synthesis of compounds **18–37**, gemcitabine, and PSI-6130.

Synthesis of Dichlorotitanium diisopropoxide. The reagent can either be obtained commercially from TCI or prepared by the reaction of $TiCl_4$ and $Ti(O'Pr)_4$. As the quality of commercially supplied $TiCl_2(O'Pr)_2$ can be variable, we highly recommend preparing the reagent freshly.⁸ To a solution of distilled $Ti(O'Pr)_4$ (6.37 mL, 21.0 mmol, 1.05 equiv.) in a flame-dried Schlenk flask under an

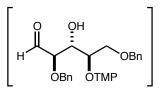
⁸ Mikami, K.; Terada, M.; Nakai, T. J. Am. Chem. Soc. **1990**, 112, 3949.

atmosphere of dry N₂ was added dry hexanes (20 mL), followed by the dropwise addition of TiCl₄ (2.20 mL, 20.0 mmol, 1.0 equiv.) at room temperature. The warm solution was stirred for 15 minutes then left for crystallization (usually 2–3 hours). The colorless crystals were separated from the supernatant liquid by decantation under a stream of dry N₂ and washed with dry hexanes (5 × 2 mL). Drying in vacuum afforded the title compound (6.54 g, 69% yield) as colorless crystals. TiCl₂(OⁱPr)₂ can be handled on air for weighting and can be kept in a closed container for several months without loss in performance. Upon extended exposure to moisture, crystals of TiCl₂(OⁱPr)₂ turn from a sticky paste into a liquid.

III. Synthesis of Derivatives of Ribose from Enol Silanes

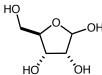
General Procedure for the Synthesis of Enol Silanes.⁹ To a solution of Et_3N (4.0 equiv.) and trimethylsilyl chloride (2.0 equiv.) in CH_3CN (0.5 M) was added the aldehyde (1.0 equiv.) in one portion and the resulting colorless suspension was stirred for 16 hours at 50 °C, over which time it became yellow in color. The solvent was evaporated under vacuum and the residue was taken up in anhydrous Et_2O then filtered. The solvent was removed under vacuum and the residue distilled under vacuum.

(Z)-((2-(Benzyloxy)vinyl)oxy)trimethylsilane. The enol silane was synthesized following the general procedure using Et₃N (11.1 mL, 80.0 mmol, 4.0 equiv.), trimethylsilyl chloride (5.05 mL, 40.0 mmol, 2.0 equiv.), 2-(benzyloxy)acetaldehyde (3.00 g, 20.0 mmol, 1.0 equiv.) and CH₃CN (40 mL). The crude material was distilled under vacuum (60 mTorr, 120 °C) to yield the title compound (3.60 g, 81% yield, >20:1 *Z:E*) as a colorless liquid. IR (thin film): 3033, 2959, 2896, 2866, 1667, 1494, 1455, 1397, 1362, 1297, 1250, 1121, 1020, 840, 731, 695 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.39–7.27 (m, 5H, ArH), 5.47 (d, 1H, *J* = 3.3), 5.43 (d, 1H, *J* = 3.4 Hz, HC=CH), 4.82 (s, 2H, CH₂Ph), 0.20 (s, 9H, Si(CH₃)₃); ¹³C NMR (125 MHz, CDCl₃): δ 137.7 (CHOBn), 137.5, 130.9, 128.5, 128.0 (ArC), 122.6 (CHOTMS), 74.0 (CH₂Ph), 0.28 (Si(CH₃)₃); HRMS (ESI-TOF) calculated for C₁₂H₁₈O₂Si [M+Na]⁺ m/z 245.0968, found 245.0966.


⁹ (a) Northrup, A. B.; MacMillan, D. W. C. *Science* **2004**, *305*, 1752. (b) Denmark, S. E.; Ghosh, S. K. *Tetrahedron* **2007**, *63*, 8636.

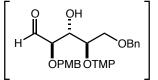
6.35, 6.32 (2d, 2H, J = 3.4, 3.4 Hz, HC=CH), 5.63 (s, 2H, CH₂Ar), 4.70 (s, 3H, OCH₃), 1.08 (s, 9H, Si(CH₃)₃); ¹³C NMR (125 MHz, CDCl₃): δ 159.4 (ArC), 130.7 (CHOPMB), 129.7, 129.5 (ArC), 122.4 (CHOTMS), 113.9 (ArC), 73.7 (CH₂Ph), 55.4 (OCH₃), 0.27 (Si(CH₃)₃); HRMS (ESI-TOF) calculated for C₁₃H₂₀O₃Si [M+Na]⁺ m/z 275.1074, found 275.1071.

General Procedure for the Mukaiyama Aldol Reaction of Enantioenriched α -OTMP-Aldehyde and Enol Silanes followed by OTMP-Cleavage and Cyclization. An oven-dried vial was flushed with dry N₂ and charged with TiCl₂(O'Pr)₂ (4.0 equiv.), CH₂Cl₂ (0.2 M), and H₂O (2.0 equiv.), then cooled to -20 °C. (*R*)-3-(benzyloxy)-2-(2,2,6,6-tetramethylpiperidin-1-yloxy)propanal (90% ee, 1.0 equiv.) and the enol silane (4.0 equiv.) were weighed into an Eppendorf tube, dissolved in a minimal amount of CH₂Cl₂ and added to the suspension of TiCl₂(O'Pr)₂ via a microliter syringe. The mixture was stirred for 20 hours at -20 °C, then quenched by the addition of sat. aq. NH₄Cl (1 mL) and poured over H₂O (10 mL). The aqueous layer was extracted with Et₂O (3 × 5 mL) and the combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum. To a solution of the crude Mukaiyama aldol product in toluene (0.20 M) was added H₂O:AcOH (8:1, 0.20 M) and Zn powder (10 equiv.). The resulting biphasic suspension was stirred vigorously at room temperature until the reaction was judged to be finished by TLC-analysis (usually 16 hours). The mixture was neutralized with sat. aq. NaHCO₃ (2 mL) and poured over H₂O. The aqueous layer was extracted with Et₂O (3 × 5 mL) and the combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum. The crude product was purified by flash chromatography.


2,5-Dibenzyloxy-1-hydroxy-3-hydroxy-D-ribose. The compound was synthesized following the general procedure using $\text{TiCl}_2(\text{O'Pr})_2$ (379 mg, 1.60 mmol, 4.0 equiv.), (*R*)-3-(benzyloxy)-2-(2,2,6,6-tetramethylpiperidin-1-yloxy)propanal (90% ee, 128 mg, 400 µmol, 1.0 equiv.), (*Z*)-((2-(benzyloxy)vinyl)oxy)trimethylsilane (356 mg, 1.60 mmol, 4.0 equiv.), H₂O (14.4 µL, 800 µmol, 2.0 equiv.) and CH₂Cl₂ (2.0 mL). Analysis of the crude reaction mixture by ¹H-NMR using 1,3-benzodioxole as an internal standard

Analysis of the crude reaction mixture by H-INMR using 1,3-benzodioxole as an internal standard indicated for a 72% yield of the corresponding β -hydroxyaldehyde that was obtained as a single

diastereoisomer. ¹H NMR (500 MHz, CDCl₃): δ 9.75 (d, 1H, J = 1.4 Hz, CH(O)), 7.42–7.27 (m, 10H, ArH), 4.74, 4.64, 4.53, 4.44 (4d, 4H, J = 11.9, 11.8, 11.7, 11.6 Hz, CH₂OCH₂Ph, CHOCH₂Ph), 4.31–4.16 (m, 2H, CH(O)CHCH), 4.01–3.83 (m, 3H, CHCH₂OBn), 3.59 (d, 1H, J = 4.3 Hz, OH), 1.67–0.94 (m, 18H, OTMP); ¹³C NMR (125 MHz, CDCl₃): δ 202.1


(CH(O)), 137.50, 137.44, 128.57, 128.48, 128.15, 128.01, 128.00, 127.93 (ArC), 84.6 (CH(O)CH), 78.2 (CHOTMP), 74.8 (CHOH), 73.6, 73.4 (CH₂OCH₂Ph, CHOCH₂Ph), 69.9 (CH₂OCH₂Ph), 60.9, 59.7 ((CH₃)₂CNC(CH₃)₂), 40.7, 40.4 (CH₂CH₂CH₂), 34.0, 33.2 ((CH₃)_aCNC(CH₃)_a), 20.8 ((CH₃)_bCNC(CH₃)_b), 17.4 (CH₂CH₂CH₂). The crude material was reacted following the general procedure using Zn (262 mg, 4.00 mmol, 10 equiv.), toluene (2.0 mL) and H₂O:AcOH (8:1, 2.0 mL). The crude product was purified by flash chromatography using 1:1 hexanes:EtOAc to yield the title compound (86.3 mg, 65% yield over two steps, >20:1 dr, 1:1 mixture of α- and β-anomers) as colorless crystals.IR (thin film): 3382, 2922, 2861, 1454, 1274, 1261, 1120, 1078, 1027, 749, 698 cm⁻¹; ¹H NMR (500 MHz, CDCl₃), α -isomer: 7.41–7.24 (m, 10H, ArH), 5.37 (dd, 1H, J = 9.7, 4.2 Hz, CH(1)), 4.79-4.46 (m, 4H, CH(2)OCH₂Ph, CH₂(5)OCH₂Ph), 4.29-4.25 (m, 1H, CH(4)), 4.16-4.10 (m, 1H, CH(3)), 3.98 (dd, 1H, J = 5.2, 4.4 Hz, CH(2)), 3.73 (d, 1H, J = 9.7 Hz, CH(1)OH), 3.56 (d, 2H, J =3.6 Hz, CH₂(5)), 2.69 (d, 1H, J = 4.3 Hz, CH(3)OH); β -isomer: 7.41–7.24 (m, 10H, ArH), 5.29 (d, 1H, J = 8.2 Hz, CH(1)), 4.79–4.46 (m, 4H, CH(2)OCH₂Ph, CH₂(5)OCH₂Ph), 4.41–4.36 (m, 1H, CH(3)), 4.16–4.10 (m, 1H, CH(4)), 3.87 (dd, 1H, J = 5.3, 0.8 Hz, CH(2)), 3.70 (dd, 1H, J = 10.3, 2.7 Hz, $CH_{a}(5)$, 3.62 (dd, 1H, J = 10.3, 2.7 Hz, $CH_{b}(5)$), 3.64–3.60 (d, 1H, hidden by $CH_{b}(5)$, CH(1)OH), 2.77 (d, 1H, J = 8.5 Hz, CH(3)OH); ¹³C NMR (125 MHz, CDCl₃), aryl carbons : δ 138.01, 137.13, 137.10, 137.08, 128.83, 128.76 (2C), 128.56, 128.54, 128.37, 128.37, 128.24, 128.13, 128.01, 127.86, 127.69 (PhC); α-isomer: 96.4 (C(1)), 82.8 (C(4)), 78.2 (C(2)), 73.9, 73.9 (2 CH₂Ph), 71.8 (C(3)), 70.2 or 70.1 (C(5)); β-isomer: 100.4 (C(1)), 84.5 (C(4)), 83.7 (C(2)), 73.9, 73.9 (2 CH₂Ph), 71.3 (C(3)), 70.2 or 70.1 (C(5)); HRMS (ESI-TOF) calculated for $C_{19}H_{22}O_5$ [M+Na]⁺ m/z 353.1359, found 353.1356. $\alpha_D^{21} = +35.6$ (c = 1.00, CHCl₃). The configuration of the title compound was determined

from the corresponding debenzylated pentose. This compound was prepared by dissolving the title compound (25.8 mg, 78.1 µmol, 1.0 equiv.) in MeOH (2.6 mL) OH and treating it with Pd/C (10%, 5 mg). Hydrogen gas was bubbled through the reaction mixture for 5 minutes and the suspension was stirred at room temperature for 20 hours under H₂ atmosphere. The reaction mixture was filtered through Celite and the filtrate was evaporated to yield a white powder. Although not pure, the ¹H- and ¹³C-NMR data of this crude product

matched an authentic sample of ribose and showed no trace of arabinose, xylose, or lyxose. ¹³C NMR (125 MHz, D₂O, α- and β-anomers, multiple conformers): δ 100.8, 96.1, 93.6, 93.4, 82.9, 82.3, 75.1, 70.9, 70.8, 70.3, 69.9, 69.8, 69.1, 69.0, 67.2, 67.0, 62.8, 62.4, 61.1.

5-Benzyloxy-1-hydroxy-3-hydroxy-2-(4-methoxybenzyloxy)-D-ribose. The compound was synthesized following the general procedure using TiCl₂(O'Pr)₂ (379 mg, 1.60 BnO ·OH mmol. 4.0 equiv.), (R)-3-(benzyloxy)-2-(2,2,6,6-tetramethylpiperidin-1yloxy)propanal (90% ee, 128 mg, 400 µmol, 1.0 equiv.), (Z)-((2-((4-OPMB HO methoxybenzyl)oxy)vinyl)oxy)trimethylsilane (404 mg, 1.60 mmol, 4.0 equiv.), H₂O (14.4 µL, 800 µmol, 2.0 equiv.) and CH₂Cl₂ (2.0 mL). Analysis of the crude reaction mixture by ¹H NMR using 1,3-benzodioxole as an internal standard indicated for a 70% yield of the corresponding β -hydroxyaldehyde, which was obtained as a single diastereoisomer. ¹H NMR (500 MHz, CDCl₂): δ

9.72 (d, 1H, J = 1.7 Hz, CH(O)), 7.40–6.79 (m, 9H, ArH), 4.66 (d, 1H, J =11.6, CH₂Ar), 4.57 (d, 1H, J = 11.5, CH₂Ar), 4.53 (d, 1H, J = 11.7, CH₂Ar), 4.44 (d, 1H, J = 11.7 Hz, CH₂Ar), 4.29–4.16 (m, 2H, CH(O)CHCH), 3.96– 3.78 (m, 4H, CHCH₂OBn, OH), 3.80 (s, 3H, OCH₃), 1.55-0.97 (m, 18H,

OTMP); ¹³C NMR (125 MHz, CDCl₃): δ 202.3 (CH(O)), 159.42, 137.47, 129.91, 129.51, 128.56, 127.99, 127.91, 113.82. (ArC), 84.2 (CH(O)CH), 78.3 (CHOTMP), 74.6 (CHOH), 73.6, 72.9 (CH₂OCH₂Ph, CHOCH₂Ph), 69.8 (CH₂OCH₂Ph), 60.9, 59.7 ((CH₃)₂CNC(CH₃)₂), 55.3 (OCH₃), 40.7, 40.4 (CH₂CH₂CH₂), 34.0 and 33.2 ((CH₃)_aCNC(CH₃)_a), 20.8 and 20.8 ((CH₃)_bCNC(CH₃)_b), 17.2 (CH₂CH₂CH₂). The crude material was reacted following the general procedure using Zn (262 mg, 4.00 mmol, 10 equiv.), toluene (2.0 mL) and H₂O:AcOH (8:1, 2.0 mL). The crude product was purified by flash chromatography using 1:1 hexanes:EtOAc to yield the title compound (91.9 mg, 64% yield over

two steps, >20:1 dr, 1:1 mixture of α - and β -anomers) as colorless crystals. Due to the similar structural features and the consistent NMR-data of the title compound to 2,5-dibenzyloxy-3-hydroxy-Dribose (see above) the configuration of the title compound was assigned as ribo. IR (thin film): 3419, 2925, 2861, 1612, 1585, 1514, 1455, 1302, 1249, 1173, 1075, 822, 739, 699 cm⁻¹; ¹H NMR (500 MHz, CDCl₃), α -isomer: δ 7.39–6.85 (m, 9H, ArH), 5.35 (dd, 1H, J = 9.7, 4.2 Hz, CH(1)), 4.72–4.45 (m, 4H, CH₂PMB, CH₂Ph), 4.27–4.23 (m, 1H, CH(4)), 4.13–4.08 (m, 1H, CH(3)), 3.95 (dd, 1H, J = 5.2, 4.4Hz, CH(2)), 3.83-3.79 (d, 1H, hidden by OCH₃, CH(1)OH), 3.81 (s, 3H, OCH₃), 3.55 (d, 2H, J = 3.6Hz, CH₂(5)), 2.74 (d, 1H, J = 4.4 Hz, CH(3)OH); β-isomer: δ 7.39–6.85 (m, 9H, ArH), 5.26 (d, 1H, J =8.2 Hz, CH(1)), 4.72–4.45 (m, 4H, CH₂Ph, CH₂Ph), 4.38–4.33 (m, 1H, CH(3)), 4.13–4.08 (m, 1H, CH(4), 3.84 (dd, 1H, J = 5.4, 0.8 Hz, CH(2)), 3.81 (s, 3H, OCH_3), 3.74 (d, 1H, J = 8.2 Hz, CH(1)OH), 3.68 (dd, 1H, J = 10.3, 2.7 Hz, CH_a(5)), 3.61 (dd, 1H, J = 10.3, 3.0 Hz, CH_b(5)), 2.80 (d, 1H, J = 8.5Hz, CH(3)OH); ¹³C NMR (125 MHz, CDCl₃), aryl carbons: δ 159.78, 159.67, 137.98, 137.10, 130.10, 129.88, 129.11, 129.09, 128.72, 128.53, 128.21, 127.99, 127.83, 127.67, 114.13, 114.08 (ArC) αisomer: δ 96.3 (C(1)), 82.7 (C(4)), 77.8 (C(2)), 73.8, 72.7 (2 CH₂Ar), 71.7 (C(3)), 70.2 or 70.1 (C(5)), 55.4 (OCH₃); β-isomer: δ 100.4 (C(1)), 84.3 (C(4)), 83.3 (C(2)), 73.8, 72.7 (2 CH₂Ar), 71.2 (C(3)), 70.2 or 70.1 (C(5)), 55.4 (OCH₃); HRMS (ESI-TOF) calculated for $C_{20}H_{24}O_6$ [M+Na]⁺ m/z 383.1465, found 383.1466; $\alpha_{D}^{21} = +35.8$ (c = 1.00, CHCl₃).

IV. Synthesis of Derivatives of Ribose and Arabinose from Silyl Ketene Acetals

General Procedure for the Synthesis of Isopropyl Esters. A solution of the carboxylic acid in HCl/PrOH (6–7 M, 50 mL for 10 mL of aldehyde) was heated at reflux for 12 hours. The solution was cooled to room temperature and carefully poured over sat. aq. NaHCO₃ (100 mL). The aqueous layer was extracted with Et_2O (3 × 50 mL) and the combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum. The crude product was distilled at atmospheric pressure.

Isopropyl 2-hydroxyacetate. The isopropyl ester was synthesized following the general procedure using 2-hydroxyacetic acid (10.0 mL, 167 mmol, 1.0 equiv.) and HCl/^{*i*}PrOH (6–7 M, 50 mL). The crude product was distilled at atmospheric pressure (190 °C) to yield the title compound (12.2 g, 62% yield) as a colorless liquid. The experimental data is in agreement with the literature.^{10 1}H NMR (500 MHz, CDCl₃): δ 5.13 (sept, 1H, *J* = 6.3 Hz, CH(CH₃)₂), 4.11 (d, 2H, *J* = 5.4 Hz, CH₂), 2.43 (br s, 1H, OH), 1.28 (d, 6H, *J* = 6.3 Hz, CH(CH₃)₂).

Isopropyl 2-((*tert*-butyldimethylsilyl)oxy)acetate. To a solution of isopropyl 2-hydroxyacetate (1.00 g, 8.47 mmol, 1.0 equiv.) in CH_2Cl_2 (42 mL) at 0 °C was added imidazole (694 mg, 10.2 mmol, 1.2 equiv.) and *tert*-butyldimethylsilyl chloride (1.53 g, 12.0 mmol, 1.2 equiv.). The reaction mixture was warmed to room temperature and stirred for 16 hours. The resulting white suspension was washed with aq. HCl (1 M, 2 × 100 mL) and sat. aq.

¹⁰ Pounder, R. J.; Dove, A. P. *Biomacromolecules* **2010**, *11*, 1930.

NaHCO₃ (2 × 100 mL) and the combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum. The crude product was purified by flash chromatography using 9:1 hexanes:Et₂O to yield the title compound (1.77 g, 90% yield) as a colorless oil. IR (thin film): 2982, 2952, 2931, 2856, 1756, 1729, 1472, 1274, 1259, 1211, 1146, 1107, 837, 812, 764, 750 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 5.07 (sept, 1H, *J* = 6.3 Hz, CH(CH₃)₂), 4.20 (s, 2H, CH₂), 1.25 (d, 6H, *J* = 6.3 Hz, CH(CH₃)₂), 0.92 (s, 9H, SiC(CH₃)₃, 0.10 (s, 6H, Si(CH₃)₂); ¹³C NMR (125 MHz, CDCl₃): δ 171.5 (CO₂ⁱPr), 68.5 (CH(CH₃)₂), 62.2 (CH₂), 25.9 (SiC(CH₃)₃), 22.0 (CH(CH₃)₂), 18.6 (SiC(CH₃)₃), -5.3 (Si(CH₃)₂); HRMS (ESI-TOF) calculated for C₁₁H₂₄O₃Si [M+H]⁺ m/z 233.1568, found 233.1567.

Isopropyl 2-((*tert*-butyldiphenylsilyl)oxy)acetate. To a solution of isopropyl 2-hydroxyacetate (1.15 g, 9.69 mmol, 1.0 equiv.) in CH_2Cl_2 (49 mL) at 0 °C was added imidazole (792 mg, 11.6 mmol, 1.2 equiv.) and *tert*-butyldiphenylsilyl chloride (2.99 mL, 11.6 mmol, 1.2 equiv.). The reaction mixture was warmed to room temperature and stirred for 16 hours. The white suspension was washed with an HCl (1 M 2 × 100 mL) and an set

stirred for 16 hours. The white suspension was washed with aq. HCl (1 M, 2 × 100 mL) and aq. sat. NaHCO₃ (2 × 100 mL) and the combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum. The crude product was purified by flash chromatography using 9:1 hexanes:Et₂O to yield the title compound (3.40 g, 98% yield) as a colorless oil. IR (thin film): 2978, 2967, 2933, 2896, 2859, 1756, 1731, 1472, 1428, 1276, 1213, 1143, 1106, 842, 823, 792, 764, 749, 702 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.79–7.32 (m, 10H, Ar**H**), 5.03 (sept, 1H, *J* = 6.2 Hz, C**H**(CH₃)₂), 4.20 (s, 2H, C**H**₂), 1.19 (d, 6H, *J* = 6.3 Hz, CH(C**H**₃)₂), 1.09 (s, 9H, SiC(C**H**₃)₃; ¹³C NMR (125 MHz, CDCl₃): δ 170.9 (CO₂^{*i*}Pr), 135.7, 133.0, 130.0, 127.9 (Ar**C**), 68.4 (CH(CH₃)₂), 62.6 (CH₂), 26.8 (SiC(CH₃)₃), 21.9 (CH(CH₃)₂), 19.4 (SiC(CH₃)₃); HRMS (ESI-TOF) calculated for C₂₁H₂₈O₃Si [M+Na]⁺ m/z 379.1700, found 379.1703.

Isopropyl 3-methylbutanoate. The isopropyl ester was synthesized following the general procedure using 3-methylbutanoic acid (10.0 mL, 91.1 mmol, 1.0 equiv.) and HCl/PrOH (6–7 M, 50 mL). The crude product was distilled at atmospheric pressure (170 °C) to yield the title compound (6.67 g, 72% yield) as a colorless liquid. IR (thin film): 2962, 2871, 1729, 1710, 1464, 1411, 1386, 1372, 1294, 1254, 1191, 1143, 1109, 980, 938 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 5.00 (sept, 1H, J = 6.3 Hz, OCH(CH₃)₂), 2.14 (d, 2H, J = 6.5 Hz, CH₂ⁱPr), 2.13–2.03 (m, 1H, CH₂CH(CH₃)₂), 1.22 (d, 6H, J = 6.3 Hz, OCH(CH₃)₂), 0.94 (d, 6H, J = 6.5 Hz, CH₂CH(CH₃)₂); ¹³C NMR (125 MHz, CDCl₃): δ 172.9 (CO₂ⁱPr), 67.4 (OCH(CH₃)₂), 44.0 (CH₂ⁱPr), 25.9 (CH₂CH(CH₃)₂), 22.5, 22.0 (CH₂CH(CH₃)₂), OCH(CH₃)₂); HRMS (ESI-TOF) calculated for C₈H₁₆O₂ [M+H]⁺ m/z 145.1223, found 145.1224.

Isopropyl 3,3-dimethylbutanoate. The isopropyl ester was synthesized following the general procedure using 3,3-dimethylbutanoic acid (10.0 mL, 78.3 mmol, 1.0 equiv.) and HCl/ⁱPrOH (6–7 M, 50 mL). The crude product was distilled at atmospheric pressure (180 °C) to yield the title compound (6.79 g, 75% yield) as a colorless liquid. IR (thin film): 2960, 2906, 2871, 1728, 1468, 1368, 1335, 1320, 1230, 1178, 1132, 1107, 1044, 974, 933, 888, 822 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 5.00 (sept, 1H, J = 6.3 Hz, CH(CH₃)₂), 2.15 (s, 2H, CH₂'Bu),

1.23 (d, 6H, J = 6.3 Hz, CH(CH₃)₂), 1.01 (s, 9H, CH₂CH(CH₃)₂); ¹³C NMR (125 MHz, CDCl₃): δ 172.1 (CO₂^{*i*}Pr), 67.3 (CH(CH₃)₂), 48.5 (CH₂CO₂^{*i*}Pr), 29.8 (C(CH₃)₃), 29.8 (CH(CH₃)₂); HRMS (ESI-TOF) calculated for C₉H₁₈O₂ [M+H]⁺ m/z 159.1380, found 159.1379.

Isopropyl 3-phenylpropanoate. The isopropyl ester was synthesized following the general procedure using 3-phenylpropanoic acid (10.0 mL, 66.6 mmol, 1.0 equiv.) and HCl/⁷PrOH (6–7 M, 50 mL). The crude product was distilled under vacuum (60 mTorr, 110 °C) to yield the title compound (7.06 g, 71% yield) as a colorless liquid. IR (thin film): 3063, 3028, 2980, 2937, 2871, 1727, 1603, 1497, 1467, 1455, 1419, 1373, 1340, 1291, 1257, 1180, 1145, 1106, 1078, 1029, 984, 966, 902, 862, 824, 748, 697 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.39–7.24 (m, 5H, Ar**H**), 5.07 (sept, 1H, *J* = 6.3 Hz, C**H**(CH₃)₂), 3.02 (t, 2H, *J* = 7.9 Hz, C**H**₂Ph), 2.67 (t, 2H, *J* = 7.9 Hz, C**H**₂Bn), 1.28 (d, 6H, *J* = 6.3 Hz, CH(CH₃)₂); ¹³C NMR (125 MHz, CDCl₃): δ 172.6 (CO₂^{*i*}Pr), 140.7, 128.6, 128.5, 126.3 (Ar**C**), 67.9 (CH(CH₃)₂), 36.4 (CH₂Bn), 31.1 (CH₂Ph), 22.0 (CH(CH₃)₂); HRMS (ESI-TOF) calculated for C₁₂H₁₆O₂ [M+H]⁺ m/z 193.1223, found 193.1224.

Isopropyl pent-4-enoate. The isopropyl ester was synthesized following the general procedure using pent-4-enoic acid (5.0 mL, 48.9 mmol, 1.0 equiv.) and HCl/PrOH (6–7 M, 50 mL). The crude product was distilled at atmospheric pressure (160 °C) to yield the title compound (4.73 g, 68% yield) as a colorless liquid. IR (thin film): 3078, 2981, 2932, 2876, 1778, 1730, 1641, 1467, 1449, 1421, 1375, 1340, 1257, 1178, 1146, 1109, 999, 956, 941, 914, 822 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 5.87–5.76 (m, 1H, C**H**=C**H**₂), 5.09–4.96 (m, 3H, CH=C**H**₂, C**H**(CH₃)₂), 2.40–2.33 (m, 4H, C**H**₂C**H**₂CO₂^{*i*}Pr), 1.22 (d, 6H, *J* = 6.3 Hz, CH(C**H**₃)₂); ¹³C NMR (125 MHz, CDCl₃): δ 172.8 (CO₂^{*i*}Pr), 136.9 (CH=CH₂), 115.5 (CH=CH₂), 67.7 (CH(CH₃)₂), 34.0 (CH₂CO₂^{*i*}Pr), 29.1 (CH₂CH₂CO₂^{*i*}Pr), 22.0 (CH(CH₃)₂). HRMS (ESI-TOF) calculated for C₈H₁₄O₂ [M+H]⁺ m/z 143.1067, found 143.1066.

Isopropyl cyclobutanecarboxylate. The isopropyl ester was synthesized following the general procedure using cyclobutanecarboxylic acid (5.0 mL, 63.3 mmol, 1.0 equiv.) and HCl/PrOH (6–7 M, 50 mL). The crude product was distilled at atmospheric pressure (190 °C) to yield the title compound (5.24 g, 74% yield) as a colorless liquid. IR (thin film): 2981, 2942, 2871, 1725, 1468, 1451, 1373, 1340, 1325, 1267, 1251, 1177, 1145, 1108, 1051, 951, 909, 832, 794, 741, 685 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 4.99 (sept, 1H, *J* = 6.3 Hz, CH(CH₃)₂), 3.08 (quint, 1H, *J* = 8.5 Hz, CHCO₂ⁱPr), 2.33–1.80 (m, 6H, (CH₂)₃), 1.22 (d, 6H, *J* = 6.3 Hz, CH(CH₃)₂); ¹³C NMR (125 MHz, CDCl₃): δ 175.3 (CO₂ⁱPr), 67.4 (CH(CH₃)₂), 38.5 (CHCO₂ⁱPr), 25.3 (CH₂CH₂CH₂), 22.0 (CH(CH₃)₂), 26.0 (CH₂CH₂CH₂). HRMS (ESI-TOF) calculated for C₈H₁₄O₂ [M+H]⁺ m/z 143.1067, found 143.1066.

Isopropyl cyclopentanecarboxylate. The isopropyl ester was synthesized following the general procedure using cyclopentanecarboxylic acid (5.0 mL, 46.0 mmol, 1.0 equiv.) and HCl/ⁱPrOH (6–7 M, 50 mL). The crude product was distilled at atmospheric pressure (210 °C) to yield the title compound (5.37 g, 75% yield) as a colorless liquid. IR (thin

film): 2934, 2873, 1726, 1467, 1454, 1373, 1343, 1305, 1264, 1187, 1146, 1107, 1037, 982, 941, 909, 826, 756 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 4.98 (sept, 1H, *J* = 6.3 Hz, CH(CH₃)₂), 2.67 (quint, 2H, *J* = 8.0 Hz, CHCO₂^{*i*}Pr), 1.93–1.49 (m, 8H, (CH₂)₄), 1.22 (d, 6H, *J* = 6.2 Hz, CH(CH₃)₂); ¹³C NMR (125 MHz, CDCl₃): δ 176.5 (CO₂^{*i*}Pr), 67.3 (CH(CH₃)₂), 44.2 (CHCO₂^{*i*}Pr), 30.1 (CH₂(CH₂)₂CH₂), 26.0 (CH₂(CH₂)₂CH₂), 22.0 (CH(CH₃)₂).

Isopropyl 2-methoxyacetate. The isopropyl ester was synthesized following the general procedure using 2-methoxyacetic acid (10.0 mL, 130 mmol, 1.0 equiv.) and HCl/ⁱPrOH (6–7 M, 50 mL). The crude product was distilled at atmospheric pressure (180 °C) to yield the title compound (13.1 g, 76% yield) as a colorless liquid. IR (thin film): 2983, 2937, 2896, 2825,1750, 1729, 1467, 1454, 1424, 1376, 1275, 1211, 1195, 1129, 1104, 1019, 994, 955, 921, 900, 832, 820, 728 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 5.11 (sept, 1H, *J* = 6.3 Hz, CH(CH₃)₂), 3.99 (s, 2H, CH₂CO₂^{*i*}Pr), 3.44 (s, 3H, OCH₃), 1.26 (d, 6H, *J* = 6.3 Hz, CH(CH₃)₂); ¹³C NMR (125 MHz, CDCl₃): δ 169.9 (CO₂^{*i*}Pr), 70.2 (CH₂CO₂^{*i*}Pr), 68.4 (CH(CH₃)₂), 49.4 (OCH₃), 21.9 (CH(CH₃)₂); HRMS (ESI-TOF) calculated for C₆H₁₂O₃ [M+Na]⁺ m/z 155.0679, found 155.0678.

Isopropyl 2-(dimethylamino)acetate. The isopropyl ester was synthesized following the general procedure using 2-(dimethylamino)acetic acid (5.00 g, 48.5 mmol, 1.0 equiv.) and HCl/¹PrOH (6–7 M, 50 mL). The crude product was distilled at atmospheric pressure (190 °C) to yield the title compound (5.50 g, 78% yield) as a colorless liquid. IR (thin film): 2980, 2937, 2871, 2820, 2773, 1745, 1729, 1464, 1455, 1413, 1375, 1328, 1285, 1248, 1199, 1166, 1146, 1107, 1060, 1042, 948, 938, 869, 813, 750 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 5.07 (sept, 1H, *J* = 6.3 Hz, CH(CH₃)₂), 3.11 (s, 2H, CH₂CO₂ⁱPr), 2.33 (s, 6H, N(CH₃)₂), 1.24 (d, 6H, *J* = 6.3 Hz, CH(CH₃)₂); ¹³C NMR (125 MHz, CDCl₃): δ 170.4 (CO₂ⁱPr), 68.1 (CH(CH₃)₂), 61.0 (CH₂CO₂ⁱPr), 45.5 (N(CH₃)₂), 22.0 (CH(CH₃)₂); HRMS (ESI-TOF) calculated for C₇H₁₅NO₂ [M+H]⁺ m/z 146.1176, found 146.1176.

General Procedure for the Synthesis of Silyl ketene Acetals with an α -O-Atom.¹¹ To a solution of potassium bis(trimethylsilyl)amide (1.1 equiv.) in THF (0.15 M) at -78 °C was added dropwise the ester (1.0 equiv.) over 15 minutes and the viscous solution was stirred for 30 minutes. *tert*-butyldimethylsilyl chloride (1.1 equiv.) dissolved in a minimum amount of THF was added over 15 minutes and the solution was stirred for 1 hour at -78 °C then warmed to room temperature. The solvent was evaporated under vacuum and the residue taken up in hexanes then filtered. The solvent was removed under vacuum and the residue distilled under vacuum.

(Z)-5-Isopropoxy-2,2,3,3,8,8,9,9-octamethyl-4,7-dioxa-3,8-disiladec-5-ene. The silvl ketene acetal following general was synthesized the procedure using potassium TBSO bis(trimethylsilyl)amide (1.05 g, 5.28 mmol, 1.1 equiv.), isopropyl 2-((tert-OTBS butyldimethylsilyl)oxy)acetate (1.12 g, 4.80 mmol, 1.0 equiv.), tert-

¹¹ Denmark, S. E.; Chung, W. J J. Org. Chem. **2008**, 73, 4582.

butyldimethylsilyl chloride (796 mg, 5.28 mmol, 1.1 equiv.) and THF (32 mL). The crude product was distilled under vacuum (60 mTorr, 200 °C) to yield the title compound (1.56 g, 94% yield, >20:1 *Z:E*) as a colorless liquid. IR (thin film): 2952, 2930, 2859, 1705, 1473, 1462, 1323, 1253, 1203, 1160, 1138, 1107, 1019, 918, 833, 809, 781, 688 cm⁻¹; ¹H NMR (500 MHz, C₆D₆): δ 5.80 (s, 1H, CHOTBS), 4.16 (sept, 1H, J = 6.2 Hz, CH(CH₃)₂), 1.12 (d, 6H, J = 6.2 Hz, CH(CH₃)₂), 1.08 (s, 18H, SiC(CH₃)₃), 0.99 (s, 18H, SiC(CH₃)₃), 0.31 (s, 12H, Si(CH₃)₂), 0.11 (s, 12H, Si(CH₃)₂); ¹³C NMR (125 MHz, C₆D₆): δ 146.1 (CO[†]Pr), 111.5 (CHOTBS), 69.8 (CH(CH₃)₂), 26.1 and 26.0 (2 × SiC(CH₃)₃), 21.7 (CH(CH₃)₂), 18.7 and 18.5 (2 × SiC(CH₃)₃), -4.2, and -5.1 (2 × Si(CH₃)₂).

(Z)-5-Isopropoxy-2,2,3,3,9,9-hexamethyl-8,8-diphenyl-4,7-dioxa-3,8-disiladec-5-ene. The silyl ketene acetal was synthesized following the general procedure using potassium TBSO bis(trimethylsilyl)amide (1.05 g, 5.28 mmol, 1.1 equiv.), isopropyl 2-((tert-OTBDPS ⁱPrO² butyldiphenylsilyl)oxy)acetate (1.71 g, 4.80 mmol, 1.0 equiv.), tertbutyldimethylsilyl chloride (796 mg, 5.28 mmol, 1.1 equiv.) and THF (32 mL). The crude product (2.24 g, 99% yield, >20:1 Z:E) was obtained as a pale yellow oil that was used without further purification. IR (thin film): 2957, 2931, 2891, 2858, 1704, 1473, 1462, 1428, 1324, 1252, 1204, 1151, 1138, 1106, 1017, 1004, 917, 825, 807, 782, 740, 699 cm⁻¹; ¹H NMR (500 MHz, C₆D₆): δ 7.93–7.18 (m, 10H, ArH); 5.85 (s, 1H, CHOTBS), 4.01 (sept, 1H, J = 6.1 Hz, CH(CH₃)₂), 1.21 (s, 18H, SiC(CH₃)₃), 1.12 (s, 18H, SiC(CH₃)₃), 0.97 (d, 6H, J = 6.2 Hz, CH(CH₃)₂), 0.37 (s, 6H, Si(CH₃)₂); ¹³C NMR (125) MHz, C₆D₆): δ 145.9 (CO[']Pr), 135.94, 133.56, 130.12, 128.12 (ArC), 112.0 (CHOTBDPS), 70.1 $(CH(CH_3)_2)$, 26.9 and 26.0 (2 × SiC $(CH_3)_3$), 21.6 (CH $(CH_3)_2$), 19.4 and 18.5 (2 × SiC $(CH_3)_2$), -4.0 $(Si(CH_3)_2).$

(Z)-tert-Butyl((1-isopropoxy-2-methoxyvinyl)oxy)dimethylsilane. The silyl ketene acetal was synthesized following the general procedure using potassium bis(trimethylsilyl)amide (1.66 g, 8.33 mmol, 1.1 equiv.), isopropyl 2-methoxyacetate (1.00 g, 7.57 mmol, 1.0 equiv.), *tert*-butyldimethylsilyl chloride (1.25 g, 8.33 mmol, 1.1 equiv.) and THF (50 mL). The crude product was distilled under vacuum (60 mTorr, 120 °C) to yield the title compound (1.78 g, 95% yield, >20:1 *Z:E*) as a colorless liquid. IR (thin film): 2952, 2931, 2891, 2859, 2825, 1706, 1472, 1464, 1371, 1360, 1348, 1317, 1252, 1204, 1128, 1105, 1030, 998, 938, 911, 828, 811, 782, 691, 650 cm⁻¹; ¹H NMR (500 MHz, C₆D₆): δ 5.42 (s, 1H, CHOCH₃), 4.16 (sept, 1H, *J* = 6.1 Hz, CH(CH₃)₂), 3.16 (s, 3H, CHOCH₃), 1.11 (d, 6H, *J* = 6.2 Hz, CH(CH₃)₂), 1.07 (s, 9H, SiC(CH₃)₃), 0.30 (s, 6H, Si(CH₃)₂); ¹³C NMR (125 MHz, C₆D₆): δ 145.8 (CO⁷Pr), 118.1 (CHOCH₃), 69.8 (CH(CH₃)₂), 59.5 (OCH₃), 26.0 (SiC(CH₃)₃), 21.8 (CH(CH₃)₂), 18.6 (SiC(CH₃)₃), -4.3 (Si(CH₃)₂).

General Procedure for the Synthesis of Silyl ketene Acetals with an α -C-Atom.¹² To a solution of ¹Pr₂NH (1.2 equiv.) in THF (0.4 M) at 0 °C was added dropwise *n*-butyllithium (1.1 equiv.) and the mixture was stirred for 30 min then cooled to -78 °C. The ester (1.0 equiv.) was added dropwise and the solution was stirred for 30 minutes. DMPU (1.0 equiv.) was added in one portion followed by the

¹² Wenzel, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 12964.

dropwise addition of trimethylsilyl chloride or *tert*-butyldimethylsilyl chloride (1.2 equiv.) dissolved in a minimum amount of THF. The solution was stirred for 30 minutes at -78 °C, then warmed to room temperature and stirred for an additional 2 hours. The solvent was evaporated under vacuum and the residue suspended in hexanes and filtered. The solvent was removed under vacuum and the residue was distilled.

tert-Butyl((1-isopropoxyvinyl)oxy)dimethylsilane. The silyl ketene acetal was synthesized following the general procedure using ⁱPr₂NH (1.69 mL, 12.0 mmol, 1.2 equiv.), *n*-butyllithium (2.5 M in hexanes, 4.40 mL, 11.0 mmol, 1.1 equiv.), isobutyl acetate (1.17 mL, 10.0 mmol, 1.0 equiv.), DMPU (1.20 mL, 10.0 mmol, 1.0 equiv.), *tert*-butyldimethylsilyl chloride (1.81 g, 12.0 mmol, 1.2 equiv.) and THF (25 mL). The crude product was distilled under vacuum (60 mTorr, 70 °C) to yield the title compound (2.01 g, 93% yield) as a colorless liquid. IR (thin film): 2952, 2931, 2886, 2856, 1652, 1606, 1469, 1274, 1254, 1178, 1118, 1049, 999, 898, 836, 812, 784 cm⁻¹; ¹H NMR (500 MHz, C₆D₆): δ 3.97 (sept, 1H, *J* = 6.1 Hz, CH(CH₃)₂), 3.61 (d, 1H, *J* = 2.2 Hz, C=CH_a), 3.20 (d, 1H, *J* = 2.0 Hz, C=CH_b), 1.05 (d, 6H, *J* = 6.1 Hz, CH(CH₃)₂), 0.99 (s, 9H, SiC(CH₃)₃), 0.22 (s, 6H, Si(CH₃)₂); ¹³C NMR (125 MHz, C₆D₆): δ 160.1 (C=CH₂), 69.9 (CH(CH₃)₂), 62.1 (C=CH₂), 25.9 (SiC(CH₃)₃), 21.6 (CH(CH₃)₂), 18.4 (SiC(CH₃)₃), -4.2 (Si(CH₃)₂).

(E)-tert-Butyl((1-isopropoxyprop-1-en-1-yl)oxy)dimethylsilane. The silyl ketene acetal was synthesized following the general procedure using ⁱPr₂NH (1.69 mL, 12.0 mmol, 1.2 TBSO equiv.), n-butyllithium (2.5 M in hexanes, 4.40 mL, 11.0 mmol, 1.1 equiv.), isopropyl ⁱPrO propionate (1.33 mL, 10.0 mmol, 1.0 equiv.), DMPU (1.20 mL, 10.0 mmol, 1.0 equiv.), Me tert-butyldimethylsilyl chloride (1.81 g, 12.0 mmol, 1.2 equiv.) and THF (25 mL). The crude product was distilled under vacuum (60 mTorr, 80 °C) to yield the title compound (2.10 g, 91% yield, 6:1 E:Z) as a colorless liquid. IR (thin film): 2972, 2957, 2931, 2891, 2861, 1683, 1473, 1464, 1371, 1304, 1255, 1204, 1138, 1110, 1041, 938, 898, 839, 804, 782, 764, 750 cm⁻¹; ¹H NMR (500 MHz, C_6D_6), *E*-isomer (major): δ 4.43 (sept, 1H, J = 6.2 Hz, CH(CH₃)₂), 3.99 (q, 1H, J = 6.6 Hz, C=CH), 1.72 (d, 3H, J = 6.6 Hz, CHCH₃), 1.15 (d, 6H, J = 6.2 Hz, CH(CH₃)₂), 0.96 (s, 9H, SiC(CH₃)₃), 0.15 (s, 6H, Si(CH₃)₂); Z-isomer (minor): δ 3.92 (sept, 1H, J = 6.1 Hz, CH(CH₃)₂), 3.52 (q, 1H, J = 6.4 Hz, C=CH), 1.77 (d, 3H, J = 6.4 Hz, CHCH₃), 1.15 (d, 6H, J = 6.2 Hz, CH(CH₃)₂), 1.03 (s, 9H, SiC(CH₃)₃), 0.24 (s, 6H, Si(CH₃)₂); ¹³C NMR (125 MHz, C₆D₆, *E*-isomer (major): δ 152.9 (C=CH), 82.2 (C=CH), 68.9 (CH(CH₃)₂), 25.8 (SiC(CH₃)₃), 22.1 (CH(CH₃)₂), 18.3 (SiC(CH₃)₃), 10.3 (CHCH₃), -4.9 (Si(CH₃)₂); Z-isomer (minor): δ 152.9 (C=CH), 72.0 (C=CH), 69.2 (CH(CH₃)₂), 26.0 (SiC(CH₃)₃), 21.7 (CH(CH₃)₂), 18.3 (SiC(CH₃)₃), 9.3 (CHCH₃), -3.8 (Si(CH₃)₂).

 $(E)-tert-Butyl((1-isopropoxybut-1-en-1-yl)oxy)dimethylsilane. The silyl ketene acetal was synthesized following the general procedure using <math>{}^{i}\text{Pr}_2\text{NH}$ (1.69 mL, 12.0 mmol, 1.2 equiv.), *n*-butyllithium (2.5 M in hexanes, 4.40 mL, 11.0 mmol, 1.1 equiv.), isopropyl butyrate (1.51 mL, 10.0 mmol, 1.0 equiv.), DMPU (1.20 mL, 10.0 mmol, 1.0 equiv.), *tert*-butyldimethylsilyl chloride (1.81 g, 12.0 mmol, 1.2 equiv.) and THF (25 mL). The

crude product was distilled under vacuum (60 mTorr, 90 °C) to yield the title compound (2.20 g, 90% yield, 7:1 *E:Z*) as a colorless liquid. IR (thin film): 2961, 2932, 2891, 2856, 1678, 1472, 1462, 1371,

1363, 1274, 1260, 1199, 1130, 1110, 1044, 996, 921, 888, 840, 807, 781, 764, 751 cm⁻¹; ¹H NMR (500 MHz, C₆D₆), *E*-isomer (major): δ 4.42 (sept, 1H, *J* = 6.2 Hz, CH(CH₃)₂), 4.01 (t, 1H, *J* = 7.2 Hz, C=CH), 2.27–2.18 (m, 2H, CH₂), 1.15 (d, 6H, *J* = 6.2 Hz, CH(CH₃)₂), 1.05 (t, 3H, *J* = 7.6 Hz, CH₂CH₃), 0.97 (s, 9H, SiC(CH₃)₃), 0.17 (s, 6H, Si(CH₃)₂); *Z*-isomer (minor): δ 3.93 (sept, 1H, *J* = 6.0 Hz, CH(CH₃)₂), 3.53 (t, 1H, *J* = 7.0 Hz, C=CH), 2.32–2.24 (m, 2H, CH₂), 1.15 (d, 6H, *J* = 6.2 Hz, CH(CH₃)₂), 1.05 (t, 3H, *J* = 7.6 Hz, CH₂CH₃), 1.03 (s, 9H, SiC(CH₃)₃), 0.24 (s, 6H, Si(CH₃)₂); ¹³C NMR (125 MHz, C₆D₆), *E*-isomer (major): δ 152.1 (C=CH), 90.4 (C=CH), 68.7 (CH(CH₃)₂), 25.9 (SiC(CH₃)₃), 22.1 (CH(CH₃)₂), 18.8 (CH₂CH₃), 15.8 (CH₂CH₃), 18.4 (SiC(CH₃)₃), -4.9 (Si(CH₃)₂); *Z*isomer (minor): δ 154.1 (C=CH), 79.8 (C=CH), 69.2 (CH(CH₃)₂), 26.0 (SiC(CH₃)₃), 21.7 (CH(CH₃)₂), 18.9 (CH₂CH₃), 16.1 (CH₂CH₃), 18.4 (SiC(CH₃)₃), -3.8 (Si(CH₃)₂).

(*E*)-((1-Isopropoxy-3-methylbut-1-en-1-yl)oxy)trimethylsilane. The silyl ketene acetal was synthesized following the general procedure using ${}^{i}Pr_{2}NH$ (1.69 mL, 12.0 mmol, 1.2 equiv.), *n*-butyllithium (2.5 M in hexanes, 4.40 mL, 11.0 mmol, 1.1 equiv.), isopropyl isobutyrate (1.44 g, 10.0 mmol, 1.0 equiv.), DMPU (1.20 mL, 10.0 mmol, 1.0 equiv.), trimethylsilyl chloride (1.52 g, 12.0 mmol, 1.2 equiv.) and THF (25 mL). The crude product was distilled under vacuum (60 mTorr, 100 °C) to yield the title compound (2.01 g, 93% yield, >20:1 *E:Z*) as a colorless liquid. IR (thin film): 3058, 3028, 2976, 2937, 2896, 1732, 1712, 1674, 1621, 1494, 1453, 1372, 1358, 1252, 1261, 1169, 1139, 1107, 1070, 1018, 901, 841, 752, 697 cm⁻¹; ¹H NMR (500 MHz, C₆D₆): δ 4.38 (sept, 1H, *J* = 6.2 Hz, OCH(CH₃)₂), 3.87 (d, 1H, *J* = 9.1 Hz, C=CH), 2.93–2.82 (m, 1H, CHCH(CH₃)₂), 1.15 (d, 6H, *J* = 6.2 Hz, CHCH(CH₃)₂), 1.11 (d, 6H, *J* = 7.8 Hz, OCH(CH₃)₂), 0.18 (s, 9H, Si(CH₃)₃); ¹³C NMR (125 MHz, C₆D₆): δ 151.0 (C=CH), 96.3 (C=CH), 68.4 (OCH(CH₃)₂), 25.3 (CHCH(CH₃)₂), 24.5 (CHCH(CH₃)₂), 22.2 (OCH(CH₃)₂), -0.19 (Si(CH₃)₃).

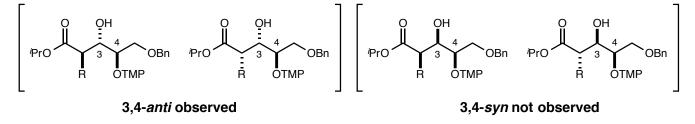
(*E*)-((1-Isopropoxy-3,3-dimethylbut-1-en-1-yl)oxy)trimethylsilane. The silyl ketene acetal was synthesized following the general procedure using ${}^{i}Pr_{2}NH$ (1.69 mL, 12.0 mmol, 1.2 equiv.), *n*-butyllithium (2.5 M in hexanes, 4.40 mL, 11.0 mmol, 1.1 equiv.), isopropyl 3,3-dimethylbutanoate (1.58 g, 10.0 mmol, 1.0 equiv.), DMPU (1.20 mL, 10.0 mmol, 1.0 equiv.), trimethylsilyl chloride (1.52 g, 12.0 mmol, 1.2 equiv.) and THF (25 mL). The crude product was distilled under vacuum (60 mTorr, 100 °C) to yield the title compound (2.22 g, 96% yield, >20:1 *E:Z*) as a colorless liquid. IR (thin film): 2958, 2866, 1675, 1464, 1451, 1380, 1274, 1254, 1197, 1127, 1110, 1028, 906, 865, 846, 752 cm⁻¹; ¹H NMR (500 MHz, C₆D₆): δ 4.44 (sept, 1H, *J* = 6.2 Hz, CH(CH₃)₂), 3.92 (s, 1H, C=CH), 1.31 (s, 9H, C(CH₃)₃), 1.15 (d, 6H, *J* = 6.2 Hz, CH(CH₃)₂), 0.17 (s, 9H, Si(CH₃)₃); ¹³C NMR (125 MHz, C₆D₆): δ 151.0 (C=CH), 96.9 (C=CH), 68.0 (CH(CH₃)₂), 31.8 (C(CH₃)₃), 30.2 (C(C(H₃)₃), 22.2 (CH(CH₃)₂), -0.26 (Si(CH₃)₃).

(*E*)-((1-Isopropoxy-3-phenylprop-1-en-1-yl)oxy)trimethylsilane. The silyl ketene acetal was synthesized following the general procedure using ^{*i*}Pr₂NH (1.69 mL, 12.0 mmol, 1.2 equiv.), *n*-butyllithium (2.5 M in hexanes, 4.40 mL, 11.0 mmol, 1.1 equiv.), isopropyl 3-phenylpropanoate (1.92 g, 10.0 mmol, 1.0 equiv.), DMPU (1.20 mL, 10.0 mmol, 1.0 equiv.), trimethylsilyl chloride (1.52 g, 12.0 mmol, 1.2 equiv.) and THF (25 mL). The

crude product was distilled under vacuum (60 mTorr, 180 °C) to yield the title compound (2.40 g, 91% yield, 6:1:3 *E:Z:C*-silylated) as a colorless liquid. IR (thin film): 2956, 2901, 2866, 1665, 1477, 1456, 1371, 1355, 1320, 1254, 1234, 1159, 1135, 1112, 1042, 1031, 897, 869, 844, 753 cm⁻¹; ¹H NMR (500 MHz, C₆D₆), *E*-isomer (major): δ 7.40–6.98 (m, 5H, Ar**H**), 4.42 (sept, 1H, *J* = 6.2 Hz, C**H**(CH₃)₂), 4.16 (t, 1H, *J* = 7.3 Hz, C=C**H**), 3.56 (d, 2H, *J* = 7.4 Hz, C**H**₂Ph), 1.13 (d, 6H, *J* = 6.2 Hz, CH(CH₃)₂), 0.14 (s, 9H, Si(CH₃)₃); ¹³C NMR (125 MHz, C₆D₆): δ 153.1 (C=CH), 143.64, 128.83, 128.79, 126.13 (Ar**C**), 86.7 (C=CH), 68.9 (CH(CH₃)₂), 31.7 (CH₂Ph), 22.2 (CH(CH₃)₂), -0.19 (Si(CH₃)₃).

(Z)-tert-Butyl((1-isopropoxypenta-1,4-dien-1-yl)oxy)dimethylsilane. The silvl ketene acetal was synthesized following the general procedure using ⁱPr₂NH (1.69 mL, 12.0 mmol, 1.2 TBSO equiv.), n-butyllithium (2.5 M in hexanes, 4.40 mL, 11.0 mmol, 1.1 equiv.), isopropyl ⁱPrO pent-4-enoate (1.42 g, 10.0 mmol, 1.0 equiv.), DMPU (1.20 mL, 10.0 mmol, 1.0 equiv.), tert-butyldimethylsilyl chloride (1.81 g, 12.0 mmol, 1.2 equiv.) and THF (25 mL). The crude product was distilled under vacuum (60 mTorr, 180 °C) to yield the title compound (2.22 g, 87% yield, 5:1 E:Z) as a colorless liquid. IR (thin film): 2972, 2957, 2931, 2891, 2860, 1675, 1638, 1473, 1462, 1371, 1362, 1317, 1290, 1253, 1234, 1191, 1138, 1108, 1072, 1044, 1005, 991, 933, 902, 837, 807, 781, 726, 671 cm⁻¹; ¹H NMR (500 MHz, C₆D₆), *E*-isomer (major): δ 6.00–5.90 (m, 1H, CH=CH₂), 5.21–4.99 (m, 1H, CH=CH₂), 4.43 (sept, 1H, J = 6.2 Hz, CH(CH₃)₂), 4.01 (t, 1H, J = 7.3Hz, C=CH), 2.99–2.94 (m, 2H, CH₂), 1.13 (d, 6H, J = 6.2 Hz, CH(CH₃)₂), 0.95 (s, 9H, SiC(CH₃)₃), 0.15 (s, 6H, Si(CH₃)₂; Z-isomer (minor): δ 6.05–5.96 (m, 1H, CH=CH₂), 5.24–5.02 (m, 1H, CH=CH₂), 3.92 (sept, 1H, J = 6.1 Hz, CH(CH₃)₂), 3.53 (t, 1H, J = 7.1 Hz, C=CH), 3.05–2.97 (m, 2H, CH₂), 1.13 $(d, 6H, J = 6.1 \text{ Hz}, CH(CH_3)_2), 1.01 (s, 9H, SiC(CH_3)_3), 0.22 (s, 6H, Si(CH_3)_2); {}^{13}C \text{ NMR} (125 \text{ MHz}, 125 \text{ MHz})$ C₆D₆), E-isomer (major): δ 153.0 (C=CH), 139.2 (CH=CH₂), 113.7 (CH=CH₂), 85.4 (C=CH), 68.9 (CH(CH₃)₂), 29.8 (CH₂), 25.8 (SiC(CH₃)₃), 22.1 (CH(CH₃)₂), 18.3 (SiC(CH₃)₃), -4.9 (Si(CH₃)₂); Zisomer (minor): δ 154.9 (C=CH), 139.5 (CH=CH₂), 113.4 (CH=CH₂), 75.0 (C=CH), 69.4 (CH(CH₃)₂), 29.9 (CH₂), 26.0 (SiC(CH₃)₃), 21.7 (CH(CH₃)₂), 18.3 (SiC(CH₃)₃), -3.8 (Si(CH₃)₂).

((1-Isopropoxy-2-methylprop-1-en-1-yl)oxy)trimethylsilane. The silyl ketene acetal was synthesized following the general procedure using ${}^{i}Pr_{2}NH$ (1.69 mL, 12.0 mmol, 1.2 equiv.), *n*butyllithium (2.5 M in hexanes, 4.40 mL, 11.0 mmol, 1.1 equiv.), isopropyl isobutyrate (1.53 mL, 10.0 mmol, 1.0 equiv.), DMPU (1.20 mL, 10.0 mmol, 1.0 equiv.), trimethylsilyl chloride (1.52 g, 12.0 mmol, 1.2 equiv.) and THF (25 mL). The crude product was distilled under vacuum (60 mTorr, 80 °C) to yield the title compound (1.96 g, 97% yield) as a colorless liquid. IR (thin film): 2975, 2916, 2861, 1705, 1659, 1451, 1381, 1371, 1253, 1188, 1160, 1138, 1108, 994, 913, 873, 845, 751, 706 cm⁻¹; ¹H NMR (500 MHz, C₆D₆): δ 4.23 (sept, 1H, *J* = 6.2 Hz, CH(CH₃)₂), 1.75 (s, 3H, C=C(CH₃)_a), 1.70 (s, 3H, C=C(CH₃)_b), 1.13 (d, 6H, *J* = 6.2 Hz, CH(CH₃)₂), 0.20 (s, 9H, Si(CH₃)₃); ¹³C NMR (125 MHz, C₆D₆): δ 147.4 (C=C(CH₃)₂), 92.5 (C=C(CH₃)₂), 69.5 (CH(CH₃)₂), 21.9 (CH(CH₃)₂), 17.5, 17.1 (C(CH₃)₂), 0.22 (Si(CH₃)₃).


(Cyclobutylidene(isopropoxy)methoxy)trimethylsilane. The silyl ketene acetal was synthesized

otms following the general procedure using ⁱPr₂NH (1.69 mL, 12.0 mmol, 1.2 equiv.), *n*butyllithium (2.5 M in hexanes, 4.40 mL, 11.0 mmol, 1.1 equiv.), isopropyl cyclobutanecarboxylate (1.42 g, 10.0 mmol, 1.0 equiv.), DMPU (1.20 mL, 10.0 mmol, 1.0 equiv.), trimethylsilyl chloride (1.52 g, 12.0 mmol, 1.2 equiv.) and THF (25 mL). The crude product was distilled under vacuum (60 mTorr, 130 °C) to yield the title compound (2.11 g, 98% yield, 1.5:1 *O*-silylated:*C*-silylated) as a colorless liquid. IR (thin film): 2976, 2871, 2841, 1722, 1707, 1467, 1451, 1381, 1372, 1248, 1207, 1178, 1128, 1107, 1070, 943, 911, 879, 842, 753, 693 cm⁻¹; ¹H NMR (500 MHz, C₆D₆): δ 4.32 (sept, 1H, *J* = 6.1 Hz, CH(CH₃)₂), 2.90–2.80 (m, 4H, CH₂CH₂CH₂), 1.96 (q, 2H, *J* = 7.8 Hz, CH₂CH₂CH₂), 1.23 (d, 6H, *J* = 6.2 Hz, CH(CH₃)₂), 0.32 (s, 9H, Si(CH₃)₃); ¹³C NMR (125 MHz, C₆D₆): δ 146.0 (C=C(CH₂)₂), 95.7 (C=C(CH₂)₂), 69.4 (CH(CH₃)₂), 28.1, 27.3 (CH₂CH₂CH₂), 17.9 (CH₂CH₂CH₂), 22.3 (CH(CH₃)₂), 0.51 (Si(CH₃)₃).

(Cyclopentylidene(isopropoxy)methoxy)trimethylsilane. The silyl ketene acetal was synthesized following the general procedure using ${}^{1}Pr_{2}NH$ (1.69 mL, 12.0 mmol, 1.2 equiv.), *n*butyllithium (2.5 M in hexanes, 4.40 mL, 11.0 mmol, 1.1 equiv.), isopropyl cyclopentanecarboxylate (1.56 g, 10.0 mmol, 1.0 equiv.), DMPU (1.20 mL, 10.0 mmol, 1.0 equiv.), trimethylsilyl chloride (1.52 g, 12.0 mmol, 1.2 equiv.) and THF (25 mL). The crude product was distilled under vacuum (60 mTorr, 200 °C) to yield the title compound (2.22 g, 97% yield) as a colorless liquid. IR (thin film): 2971, 2922, 2830, 2852, 1695, 1448, 1381, 1371, 1249, 1237, 1185, 1126, 1107, 1050, 1022, 976, 916, 895, 869, 844, 753, 698 cm⁻¹; ¹H NMR (500 MHz, C₆D₆): δ 4.27 (sept, 1H, J = 6.2 Hz, CH(CH₃)₂), 2.42 (m, 2H, C=C(CH₂)₂), 2.34 (m, 2H, C=C(CH₂)₂), 1.65–1.54 (m, 4H, C=C(CH₂)₂(CH₂)₂), 1.16 (d, 6H, J = 6.2 Hz, CH(CH₃)₂), 0.22 (s, 9H, Si(CH₃)₃); ¹³C NMR (125 MHz, C₆D₆): δ 145.3 (C=C(CH₂)₂), 102.9 (C=C(CH₂)₂), 69.4 (CH(CH₃)₂), 28.9, 28.5, 27.5, 27.4 (C=C(CH₂)₂)(CH₂)₂), 22.2 (CH(CH₃)₂), 0.41 (Si(CH₃)₃).

(Cyclohexylidene(isopropoxy)methoxy)trimethylsilane. The silvl ketene acetal was synthesized following the general procedure using ${}^{1}Pr_{2}NH$ (1.69 mL, 12.0 mmol, 1.2 equiv.), *n*butyllithium (2.5 M in hexanes, 4.40 mL, 11.0 mmol, 1.1 equiv.), isopropyl cyclohexanecarboxylate (1.81 g, 10.0 mmol, 1.0 equiv.), DMPU (1.20 mL, 10.0 mmol, 1.0 equiv.), trimethylsilyl chloride (1.52 g, 12.0 mmol, 1.2 equiv.) and THF (25 mL). The crude product was distilled under vacuum (60 mTorr, 170 °C) to yield the title compound (2.26 g, 93% yield) as a colorless liquid. IR (thin film): 2956, 2861, 1708, 1659, 1464, 1451, 1381, 1371, 1275, 1261, 1232, 1216, 1166, 1138, 1107, 1069, 1010, 950, 916, 873, 840, 751, 698 cm⁻¹; ¹H NMR (500 MHz, C₆D₆): δ 4.34 (sept, 1H, *J* = 6.1 Hz, CH(CH₃)₂), 2.43 (t, 2H, *J* = 6.1 Hz, C=C(CH₂)_a), 2.36 (t, 2H, *J* = 6.1 Hz, C=C(CH₂)_b), 1.71–1.53 (m, 6H, C=C(CH₂)₂(CH₂)₃), 1.23 (d, 6H, *J* = 6.2 Hz, CH(CH₃)₂), 0.30 (s, 9H, Si(CH₃)₃); ¹³C NMR (125 MHz, C₆D₆): δ 145.0 (C=C(CH₂)₂), 101.1 (C=C(CH₂)₂), 69.2 (CH(CH₃)₂), 28.1, 28.0, 27.9, 27.6, and 27.3 (C=C(CH₂)₅), 21.8 (CH(CH₃)₂), 0.16 (Si(CH₃)₃). General Procedure for the Mukaiyama Aldol Reaction of α -OTMP-Aldehyde and Silyl ketene Acetals. An oven-dried vial was flushed with dry N₂, charged with TiCl₂(O'Pr)₂ (2.0 equiv.) and CH₂Cl₂ (0.2 M), and cooled to -20 °C. (*R*)-3-(benzyloxy)-2-(2,2,6,6-tetramethylpiperidin-1yloxy)propanal (90% ee, 1.0 equiv.) and the silyl ketene acetal (2.0 equiv.) were weighed into an Eppendorf tube, dissolved in a minimum amount of CH₂Cl₂, and added to the solution of TiCl₂(O'Pr)₂ via a microliter syringe. The mixture was stirred for 16 hours at -20 °C, then quenched by the addition of sat. aq. NH₄Cl (2 mL) and poured over H₂O (10 mL). The aqueous layer was extracted with Et₂O (3 × 5 mL) and the combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum. The crude product was purified by flash chromatography.

Note: For aldol products bearing three stereocenters, only two diastereomers were ever observed (see depiction below). The stereochemical relationship between substituents at C(3) and C(4) was found to be exclusively *anti*, while that between substituents at C(2) and C(3) was variable.

tetramethylpiperidin-1-yloxy)-pentanoate (2a). The compound

synthesized following the general procedure using TiCl₂(O'Pr)₂ (190 mg, 800

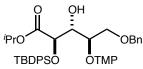
equiv.), (R)-3-(benzyloxy)-2-(2,2,6,6-tetramethylpiperidin-1-

(2R,3S,4R)-Isopropyl-5-(benzyloxy)-3-hydroxy-2-((tert-butyldimethylsilyl)oxy)-4-(2,2,6,6-

2.0

µmol,

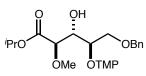
/PrO OH TBSO OTMP


yloxy)propanal (90% ee, 128 mg, 400 µmol, 1.0 equiv.), (Z)-5-isopropoxy-2,2,3,3,8,8,9,9-octamethyl-4,7-dioxa-3,8-disiladec-5-ene (277 mg, 800 µmol, 2.0 equiv.) and CH₂Cl₂ (2 mL). The crude product was purified by flash chromatography using 7:1 hexanes:Et₂O to yield the title compound (183 mg, 83% yield, >20:1 dr, 95% pure) along with minor unidentified impurities as a colorless oil. IR (thin film): 3494, 3003, 2984, 2932, 2856, 1747, 1727, 1464, 1373, 1360, 1276, 1261, 1133, 1105, 837, 761, 750 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.39–7.25 (m, 5H, ArH), 5.06 (sept, $1H, J = 6.3 Hz, CH(CH_3)_2$, 4.60 (d, $1H, J = 11.9 Hz, CH_aPh$), 4.46 (d, $1H, J = 11.9 Hz, CH_bPh$), 4.28– 4.21 (m, 2H, CHOH, CHOTBS), 4.06–4.01 (m, 1H, CHOTMP), 4.40 (dd, 2H, J = 3.4, 1.0 Hz, CH₂OBn), 3.75 (d, 1H, J = 6.7 Hz, OH), 1.71–1.03 (m, 18H, OTMP)), 1.27 (d, 6H, J = 6.2 Hz, CH(CH₃)₂), 0.87 (s, 9H, SiC(CH₃)₃), 0.04, 0.03 (2s, 6H, Si(CH₃)₂; ¹³C NMR (125 MHz, CDCl₃): δ 171.6 (CO²Pr), 137.8, 128.6, 127.9, 127.9 (ArC), 78.9 (CHOTMP), 75.5 (CHOTBS), 74.8 (CHOH), 73.5 (CH₂Ph), 70.0 (CH₂OBn), 68.5 (CH(CH₃)₂), 60.6, 59.9 ((CH₃)₂CNC(CH₃)₂), 40.6, 40.5 (CH₂CH₂CH₂), 34.2, 33.5 ((CH₃)_aCNC(CH₃)_a), 25.8 (SiC(CH₃)₃), 22.0 (CH(CH₃)₂), 20.7, 20.6 ((CH₃)_bCNC(CH₃)_b), 17.3 (CH₂CH₂CH₂), -4.8, -5.3 (Si(CH₃)₂); HRMS (ESI-TOF) calculated for $C_{30}H_{53}NO_6Si [M+H]^+ m/z 552.3715$, found 552.3717; $\alpha_D^{21} = -0.73$ (c = 1.00, CHCl₃). The riboconfiguration of the title compound was determined from the corresponding deprotected lactone. This compound was prepared by dissolving the title compound (45.9 mg, 83.2 µmol, 1.0 equiv.) in toluene

was

(415 μ L), followed by the addition of H₂O:TFA (4:1, 415 μ L) and Zn (46 mg). The biphasic mixture was stirred vigorously at room temperature for 3 days. The mixture was neutralized with aq.

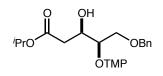
sat. NaHCO₃ (2 mL) and poured over H₂O. The aqueous layer was extracted with HO Et_2O (3 × 5 mL) and the combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum to yield 5-benzyloxy-2-hydroxy-3-hydroxy-D-ЮН ribonolactone. The benzyloxy-group was cleaved by dissolving 5-benzyloxy-2нÒ hydroxy-3-hydroxy-D-ribonolactone (8.30 mg, 34.8 µmol, 1.0 equiv.) in 1:1 EtOAc:EtOH (1.2 mL) and treating it with Pd/C (10%, 5 mg). Hydrogen gas was bubbled through the reaction mixture for 5 minutes and the suspension was stirred for 20 hours at room temperature under H₂ atmosphere. The reaction mixture was filtered through Celite and the filtrate was evaporated to yield the fully deprotected lactone corresponding to the title compound (D-ribonolactone) as a white powder. The ¹Hand ¹³C-NMR data of this lactone matched an authentic sample of D-ribonolactone. ¹H NMR (500 MHz, D₂O): δ 4.67 (d, 1H, J = 5.5 Hz, CH(2)), 4.50 (t, 1H, J = 3.5, 3.4 Hz, CH(4)), 4.36 (d, 1H, J = 5.6 Hz, CH(3)), 3.80 (dd, 1H, J = 13.0, 2.6 Hz, CH(5), 3.73 (dd, 1H, J = 12.8, 3.7 Hz, CH(5)); ¹³C NMR (125 MHz, D₂O): δ 178.5 (C(1)), 86.7 (C(4)), 69.4, 68.9 (C(2), C(3)), 60.4 (C(5)).


(2R,3S,4R)-Isopropyl-5-(benzyloxy)-3-hydroxy-2-((tert-butyldiphenylsilyl)oxy)-4-(2,2,6,6-

tetramethylpiperidin-1-yloxy)-pentanoate (3a). The compound was synthesized following the general procedure using $\text{TiCl}_2(\text{O}^{i}\text{Pr})_2$ (190 mg, 800 µmol, 2.0 equiv.), (*R*)-3-(benzyloxy)-2-(2,2,6,6-tetramethylpiperidin-1-yloxy)propanal (90% ee, 128 mg, 400 µmol, 1.0 equiv.), (*Z*)-5-isopropoxy-

2,2,3,3,9,9-hexamethyl-8,8-diphenyl-4,7-dioxa-3,8-disiladec-5-ene (377 mg, 800 µmol, 2.0 equiv.) and CH₂Cl₂ (2 mL). The crude product was purified by flash chromatography using 7:1 hexanes:Et₂O to yield the title compound (222 mg, 82% yield, >20:1 dr, 95% pure) along with minor impurities as a colorless oil. Due to the similar structural features and the consistent NMR-data of the title compound (2R,3S,4R)-isopropyl-5-(benzyloxy)-3-hydroxy-2-((tert-butyldimethylsilyl)oxy)-4-(2,2,6,6to tetramethylpiperidin-1-yloxy)-pentanoate (see above) the configuration of the title compound was assigned as ribo. IR (thin film): 2972, 2932, 2856, 1746, 1469, 1454, 1428, 1362, 1373, 1276, 1261, 1191, 1130, 1105, 958, 822, 764, 750, 701 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.61–7.13 (m, 15H, Ar**H**), 4.72 (sept, 1H, J = 6.3 Hz, C**H**(CH₃)₂), 4.33 (d, 1H, J = 11.8 Hz, C**H**_aPh), 4.26–4.19 (m, 2H, CHOTBDPS, CHOH), 4.42 (d, 1H, J = 11.7 Hz, CH_bPh), 3.99–3.94 (m, 1H, CHOTMP), 3.82 (dd, 1H, J = 10.4, 3.6 Hz, CH_aOBn), 3.73 (d, 1H, J = 6.4 Hz, OH), 3.72 (dd, 1H, J = 10.3, 3.7 Hz, CH_bOBn), 1.48–0.89 (m, 21H, OTMP and CH(CH₃)_a), 0.99 (s, 9H, SiC(CH₃)₃), 0.84 (d, 3H, J = 6.2 Hz, CH(CH₃)_b); ¹³C NMR (125 MHz, CDCl₂): δ 170.9 (CO₂ⁱPr), 137.84, 136.32, 136.25, 133.17, 133.05, 129.90, 129.82, 128.47, 127.76, 127.73, 127.68, 127.52. (ArC), 79.0 (CHOTMP), 75.6, 75.3 (CHOTBDPS, CHOH), 73.4 (CH₂Ph), 70.3 (CH₂OBn), 68.4 (CH(CH₂)₂), 60.5, 59.9 ((CH₃)₂CNC(CH₃)₂), 40.6, 40.5 (CH₂CH₂CH₂), 34.3, 33.4 ((CH₃)_aCNC(CH₃)_a), 27.1 (SiC(CH₃)₃), 21.8, 21.7 (CH(CH₃)₂), 20.7, 20.6 ((CH₃)_bCNC(CH₃)_b), 17.3 (CH₂CH₂CH₂); HRMS (ESI-TOF) calculated for $C_{40}H_{57}NO_6Si [M+H]^+ m/z$ 676.4028, found 676.4032; $\alpha_D^{21} = -1.13$ (c = 1.00, CHCl₃).

(2R,3S,4R)-Isopropyl 5-(benzyloxy)-3-hydroxy-2-methoxy-4-((2,2,6,6-tetramethylpiperidin-1-

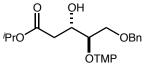


yl)oxy)pentanoate (4a). The compound was synthesized following the general procedure using $TiCl_2(O^iPr)_2$ (190 mg, 800 µmol, 2.0 equiv.), (*R*)-3-(benzyloxy)-2-(2,2,6,6-tetramethylpiperidin-1-yloxy)propanal (90% ee, 128 mg, 400 µmol, 1.0 equiv.), (*Z*)-tert-butyl((1-isopropoxy-2-

methoxyvinyl)oxy)dimethylsilane (197 mg, 800 μmol, 2.0 equiv.) and CH₂Cl₂ (2 mL). The crude product was purified by flash chromatography using 4:1 hexanes:Et₂O to yield the title compound (147 mg, 81% yield, >20:1 dr) as a colorless oil. The ribo-configuration of the title compound was determined from the corresponding lactone (see below). IR (thin film): 3489, 2972, 2931, 2871, 1746, 1729, 1467, 1454, 1373, 1362, 1276, 1259, 1242, 1194, 1130, 1105, 1067, 1027, 1017, 974, 958, 926, 888, 764, 750, 698 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.36–7.23 (m, 5H, Ar**H**), 5.15 (sept, 1H, J = 6.3 Hz, C**H**(CH₃)₂), 4.53 (d, 1H, J = 11.8 Hz, C**H**_aPh), 4.47 (d, 1H, J = 11.8 Hz, C**H**_bPh), 4.21–4.11 (m, 2H, C**H**OTMP, C**H**OH), 4.08 (d, 1H, J = 2.0 Hz, C**H**(CO₂ⁱPr), 3.98 (dd, 1H, J = 9.8, 2.7 Hz, C**H**_aOBn), 3.93 (dd, 1H, J = 9.8, 4.6 Hz, C**H**_bOBn), 3.48 (s, 3H, OC**H**₃), 3.07 (d, 1H, J = 4.8 Hz, O**H**), 1.65–1.01 (m, 18H, OTMP), 1.30 (d, 3H, J = 6.1 Hz, OCH(C**H**₃)_a), 1.29 (d, 3H, J = 6.0 Hz, OCH(C**H**₃)_b); ¹³C NMR (125 MHz, CDCl₃): δ 171.1 (CO₂ⁱPr), 138.0, 128.4, 127.8, and 127.7 (ArC), 80.3 (CHCO₂ⁱPr), 78.4 (CHOTMP), 73.6 (CHOH), 73.3 (CH₂Ph), 69.5 (CH₂OBn), 68.8 (CH(CH₃)₂), 60.9, 59.7 ((CH₃)₂CNC(CH₃)₂), 58.5 (OCH₃), 40.7, 40.5 (CH₂CH₂CH₂), 34.0, 33.1 ((CH₃)_aCNC(CH₃)_a), 22.0, 21.9 (CH(CH₃)₂), 20.9, 20.6 ((CH₃)_bCNC(CH₃)_b), 17.2 (CH₂CH₂CH₂); HRMS (ESI-TOF) calculated for C₂SH₄₁NO₆ [M+H]⁺ m/z 452.3007, found 452.3008; α₀²⁰ = -56.0 (c = 1.00, CHCl₃).

(3R,4R)-Isopropyl-5-(benzyloxy)-3-hydroxy-4-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)pentanoate

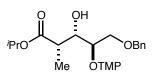
(5a). The compound was synthesized following the general procedure using TiCl₂(OⁱPr)₂ (190 mg, 800


 μ mol, 2.0 equiv.), (*R*)-3-(benzyloxy)-2-(2,2,6,6-tetramethylpiperidin-1yloxy)propanal (90% ee, 128 mg, 400 μ mol, 1.0 equiv.), tert-butyl((1isopropoxyvinyl)oxy)dimethylsilane (173 mg, 800 μ mol, 2.0 equiv.) and CH₂Cl₂ (2 mL), but at -40 °C. The title compound was obtained as a 3:1

diastereoisomeric mixture which was separated by flash chromatography using 4:1 hexanes:Et₂O to yield the title compound (108 mg, 64% yield, >20:1 dr) and its corresponding diastereoisomer with *S*-configuration at C(3) (33.5 mg, 20%, >20:1 dr) as colorless oils. The lyxo/xylo-configuration of the title compound was determined from the corresponding lactone (see below). Experimental data for the major diastereoisomer: IR (thin film): 3494, 2972, 2931, 2871, 1732, 1467, 1454, 1376, 1363, 1257, 1209, 1178, 1130, 1109, 956, 736, 698 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.37–7.25 (m, 5H, Ar**H**), 5.55 (br. s, 1H, O**H**), 5.03 (sept, 1H, *J* = 6.3 Hz, C**H**(CH₃)₂), 4.58–4.46 (m, 1H, C**H**OH), 4.55 (d, 1H, *J* = 12.1 Hz, C**H**_aPh), 4.49 (d, 1H, *J* = 12.0 Hz, C**H**_bPh), 4.07 (dt, 1H, *J* = 6.8, 4.4 Hz, C**H**OTMP), 3.67 (dd, 1H, *J* = 10.6, 3.7 Hz, C**H**_aOBn), 3.65 (dd, 1H, *J* = 10.5, 3.9 Hz, C**H**_bOBn), 2.56 (dd, 1H, *J* = 15.0, 8.4 Hz, C**H**_bCO₂/Pr), 1.66–1.06 (m, 18H, OTMP), 1.24 (d, 3H, *J* = 3.8 Hz, CH(C**H**₃)_a), 1.23 (d, 3H, *J* = 3.6 Hz, CH(C**H**₃)_b); ¹³C NMR (125 MHz, CDCl₃): δ 171.4 (CO₂/Pr), 138.2, 128.4, 127.7, and 127.6 (Ar**C**), 82.3 (CHOTMP), 73.4 (CH₂Ph), 70.1 (CHOH), 69.1 (CH₂OBn), 67.9 (CH(CH₃)₂), 61.0, 60.7 ((CH₃)₂CNC(CH₃)₂), 40.3, 40.2 (CH₂CH₂CH₂), 39.3 (CH₂CO₂/Pr), 33.9, 33.0 ((CH₃)_aCNC(CH₃)_a), 22.0, 21.9 (CH(CH₃)₂), 20.7, 20.6 ((CH₃)_bCNC(CH₃)_b), 17.2 (CH₂CH₂CH₂); HRMS (ESI-TOF) calculated for C₂₄H₃₀NO₅ [M+H]⁺ m/z 422.2901, found

422.2902; $\alpha_D^{21} = +10.2$ (c = 1.00, CHCl₃).

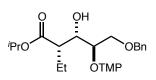
(3S, 4R) - Isopropyl-5 - (benzyloxy) - 3 - hydroxy - 4 - ((2, 2, 6, 6 - tetramethylpiperidin - 1 - yl) oxy) pentanoate


(6a). The compound was synthesized following the general procedure using (R)-3-(benzyloxy)-2-

(2,2,6,6-tetramethylpiperidin-1-yloxy)propanal (90% ee, 128 mg, 400 μ mol, 1.0 equiv.), *tert*-butyl((1-isopropoxyvinyl)oxy)dimethylsilane (173 mg, 800 μ mol, 2.0 equiv.) and CH₂Cl₂ (2 mL), but employing BF₃·Et₂O (100 μ L, 800 μ mol, 2.0 equiv.) as the Lewis acid and running the reaction at -40 °C. The

title compound was obtained as a 3:1 diastereomeric mixture which was separated by flash chromatography using 4:1 hexanes: Et_2O to yield the title compound (111 mg, 66% yield, >20:1 dr) and its corresponding diastereoisomer with *R*-configuration at C(3) (35.2 mg, 21%, >20:1 dr) as colorless oils. The ribo/arabino-configuration of the title compound was determined from the corresponding lactone (see below). Experimental data for the major diastereoisomer: IR (thin film): 3509, 2972, 2935, 2876, 1732, 1467, 1454, 1373, 1363, 1257, 1178, 1130, 1108, 956, 736, 698 cm⁻¹; ¹H NMR (500 MHz, $CDCl_3$): δ 7.38–7.23 (m, 5H, ArH), 5.05 (sept, 1H, J = 6.3 Hz, $CH(CH_3)_2$), 4.53 (d, 1H, J = 11.8 Hz, $CH_{a}Ph$), 4.48 (d, 1H, J = 11.8 Hz, $CH_{b}Ph$), 4.42–4.36 (m, 1H, CHOH), 4.01–3.96 (m, 1H, CHOTMP), 3.89 (dd, 1H, J = 9.9, 3.4 Hz, CH_aOBn), 3.80 (dd, 1H, J = 9.9, 5.8 Hz, CH_bOBn), 3.27 (d, 1H, J = 4.1Hz, OH), 2.68 (dd, 1H, J = 15.9, 3.8 Hz, CH_aCO₂^{*i*}Pr), 3.80 (dd, 1H, J = 15.9, 9.2 Hz, CH_bCO₂^{*i*}Pr), 1.64–1.01 (m, 18H, OTMP), 1.25 (d, 3H, J = 3.4 Hz, CH(CH₃)_a), 1.26 (d, 3H, J = 3.4 Hz, CH(CH₃)_b); ¹³C NMR (125 MHz, CDCl₃): δ 172.2 (CO₂^{*i*}Pr), 138.0, 128.5, 127.8 (2C) (ArC), 82.0 (CHOTMP), 73.4 (CH₂Ph), 69.4 (CHOH), 69.1 (CH₂OBn), 68.1 (CH(CH₃)₂), 60.9, 59.9 ((CH₃)₂CNC(CH₃)₂), 40.6, 40.5 (CH₂CH₂CH₂), 38.7 (CH₂CO₂^{*i*}Pr), 34.4, 33.4 ((CH₃)_aCNC(CH₃)_a), 22.0, 21.9 (CH(CH₃)₂), 20.7, 20.6 $((CH_3)_bCNC(CH_3)_b)$, 17.2 $(CH_2CH_2CH_2)$; HRMS (ESI-TOF) calculated for $C_{24}H_{39}NO_5$ $[M+H]^+$ m/z 422.2901, found 422.2906; $\alpha_{D}^{21} = -36.9$ (c = 1.00, CHCl₃).

(2S,3S,4R)-Isopropyl-5-(benzyloxy)-3-hydroxy-2-methyl-4-(2,2,6,6-tetramethylpiperidin-1-yloxy)-

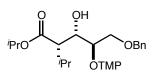


pentanoate (7a). The compound was synthesized following the general procedure using $\text{TiCl}_2(\text{O}^i\text{Pr})_2$ (190 mg, 800 µmol, 2.0 equiv.), (*R*)-3-(benzyloxy)-2-(2,2,6,6-tetramethylpiperidin-1-yloxy)propanal (90% ee, 128 mg, 400 µmol, 1.0 equiv.), (*E*)-tert-butyl((1-isopropoxyprop-1-en-1-

yl)oxy)dimethylsilane (184 mg, 800 µmol, 2.0 equiv.) and CH₂Cl₂ (2 mL). The crude product was purified by flash chromatography using 5:1 hexanes:Et₂O to yield the title compound (167 mg, 96% yield, 11:1 dr) as a colorless oil. The arabino-configuration of the title compound was determined from the corresponding lactone (see below). IR (thin film): 3499, 2972, 2934, 2871, 1725, 1455, 1375, 1360, 1259, 1181, 1130, 1107, 1039, 984, 956, 923, 822, 749, 698 cm⁻¹; ¹H NMR (500 MHz, CDCl₃), (2*S*)-isomer (major): δ 7.38–7.24 (m, 5H, Ar**H**), 4.97 (sept, 1H, *J* = 6.3 Hz, C**H**(CH₃)₂), 4.55 (d, 1H, *J* = 11.7 Hz, C**H**_aPh), 4.47 (d, 1H, *J* = 11.7 Hz, C**H**_bPh), 4.20–4.14 (m, 1H, CHOH), 4.00 (dd, 1H, *J* = 10.0, 2.9 Hz, C**H**_aOBn), 3.93 (dd, 1H, *J* = 6.9 Hz, C**H**(CO₂⁴Pr), 1.66–0.99 (m, 18H, OTMP), 1.28 (d, 3H, *J* = 7.0, C**H**₃CHCO₂⁴Pr), 1.21 (d, 3H, *J* = 6.2 Hz, CH(CH₃)_a), 1.19 (d, 3H, *J* = 6.3 Hz, CH(CH₃)₂), 4.53 (d, 1H, *J* = 11.9 Hz, C**H**_aPh), 4.47 (d, 1H, *J* = 11.9 Hz, CH_bPh), 4.09–4.05 (m, 1H, CHOH), 4.05–3.85 (m, 3H, *J* = 11.9 Hz, C**H**_aPh), 4.47 (d, 1H, *J* = 11.9 Hz, C**H**_bPh), 4.09–4.05 (m, 1H, CHOH), 4.05–3.85 (m, 3H, *J* = 11.9 Hz, C**H**_aPh), 4.47 (d, 1H, *J* = 11.9 Hz, C**H**_bPh), 4.09–4.05 (m, 1H, CHOH), 4.05–3.85 (m, 3H, *J* = 11.9 Hz, C**H**_aPh), 4.47 (d, 1H, *J* = 11.9 Hz, C**H**_bPh), 4.09–4.05 (m, 1H, CHOH), 4.05–3.85 (m, 3H, *J* = 11.9 Hz, C**H**_aPh), 4.47 (d, 1H, *J* = 11.9 Hz, C**H**_bPh), 4.09–4.05 (m, 1H, CHOH), 4.05–3.85 (m, 3H, *J* = 11.9 Hz, C**H**_aPh), 4.47 (d, 1H, *J* = 11.9 Hz, C**H**_bPh), 4.09–4.05 (m, 1H, CHOH), 4.05–3.85 (m, 3H, *J* = 11.9 Hz, C**H**_aPh), 4.47 (d, 1H, *J* = 11.9 Hz, C**H**_bPh), 4.09–4.05 (m, 1H, CHOH), 4.05–3.85 (m, 3H, H), 5.04 (sept, 1H, *J* = 6.2 Hz, CH(CH₃)₂), 4.53 (d, 1H, *J* = 11.9 Hz, C**H**_aPh), 4.47 (d, 1H, *J* = 11.9 Hz, C**H**_bPh), 4.09–4.05 (m, 1H, CHOH), 4.05–3.85 (m, 3H, H), 5.04 (sept, 1H, *J* = 6.2 Hz, CH(CH₃)₂), 4.53 (d, 1H, *J* = 11.9 Hz, C**H**_bPh), 4.09–4.05 (m, 1H, CHOH), 4.05–3.85 (m, 3H, H), 5.

CH₂OBn, CHOTMP), 3.55 (d, 1H, J = 6.7 Hz, OH), 2.78 (quint, 1H, J = 7.1 Hz, CHCO₂ⁱPr), 1.66– 0.99 (m, 18H, OTMP), 1.28 (d, 3H, J = 7.0, CH₃CHCO₂ⁱPr), 1.24 (d, 3H, J = 6.5 Hz, CH(CH₃)_a), 1.23 (d, 3H, J = 6.3 Hz, CH(CH₃)_b); ¹³C NMR (125 MHz, CDCl₃), (2*S*)-isomer (major): δ 174.9 (CO₂ⁱPr), 137.7, 128.5, 127.8, (ArC), 79.9 (CHOTMP), 74.2 (CHOH), 73.6 (CH₂Ph), 69.8 (CH₂OBn), 67.7 (CH(CH₃)₂), 60.7, 59.7 ((CH₃)₂CNC(CH₃)₂), 42.9 (CHCO₂ⁱPr), 40.5, 40.3 (CH₂CH₂CH₂), 34.3, 33.3 ((CH₃CNC(CH₃)_a), 21.8 (CH(CH₃)₂), 20.6 ((CH₃)_bCNC(CH₃)_b), 17.2 (CH₂CH₂CH₂), 12.8 (CH₃CHCO₂ⁱPr); (2*R*)-isomer (minor): δ 175.5 (CO₂ⁱPr), 138.1, 128.4, 127.8 (2C) (ArC), 81.0 (CHOTMP), 74.9 (CHOH), 73.3 (CH₂Ph), 68.8 (CH₂OBn), 67.8 (CH(CH₃)₂), 60.7, 59.7 ((CH₃)₂), 41.7 (CHCO₂ⁱPr), 40.5, 40.3 (CH₂CH₂CH₂), 34.3, 33.3 ((CH₃)₂CNC(CH₃)₂), 41.7 (CHCO₂ⁱPr), 40.5, 40.3 (CH₂CH₂CH₂), 12.8 (CH(CH₃)₂), 60.7, 59.7 ((CH₃)₂), 41.7 (CHCO₂ⁱPr), 40.5, 40.3 (CH₂OBn), 67.8 (CH(CH₃)₂), 60.7, 59.7 ((CH₃)₂), 20.6 ((CH₃)_b), 17.2 (CH₂CH₂CH₂), 34.3, 33.3 ((CH₃)_aCNC(CH₃)_a), 21.8 (CH(CH₃)₂), 60.7, 59.7 ((CH₃)₂), 41.7 (CHCO₂ⁱPr), 40.5, 40.3 (CH₂CH₂CH₂), 34.3, 33.3 ((CH₃)_aCNC(CH₃)_a), 21.8 (CH(CH₃)₂), 60.7, 59.7 ((CH₃)₂), 60.7 (CH₃)_b), 17.2 (CH₂CH₂CH₂CH₂), 15.0 (CH₃CHCO₂ⁱPr); HRMS (ESI-TOF) calculated for C₂₅H₄₁NO₅ [M+H]⁺ m/z 436.3058, found 436.3064; $\alpha_{D}^{21} = -19.3$ (c = 1.00, CHCl₃).

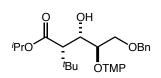
(2S,3S,4R)-Isopropyl-5-(benzyloxy)-3-hydroxy-2-ethyl-4-(2,2,6,6-tetramethylpiperidin-1-yloxy)-



pentanoate (8a). The compound was synthesized following the general procedure using $\text{TiCl}_2(\text{O}^{i}\text{Pr})_2$ (190 mg, 800 µmol, 2.0 equiv.), (*R*)-3-(benzyloxy)-2-(2,2,6,6-tetramethylpiperidin-1-yloxy)propanal (90% ee, 128 mg, 400 µmol, 1.0 equiv.), (*E*)-tert-butyl((1-isopropoxybut-1-en-1-

yl)oxy)dimethylsilane (196 mg, 800 µmol, 2.0 equiv.) and CH₂Cl₂ (2 mL). The crude product was purified by flash chromatography using 5:1 hexanes:Et₂O to yield the title compound (176 mg, 98%) yield, 13:1 dr) as a colorless oil. Due to the similar structural features and the consistent NMR-data of the title compound (2S,3S,4R)-isopropyl-5-(benzyloxy)-3-hydroxy-2-methyl-4-(2,2,6,6to tetramethylpiperidin-1-yloxy)-pentanoate (see above) the configuration of the title compound was assigned as arabino. IR (thin film): 3499, 2967, 2934, 2871, 1724, 1455, 1375, 1360, 1260, 1237, 1180, 1130, 1107, 1027, 956, 822, 747, 698 cm⁻¹; ¹H NMR (500 MHz, CDCl₂), (2S)-isomer (major): δ 7.38– 7.25 (m, 5H, Ar**H**), 4.96 (sept, 1H, J = 6.3 Hz, C**H**(CH₃)₂), 4.55 (d, 1H, J = 11.8 Hz, C**H**₂Ph), 4.46 (d, 1H, J = 11.8 Hz, CH_bPh), 4.16–4.06 (m, 1H, CHOH), 3.40 (dd, 1H, J = 10.5, 3.6 Hz, CH_bOBn), 3.91 $(dd, 1H, J = 10.5, 2.8 Hz, CH_bOBn), 3.81-3.75 (m, 1H, CHOTMP), 3.39 (d, 1H, J = 7.4 Hz, OH),$ 2.41–2.32 (m, 1H, CHCO₂ⁱPr), 2.01–1.91 (m, 1H, CH₃CH_aCHCO₂ⁱPr), 1.76–1.63 (m, 1H, $CH_3CH_bCHCO_2^{\dagger}Pr$), 1.63–1.02 (m, 18H, OTMP), 1.21 (d, 3H, J = 6.3, $CH(CH_3)_a$), 1.17 (d, 3H, J = 6.3Hz, CH(CH₃)_b), 0.91 (t, 3H, J = 7.5 Hz, CH₃CH₂CHCO₂^{*i*}Pr); (2*R*)-isomer (minor): δ 7.38–7.25 (m, 5H, Ar**H**), 5.06 (sept, 1H, J = 6.3 Hz, C**H**(CH₃)₂), 4.53 (d, 1H, J = 11.7 Hz, C**H**_aPh), 4.47 (d, 1H, J = 11.7Hz, CH_bPh), 4.09–4.03 (m, 1H, CHOH), 3.87 (dd, 1H, J = 9.9, 3.3 Hz, CH_aOBn), 3.83 (dd, 1H, J =10.0, 5.5 Hz, CH_bOBn), 3.81-3.75 (m, 1H, CHOTMP), 3.54 (d, 1H, J = 7.2 Hz, OH), 2.62-2.55 (m, 1H, CHCO^{*i*}Pr), 2.01–1.91 (m, 1H, CH₃CH_aCHCO^{*i*}Pr), 1.76–1.63 (m, 1H, CH₃CH_bCHCO^{*i*}Pr), 1.63– 1.02 (m, 18H, OTMP), 1.25 (d, 3H, J = 6.3, CH(CH₃)_a), 1.25 (d, 3H, J = 6.2 Hz, CH(CH₃)_b), 0.91 (t, 3H, J = 7.5 Hz, CH₃CH₂CHCO₂^{*i*}Pr); ¹³C NMR (125 MHz, CDCl₃), (2S)-isomer (major): δ 173.9 (CO¹/₂Pr), 137.6, 128.5, 127.9, 127.9 (ArC), 80.7 (CHOTMP), 73.9 (CHOH), 73.5 (CH₂Ph), 69.4 (CH₂OBn), 67.6 (CH(CH₃)₂), 60.6, 59.9 ((CH₃)₂CNC(CH₃)₂), 51.6 (CHCO₂^{*i*}Pr), 40.5 (CH₂CH₂CH₂), 34.3, 33.3 ((CH_3), $CNC(CH_3)$), 22.2 ($CH_3CH_2CHCO_2^{\dagger}Pr$), 21.9, 21.8 ($CH(CH_3)_2$), 20.6 $((CH_3)_bCNC(CH_3)_b)$, 17.2 $(CH_2CH_2CH_2)$, 11.7 $(CH_3CH_2CHCO_2^{\dagger}Pr)$; (2R)-isomer (minor): δ 175.0 (CO₂^{*i*}Pr), 137.2, 128.4, 127.7, 127.6 (ArC), 81.4 (CHOTMP), 73.3 (CH₂Ph), 73.2 (CHOH), 68.8 (CH₂OBn), 67.8 (CH(CH₃)₂), 60.6, 59.9 ((CH₃)₂CNC(CH₃)₂), 48.8 (CHCO₂^{*i*}Pr), 40.5 (CH₂CH₂CH₂),

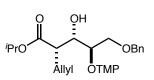
34.3, 33.3 ((CH₃)_aCNC(CH₃)_a), 23.2 (CH₃CH₂CHCO₂^{*i*}Pr), 21.9, 21.8 (CH(CH₃)₂), 20.6 ((CH₃)_bCNC(CH₃)_b), 17.2 (CH₂CH₂CH₂), 11.9 (CH₃CH₂CHCO₂^{*i*}Pr); HRMS (ESI-TOF) calculated for C₂₆H₄₃NO₅ [M+H]⁺ m/z 450.3214, found 450.3222; $\alpha_{\rm D}^{21} = -5.54$ (c = 1.00, CHCl₃).


(2S,3S,4R)-Iso-propyl-5-(benzyloxy)-3-hydroxy-2-isopropyl-4-(2,2,6,6-tetramethylpiperidin-1-

yloxy)-pentanoate (9a). The compound was synthesized following the general procedure using $TiCl_2(O'Pr)_2$ (190 mg, 800 µmol, 2.0 equiv.), (*R*)-3-(benzyloxy)-2-(2,2,6,6-tetramethylpiperidin-1-yloxy)propanal (90% ee, 128 mg, 400 µmol, 1.0 equiv.), (*E*)-((1-isopropoxy-3-methylbut-1-en-1-

yl)oxy)trimethylsilane (173 mg, 800 µmol, 2.0 equiv.) and CH₂Cl₂ (2 mL). The crude product was purified by flash chromatography using 9:1 hexanes:Et₂O to yield the title compound (175 mg, 94%) yield, >20:1 dr) as a colorless oil. Due to the similar structural features and the consistent NMR-data of (2S,3S,4R)-isopropyl-5-(benzyloxy)-3-hydroxy-2-methyl-4-(2,2,6,6the title compound to tetramethylpiperidin-1-yloxy)-pentanoate (see above) the configuration of the title compound was assigned as arabino. IR (thin film): 3504, 2967, 2933, 2871, 1721, 1464, 1455, 1375, 1360, 1274, 1258, 1242, 1206, 1179, 1130, 1108, 1087, 971, 936, 819, 748, 698 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.39–7.24 (m, 5H, Ar**H**), 4.93 (sept, 1H, J = 6.3 Hz, OC**H**(CH₃)₂), 4.57 (d, 1H, J = 11.8 Hz, C**H**_aPh), 4.44 (d, 1H, J = 11.8 Hz, CH_bPh), 4.32–4.25 (m, 1H, CHOH), 3.99 (dd, 1H, J = 10.6, 3.4 Hz, CH_aOBn), 3.82 (dd, 1H, J = 10.6, 2.7 Hz, CH_bOBn), 3.80–3.76 (m, 1H, CHOTMP), 3.28 (d, 1H, J =7.4 Hz, OH), 2.43–2.32 (m, 2H, (CH₃)₂CHCHCO₂^{*i*}Pr), 1.66–1.07 (m, 18H, OTMP), 1.20 (d, 3H, J =6.3 Hz, OCH(CH₃)_a), 1.14 (d, 3H, J = 6.2 Hz, OCH(CH₃)_b), 0.10 (d, 3H, J = 7.2 Hz, $(CH_3)_{a}CHCHCO_2^{i}Pr)$, 0.98 (d, 3H, J = 7.0 Hz, $(CH_3)_{b}CHCHCO_2^{i}Pr)$; ¹³C NMR (125 MHz, CDCl₃): δ 172.2 (CO²Pr), 137.7, 128.5, 127.9, 127.9 (ArC), 81.1 (CHOTMP), 73.5 (CH₂Ph), 71.8 (CHOH), 69.2 (CH₂OBn), 67.4 (OCH(CH₃)₂), 60.5, 60.0 ((CH₃)₂CNC(CH₃)₂), 54.6 (CHCO₂^{*i*}Pr), 40.5 (CH₂CH₂CH₂), 34.3, 33.3 ((CH_3)_aCNC(CH_3)_a), 26.9 ((CH_3)₂CHCHCO₂^{*i*}Pr), 22.1, 22.0 (OCH(CH_3)₂), 21.7 $((CH_3)_aCHCHCO_2^iPr)$, 20.6 $((CH_3)_bCNC(CH_3)_b)$, 17.4 $((CH_3)_bCHCHCO_2^iPr)$, 17.2 $(CH_2CH_2CH_2)$; HRMS (ESI-TOF) calculated for $C_{27}H_{45}NO_5$ [M+H]⁺ m/z 464.3371, found 464.3368; $\alpha_D^{20} = +2.66$ (c = 1.00, CHCl₃).

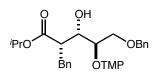
(2S,3S,4R)-Isopropyl-5-(benzyloxy)-3-hydroxy-2-tert-butyl-4-(2,2,6,6-tetramethylpiperidin-1-



yloxy)-pentanoate (10a). The compound was synthesized following the general procedure using $TiCl_2(O^iPr)_2$ (190 mg, 800 µmol, 2.0 equiv.), (*R*)-3-(benzyloxy)-2-(2,2,6,6-tetramethylpiperidin-1-yloxy)propanal (90% ee, 128 mg, 400 µmol, 1.0 equiv.), (*E*)-((1-isopropoxy-3,3-dimethylbut-1-en-1-

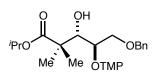
yl)oxy)trimethylsilane (184 mg, 800 μ mol, 2.0 equiv.) and CH₂Cl₂ (2 mL). The crude product was purified by flash chromatography using 9:1 hexanes:Et₂O to yield the title compound (184 mg, 96% yield, >20:1 dr) as a colorless oil. Due to the similar structural features and the consistent NMR-data of the title compound to (2*S*,3*S*,4*R*)-isopropyl-5-(benzyloxy)-3-hydroxy-2-methyl-4-(2,2,6,6-tetramethylpiperidin-1-yloxy)-pentanoate (see above) the configuration of the title compound was assigned as arabino. IR (thin film): 3504, 2972, 2934, 2871, 1720, 1467, 1455, 1373, 1363, 1317, 1259, 1211, 1181, 1158, 1130, 1095, 1032, 976, 954, 928, 821, 747, 698 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.39–7.27 (m, 5H, Ar**H**), 4.88 (sept, 1H, *J* = 6.3 Hz, C**H**(CH₃)₂), 4.57 (d, 1H, *J* = 11.7 Hz, C**H**_aPh),

4.45 (d, 1H, J = 11.7 Hz, CH_bPh), 4.45–4.38 (m, 1H, CHOH), 4.07 (br. dd, 1H, J = 10.9 Hz, CH_aOBn), 3.87 (dd, 1H, J = 11.0, 2.9 Hz, CH_bOBn), 3.62–3.57 (m, 1H, CHOTMP), 3.41 (d, 1H, J = 8.7 Hz, OH), 2.26 (d, 1H, J = 11.0 Hz, CHCO₂ⁱPr), 1.66–1.11 (m, 18H, OTMP), 1.19 (d, 3H, J = 6.3, CH(CH₃)_a), 1.15 (d, 3H, J = 6.3 Hz, CH(CH₃)_b), 1.09 (s, 9H, C(CH₃)₃); ¹³C NMR (125 MHz, CDCl₃): δ 173.1 (CO₂ⁱPr), 137.6, 128.5, 128.1, 128.0 (ArC), 81.3 (CHOTMP), 73.7 (CH₂Ph), 73.3 (CHOH), 69.6 (CH₂OBn), 67.5 (CH(CH₃)₂), 60.4, 60.2 ((CH₃)₂CNC(CH₃)₂), 58.4 (CHCO₂ⁱPr), 40.6 (CH₂CH₂CH₂), 34.2, ((CH₃)_aCNC(CH₃)₂), 33.3 ((CH₃)₂CNC(CH₃)_b), 33.7 (C(CH₃)₃), 29.0 (C(CH₃)₃), 22.0 (CH(CH₃)_a), 21.9 (CH(CH₃)_b), 20.6 ((CH₃)_bCNC(CH₃)_b), 17.2 (CH₂CH₂CH₂); HRMS (ESI-TOF) calculated for C₂₈H₄₇NO₅ [M+H]⁺ m/z 478.3527, found 478.3527; $\alpha_D^{20} = +8.54$ (c = 1.00, CHCl₃).


(2S,3S,4R)-Isopropyl-2-allyl-5-(benzyloxy)-3-hydroxy-4-(2,2,6,6-tetramethylpiperidin-1-yloxy)-

pentanoate (11a). The compound was synthesized following the general procedure using $\text{TiCl}_2(\text{O}^{i}\text{Pr})_2$ (190 mg, 800 µmol, 2.0 equiv.), (*R*)-3-(benzyloxy)-2-(2,2,6,6-tetramethylpiperidin-1-yloxy)propanal (90% ee, 128 mg, 400 µmol, 1.0 equiv.), (*Z*)-tert-butyl((1-isopropoxypenta-1,4-dien-1-

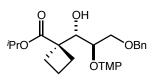
yl)oxy)dimethylsilane (205 mg, 800 µmol, 2.0 equiv.) and CH₂Cl₂ (2 mL). The crude product was purified by flash chromatography using 9:1 hexanes:Et₂O to yield the title compound (186 mg, 89%) yield, 13:1 dr) as a colorless oil. Due to the similar structural features and the consistent NMR-data of title compound (2S,3S,4R)-isopropyl-5-(benzyloxy)-3-hydroxy-2-methyl-4-(2,2,6,6the to tetramethylpiperidin-1-yloxy)-pentanoate (see above) the configuration of the title compound was assigned as arabino. IR (thin film): 3494, 3078, 3063, 2972, 2933, 2871, 1726, 1641, 1467, 1454, 1373, 1360, 1257, 1237, 1206, 1178, 1130, 1108, 991, 979, 956, 913, 822, 736, 698 cm⁻¹. ¹H NMR (500 MHz, CDCl₃), (2S)-isomer (major): δ 7.41–7.23 (m, 5H, Ar**H**), 5.85–5.71 (m, 1H, C**H**=CH₂), 5.07 (d, 1H, J = 17.1 Hz, CH=CH_a), 5.00 (d, 1H, J = 10.2 Hz, CH=CH_b), 4.94 (sept, 1H, J = 6.3 Hz, $CH(CH_3)_2$, 4.56 (d, 1H, J = 11.8 Hz, CH_aPh), 4.46 (d, 1H, J = 11.8 Hz, CH_bPh), 4.19–4.08 (m, 1H, CHOH), 4.00 (dd, 1H, J = 9.2, 3.8 Hz, CH_aOBn), 3.94 (dd, 1H, J = 10.5, 2.6 Hz, CH_bOBn), 3.85–3.76 (m, 1H, CHOTMP), 3.45 (d, 1H, J = 6.6 Hz, OH), 2.74–2.35 (m, 3H, CH₂CHCO₂^{*i*}Pr), 1.68–0.95 (m, 18H, OTMP), 1.19 (d, 3H, J = 6.3, CH(CH₃)_a), 1.16 (d, 3H, J = 6.3 Hz, CH(CH₃)_b). ¹³C NMR (125) MHz, CDCl₃, (2S)-isomer (major): δ 173.2 (CO₂ⁱPr), 137.6 (ArC), 135.8 (CH=CH₂), 128.5, 127.9 (2C) (ArC), 116.6 (CH=CH₂), 80.5 (CHOTMP), 73.7 (CHOH), 73.6 (CH₂Ph), 69.5 (CH₂OBn), 67.9 $(CH(CH_3)_2)$, 60.6, 60.0 $((CH_3)_2CNC(CH_3)_2)$, 49.7 $(CHCO_2^{\dagger}Pr)$, 40.5 $(CCH_2CH_2CH_2C)$, 34.3, 33.3 $((CH_3)_aCNC(CH_3)_a)$, 33.3 $(CH_2CHCO_2^{\dagger}Pr)$, 22.0, 21.9 $(CH(CH_3)_2)$, 20.6 $((CH_3)_bCNC(CH_3)_b)$, 17.2 (CH₂CH₂CH₂); (2*R*)-isomer (minor): δ 174.4 (CO₂ⁱPr), 138.1 (ArC), 135.3 (CH=CH₂), 128.4, 127.7 (2C) (ArC), 117.1 (CH=CH₂), 81.3 (CHOTMP), 73.3 (CH₂Ph), 73.0 (CHOH), 68.9 (CH₂OBn), 68.0 (CH(CH₃)₂), 60.6, 60.0 ((CH₃)₂CNC(CH₃)₂), 46.5 (CHCO₂^{*i*}Pr), 40.5 (CCH₂CH₂CH₂CH₂C), 34.3, 33.3 ((CH₃)_aCNC(CH₃)_a), 33.3 (CH₂CHCO₂ⁱPr), 22.0, 21.9 (CH(CH₃)₂), 20.6 ((CH₃)_bCNC(CH₃)_b), 17.2 $(CH_2CH_2CH_2)$; HRMS (ESI-TOF) calculated for $C_{27}H_{43}NO_5$ [M+H]⁺ m/z 462.3214, found 462.3219; $\alpha_{\rm D}^{21} = -1.48$ (c = 1.00, CHCl₃).


(2S,3S,4R)-Isopropyl-2-benzyl-5-(benzyloxy)-3-hydroxy-4-(2,2,6,6-tetramethylpiperidin-1-

yloxy)-pentanoate (12a). The compound was synthesized following the general procedure using $\text{TiCl}_2(\text{O'Pr})_2$ (190 mg, 800 µmol, 2.0 equiv.), (*R*)-3- (benzyloxy)-2-(2,2,6,6-tetramethylpiperidin-1-yloxy)propanal (90% ee, 128 mg, 400 µmol, 1.0 equiv.), (*E*)-((1-isopropoxy-3-phenylprop-1-en-1-

yl)oxy)trimethylsilane (212 mg, 800 µmol, 2.0 equiv.) and CH₂Cl₂ (2 mL). The crude product was purified by flash chromatography using 9:1 to 4:1 hexanes:Et₂O to yield the title compound (186 mg, 91% yield, 16:1 dr) as a colorless oil. Due to the similar structural features and the consistent NMRdata of the title compound to (2S,3S,4R)-isopropyl-5-(benzyloxy)-3-hydroxy-2-methyl-4-(2,2,6,6tetramethylpiperidin-1-yloxy)-pentanoate (see above) the configuration of the title compound was assigned as arabino. IR (thin film): 3489, 3003, 2979, 2927, 2871, 1722, 1494, 1464, 1455, 1375, 1360, 1276, 1261, 1206, 1182, 1130, 1106, 1027, 986, 923, 822, 764, 750, 699 cm⁻¹; ¹H NMR (500 MHz, $CDCl_{3}$, (2S)-isomer (major): δ 7.47–7.13 (m, 10H, ArH), 4.82 (sept, 1H, J = 6.3 Hz, CH(CH_{3})_{2}), 4.64 $(d, 1H, J = 11.8 \text{ Hz}, \text{OCH}_{P}\text{Ph}), 4.52 (d, 1H, J = 11.8 \text{ Hz}, \text{OCH}_{P}\text{Ph}), 4.30-4.22 (m, 1H, CHOH), 4.08$ $(dd, 1H, J = 10.6, 3.4 Hz, CH_{o}OBn), 4.00 (dd, 1H, J = 10.6, 2.7 Hz, CH_{o}OBn), 3.89-3.81 (m, 1H, 1H)$ CHOTMP), 3.68 (d, 1H, J = 6.8 Hz, OH), 3.39 (dd, 1H, J = 13.6, 3.5 Hz, CH_aCHAr), 2.96 (dd, 1H, J = 13.6, 3.5 Hz, CHAr), 2.96 (dd, 1H, 3.5 Hz, CHAr), 2.96 (dd, 1H, 3.5 Hz, CHAr), 2.96 (dd, 2H, 3.5 Hz, CHAr), 2.96 (dd, 2H, 3.5 Hz, CHAr), 2.96 (dd, 3H, 3.5 Hz, 2.96 (dd, 3H, 3.5 Hz, 2.9 13.5, 11.3 Hz, CH_bCHAr), 2.83 (ddd, 1H, J = 11.1, 8.8, 3.7 Hz, CHCO₂^{*i*}Pr), 1.71–1.14 (m, 18H, OTMP), 1.08 (d, 3H, J = 6.3, CH(CH₃), 0.94 (d, 3H, J = 6.3 Hz, CH(CH₃)); ¹³C NMR (125 MHz, CDCl₃), (2S)-isomer (major): δ 173.2 (CO₂ⁱPr), 139.6, 137.6, 129.2, 128.6, 128.2, 128.0 (2C), 126.2 (ArC), 80.5 (CHOTMP), 74.3 (CHOH), 73.6 (OCH₂Ph), 69.5 (CH₂OBn), 67.7 (CH(CH₃)₂), 60.6, 60.0 $((CH_3)_2 CNC(CH_3)_2),$ 51.3 $(\mathbf{CHCO}_{2}^{i}\mathbf{Pr}),$ 40.5 $(CH_2CH_2CH_2)$, 35.3 (CH₂CHAr), 34.3 ((CH₃)_aCNC(CH₃)₂), 33.4 ((CH₃)₂CNC(CH₃)_a), 21.7, 21.6 (CH(CH₃)₂), 20.6 (2C, (CH₃)_bCNC(CH₃)_b), 17.2 (CH₂CH₂CH₂); (2*R*)-isomer (minor): δ 174.4 (CO₂^{*i*}Pr), 138.8, 138.1, 129.2, 128.4, 128.3, 127.8, 127.7, 126.3 (ArC), 81.2 (CHOTMP), 73.4 (OCH₂Ph), 73.1 (CHOH), 68.9 (CH₂OBn), 67.9 (CH(CH₃)₂), 60.6, 60.0 ((CH₃)₂CNC(CH₃)₂), 48.5 (CHCO₂ⁱPr), 40.5 (CH₂CH₂CH₂), 36.0 (CH₂CHAr), 34.3 ((CH₃)₂CNC(CH₃)₂), 33.4 ((CH₃)₂CNC(CH₃)₂), 21.7, 21.6 (CH(CH₃)₂), 20.6 ((CH₃)_bCNC(CH₃)_b), 17.2 (CH₂CH₂CH₂); HRMS (ESI-TOF) calculated for $C_{31}H_{45}NO_5$ [M+H]⁺ m/z 512.3371, found 512.3378; $\alpha_D^{20} = -11.5$ (c = 1.00, CHCl₃).

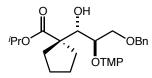
(3S,4R)-Isopropyl



5-(benzyloxy)-3-hydroxy-2,2-dimethyl-4-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)pentanoate (13a). The compound was synthesized following the general procedure using $TiCl_2(O'Pr)_2$ (190 mg, 800 µmol, 2.0 equiv.), (*R*)-3-(benzyloxy)-2-(2,2,6,6-tetramethylpiperidin-1-yloxy)propanal (90% ee, 128 mg, 400 µmol, 1.0 equiv.), ((1-isopropoxy-2-methylprop-1-en-1-

yl)oxy)trimethylsilane (162 mg, 800 µmol, 2.0 equiv.) and CH₂Cl₂ (2 mL). The crude product was purified by flash chromatography using 9:1 hexanes:Et₂O to yield the title compound (172 mg, 96% yield, >20:1 dr) as a colorless oil. The ribo/arabino-configuration of the title compound was determined from the corresponding lactone (see below). IR (thin film): 3489, 2977, 2931, 2871, 1725, 1469, 1455, 1375, 1363, 1260, 1244, 1209, 1181, 1140, 1130, 1107, 1072, 1042, 981, 936, 878, 736, 698 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.39–7.24 (m, 5H, Ar**H**), 4.97 (sept, 1H, *J* = 6.3 Hz, C**H**(CH₃)₂), 4.55 (d, 1H, *J* = 11.6 Hz, C**H**_aPh), 4.50 (d, 1H, *J* = 11.6 Hz, C**H**_bPh), 4.25 (dd, 1H, *J* = 9.5, 3.0 Hz, C**H**_aOBn), 4.13 (dd, 1H, *J* = 6.3, 4.2 Hz, C**H**OH), 3.97 (dt, 1H, *J* = 6.6, 2.9 Hz, C**H**OTMP), 3.83 (dd, 1H, *J* = 9.5, 5.0 Hz, CHOTMP), 3.83 (dd, 1H, J = 9.5, 5.0 Hz), 3.83 (dd, 1H, J

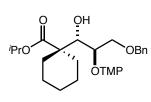
7.0 Hz, CH_bOBn), 3.73 (d, 1H, J = 4.2 Hz, OH), 1.62–0.98 (m, 18H, OTMP), 1.26 (s, 3H, (CH₃)_aCCO₂ⁱPr), 1.23 (s, 3H, (CH₃)_bCCO₂ⁱPr), 1.20 (d, 3H, J = 6.2 Hz, CH(CH₃)_a), 1.20 (d, 3H, J = 6.2 Hz, CH(CH₃)_b); ¹³C NMR (125 MHz, CDCl₃): δ 176.4 (CO₂ⁱPr), 137.7, 128.5, 127.9, and 127.9 (4ArC), 80.0 (CHOTMP), 78.0 (CHOH), 73.6 (CH₂Ph), 71.1 (CH₂OBn), 67.5 (CH(CH₃)₂), 60.6, 59.5 ((CH₃)₂CNC(CH₃)₂), 46.0 (CCO₂ⁱPr), 40.7, 40.3 (CH₂CH₂CH₂), 34.2, 33.3 ((CH₃)_aCNC(CH₃)_a), 22.9 ((CH₃)_aCCO₂ⁱPr), 21.7, 21.6 (CH(CH₃)₂), 21.0, 20.8 ((CH₃)_bCNC(CH₃)_b), 20.6 ((CH₃)_bCCO₂ⁱPr), 17.2 (CH₂CH₂CH₂); HRMS (ESI-TOF) calculated for C₂₆H₄₃NO₅ [M+H]⁺ m/z 450.3214, found 450.3219; $\alpha_D^{21} = -30.4$ (c = 1.00, CHCl₃).


Isopropyl

1-((1S,2R)-3-(benzyloxy)-1-hydroxy-2-((2,2,6,6-tetramethylpiperidin-1yl)oxy)propyl)cyclobutanecarboxylate (14a). The compound was synthesized following the general procedure using TiCl₂(O'Pr)₂ (190 mg, 800 μmol, 2.0 equiv.), (R)-3-(benzyloxy)-2-(2,2,6,6-tetramethylpiperidin-1yloxy)propanal (90%) ee, 128 mg, 400 umol. 1.0 equiv.),

(cyclobutylidene(isopropoxy)methoxy)trimethylsilane (172 mg, 800 µmol, 2.0 equiv.) and CH₂Cl₂ (2 mL). The crude product was purified by flash chromatography using 9:1 hexanes:Et₂O to yield the title compound (174 mg, 94% yield, >20:1) as a colorless oil. Due to the similar structural features and the consistent NMR-data of the title compound to (3S,4R)-isopropyl 5-(benzyloxy)-3-hydroxy-2,2dimethyl-4-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)pentanoate (see above) the configuration of the title compound was assigned as ribo/arabino. IR (thin film): 3499, 2977, 2937, 2871, 1719, 1467, 1454, 1373, 1360, 1274, 1259, 1209, 1181, 1130, 1088, 1044, 956, 926, 824, 764, 750, 698 cm⁻¹; ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3)$: δ 7.40–7.24 (m, 5H, Ar**H**), 5.00 (sept, 1H, $J = 6.2 \text{ Hz}, \text{CH}(\text{CH}_3)_2$), 4.50 (d, 1H, J =11.6 Hz, CH₂Ph), 4.47 (d, 1H, J = 11.6 Hz, CH₂Ph), 4.15 (dd, 1H, J = 7.6, 4.9 Hz, CHOH), 3.91 (dd, 1H, J = 10.0, 4.2 Hz, CH₂OBn), 3.85–3.75 (m, 3H, CH₂OBn, CHOTMP, OH), 2.61–0.94 (m, 24H, OTMP, $(CH_2)_3CCO_2^{\dagger}Pr$, 1.25 (d, 3H, J = 6.2 Hz, $CH(CH_3)_2$, 1.24 (d, 3H, J = 6.0 Hz, $CH(CH_3)_2$); ¹³C NMR (125 MHz, CDCl₃): δ 175.8 (CO₂ⁱPr), 137.8, 128.5, 127.8, 127.8 (ArC), 81.0 (CHOTMP), 75.4 (CHOH), 73.5 (CH₂Ph), 70.2 (CH₂OBn), 67.9 (CH(CH₃)₂), 60.6, 59.7 ((CH₃)₂CNC(CH₃)₂), 51.4 $(CCH_2CH_2CH_2C),$ $((\mathbf{CH}_3)_{\mathbf{a}}\mathbf{CNC}(\mathbf{CH}_3)_{\mathbf{a}}),$ $(\mathbf{CCO}_{2}^{i}\mathbf{Pr}),$ 40.6, 40.5 34.4, 33.3 28.7, 25.3 $(CH_2CH_2CH_2CCO_2^i Pr),$ 21.8, 21.7 20.7, 20.7 $((\mathbf{CH}_3)_{\mathbf{b}}\mathbf{CNC}(\mathbf{CH}_3)_{\mathbf{b}}),$ $(CH(CH_3)_2),$ 17.2 $((CH_3)_2CCH_2CH_2CH_2C(CH_3)_2)$, 16.4 $(CH_2CH_2CH_2CCO_2^{\dagger}Pr)$; HRMS (ESI-TOF) calculated for $C_{27}H_{43}NO_5 [M+H]^+ m/z$ 462.3214, found 462.3212; $\alpha_D^{21} = -43.7$ (c = 1.00, CHCl₃).

Isopropyl-1-((1S,2R)-3-(benzyloxy)-1-hydroxy-2-((2,2,6,6-tetramethylpiperidin-1-



yl)oxy)propyl)cyclopentanecarboxylate (15a). The compound was synthesized following the general procedure using $TiCl_2(O'Pr)_2$ (190 mg, 800 μmol, 2.0 equiv.), (R)-3-(benzyloxy)-2-(2,2,6,6-tetramethylpiperidin-1yloxy)propanal (90%) ee. 128 400 mg, μmol, 1.0 equiv.),

(cyclopentylidene(isopropoxy)methoxy)trimethylsilane (183 mg, 800 μ mol, 2.0 equiv.) and CH₂Cl₂ (2 mL). The crude product was purified by flash chromatography using 9:1 hexanes:Et₂O to yield the title compound (183 mg, 96% yield, >20:1) as a colorless oil. Due to the similar structural features and the consistent NMR-data of the title compound to (3*S*,4*R*)-isopropyl 5-(benzyloxy)-3-hydroxy-2,2-dimethyl-4-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)pentanoate (see above) the configuration of the title

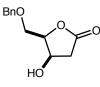
compound was assigned as ribo/arabino. IR (thin film): 3489, 2967, 2934, 2871, 1723, 1494, 1467, 1454, 1375, 1360, 1259, 1237, 1206, 1181, 1130, 1107, 1075, 1047, 991, 956, 910, 878, 824, 787, 735, 698 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.42–7.26 (m, 5H, Ar**H**), 4.97 (sept, 1H, *J* = 6.2 Hz, C**H**(CH₃)₂), 4.56 (d, 1H, *J* = 11.6 Hz, C**H**_aPh), 4.52 (d, 1H, *J* = 11.6 Hz, C**H**_bPh), 4.23 (dd, 1H, *J* = 5.7, 5.6 Hz, CHOH), 4.15–4.08 (m, 1H, CHOTMP), 3.95–3.88 (m, 2H, C**H**₂OBn), 3.86 (d, 1H, *J* = 6.3 Hz, O**H**), 2.29–0.99 (m, 26H, OTMP, (C**H**₂)₄), 1.24 (d, 3H, *J* = 6.3 Hz, CH(C**H**₃)_a), 1.22 (d, 3H, *J* = 6.3 Hz, CH(C**H**₃)_b); ¹³C NMR (125 MHz, CDCl₃): δ 176.1 (CO₂ⁱPr), 137.7, 128.4, 127.8, 127.8 (ArC), 81.0 (CHOTMP), 76.9 (CHOH), 73.5 (CH₂Ph), 70.7 (CH₂OBn), 67.7 (CH(CH₃)₂), 60.6, 59.6 ((CH₃)₂CNC(CH₃)₂), 57.5 (CCO₂ⁱPr), 40.7, 40.4 (CCH₂CH₂CH₂CH₂C), 35.3 (CH₂CH₂CCH₂CH₂), 34.3, 33.3 ((CH₃)_aCNC(CH₃)_a), 30.6 (CH₂CH₂CCH₂CH₂), 25.7, 25.4 (CH₂CH₂CCH₂CH₂), 21.6, 21.6 (CH(CH₃)₂), 20.8, 20.8 ((CH₃)_b), 17.2 (CCH₂CH₂CH₂CH₂CH₂C); HRMS (ESI-TOF) calculated for C₂₈H₄₅NO₅ [M+H]⁺ m/z 476.3371, found 476.3368; $\alpha_D^{21} = -35.2$ (c = 1.00, CHCl₃).

Isopropyl-1-((1S,2R)-3-(benzyloxy)-1-hydroxy-2-((2,2,6,6-tetramethylpiperidin-1-

yl)oxy)propyl)cyclohexanecarboxylate (16a). compound The was synthesized following the general procedure using TiCl₂(OⁱPr)₂ (190 mg, 800 µmol, 2.0 equiv.), (R)-3-(benzyloxy)-2-(2,2,6,6-tetramethylpiperidin-1yloxy)propanal (90%) 128 400 ee, mg, umol. 1.0 equiv.), (cyclohexylidene(isopropoxy)methoxy)trimethylsilane (194 mg, 800 µmol, 2.0

equiv.) and CH₂Cl₂ (2 mL). The crude product was purified by flash chromatography using 9:1 hexanes:Et₂O to yield the title compound (190 mg, 97% yield, >20:1) as a colorless oil. Due to the similar structural features and the consistent NMR-data of the title compound to (3S,4R)-isopropyl 5-(benzyloxy)-3-hydroxy-2,2-dimethyl-4-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)pentanoate (see above) the configuration of the title compound was assigned as ribo/arabino. IR (thin film): 3489, 2972, 2930, 2861, 1717, 1467, 1453, 1374, 1360, 1300, 1259, 1216, 1181, 1133, 1108, 1044, 971, 958, 936, 913, 852, 822, 736, 698 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.42–7.25 (m, 5H, Ar**H**), 5.00 (sept, 1H, J = 6.2 Hz, $CH(CH_3)_2$, 4.54 (d, 1H, J = 11.6 Hz, CH_aPh), 4.49 (d, 1H, J = 11.6 Hz, CH_bPh), 4.08 (dd, 1H, J = 9.7, 2.5 Hz, CH_aOBn), 4.02–3.91 (m, 3H, CH_bOBn, CHOTMP, CHOH), 3.71 (d, 1H, J = 6.3 Hz, OH), 2.24–1.03 (m, 28H, OTMP, (CH₂)₅), 1.25 (d, 3H, J = 6.3 Hz, CH(CH₃)_a), 1.22 (d, 3H, J = 6.3 Hz, CH(CH₃)_b); ¹³C NMR (125 MHz, CDCl₃): δ 174.8 (CO₂^{*i*}Pr), 137.0, 128.4, 127.8, 127.8 (ArC), 80.0 (CHOTMP), 79.0 (CHOH), 73.5 (CH₂Ph), 70.4 (CH₂OBn), 67.7 (CH(CH₃)₂), 60.3, 59.8 $((CH_3)_2CNC(CH_3)_2)$, 51.4 $(CCO_2^{\dagger}Pr)$, 40.6, 40.4 $(CCH_2CH_2CH_2C)$, 34.2, 33.4 $((CH_3)_aCNC(CH_3)_a)$, 31.4, 30.1 (CH₂(CH₂)₃CH₂), 25.8 ((CH₂)₂CH₂(CH₂)₂), 23.2, 23.2 (CH₂CH₂CH₂CH₂CH₂), 21.8, 21.8 (CH(CH₃)₂), 20.8, 20.7 ((CH₃)_bCNC(CH₃)_b), 17.2 (CCH₂CH₂CH₂C); HRMS (ESI-TOF) calculated for $C_{20}H_{47}NO_5 [M+H]^+ m/z 490.3527$, found 490.3529; $\alpha_D^{21} = -10.5$ (c = 1.00, CHCl₃).

General Procedure for the OTMP-Cleavage and Cyclization of the Mukaiyama Aldol Products to the Corresponding Ribono- and Arabinolactones. To a solution of the Mukaiyama aldol product in toluene (c = 0.2 M) was added H₂O:TFA (4:1, c = 0.2 M) and Zn powder (10 equiv.) and the resulting biphasic suspension was stirred vigorously at room temperature until the reaction was judged to be complete by TLC analysis (usually 16 hours unless indicated otherwise). The mixture was neutralized


with sat aq. NaHCO₃ (2 mL) and poured over H₂O. The aqueous layer was extracted with Et₂O (3 \times 5 mL) and the combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum. The crude product was purified by flash chromatography.

5-Benzyloxy-2-(tert-butyldimethylsilyl)oxy-3-hydroxy-D-ribonolactone (2b). The compound was synthesized following the general procedure using (2R, 3S, 4R)-isopropyl-5-BnO (benzyloxy)-3-hydroxy-2-((tert-butyldimethylsilyl)oxy)-4-(2,2,6,6tetramethylpiperidin-1-yloxy)-pentanoate (>20:1 dr, 166 mg, 300 µmol, 1.0 equiv.), Zn (196 mg, 3.00 mmol, 10 equiv.) and toluene (1.5 mL), but with $H_2O:TFA$ (8:1, OTBS НÒ 1.5 mL), and needed up to 3 days for completion. The crude product was purified by flash chromatography using 5:1 hexanes: EtOAc to yield the title compound (76.0 mg, 72% yield, >20:1 dr) as a white powder. HPLC analysis (OJ, 5% IPA/hexanes, 1.0 mL/min, 220 nm) indicated 90% ee: t_R $(major) = 9.7 minutes, t_R (minor) = 12.8 minutes.$ The configuration of the title compound was assigned as ribo (see above). IR (thin film): 3524, 2952, 2929, 2881, 2856, 1788, 1494, 1472, 1462, 1454, 1388, 1360, 1328, 1254, 1209, 1154, 1120, 1099, 1039, 1006, 974, 928, 870, 839, 784, 733, 698, 673 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.25–7.09 (m, 5H, Ar**H**), 4.56 (d, 1H, J = 5.4 Hz, C**H**(2)), 4.43–4.38 (m, 2H, CH_aPh, CH(4)), 4.34 (d, 1H, J = 11.5 Hz, CH_bPh), 4.13 (dd, 1H, J = 5.4, 0.6 Hz, CH(3)), 3.63 (dd, 1H, J = 10.9, 2.3 Hz, CH(5)_a), 3.59 (dd, 1H, J = 10.9, 2.1 Hz, CH(5)_b), 2.90 (d, 1H, J = 9.7 Hz, OH), 0.77 (s, 9H, C(CH₃)₃), 0.06, 0.00 (2s, 6H, Si(CH₃)₂); ¹³C NMR (125 MHz, CDCl₃): δ 174.8 (C(1)), 137.3, 128.7, 128.2, 127.7 (ArC), 83.1 (C(4)), 73.9 (CH₂Ph), 70.6 (C(3)), 70.0 (C(2)), 69.6 (C(5)), 25.8 (C(CH₃)₃), 18.4 (C(CH₃)₃), -4.5, -5.3 (Si(CH₃)₂); HRMS (ESI-TOF) calculated for $C_{18}H_{28}O_5Si$ $[M+H]^+$ m/z 353.1779, found 353.1776; $\alpha_D^{21} = +30.9$ (c = 1.00, CHCl₃).

5-Benzyloxy-2-(tert-butyldiphenylsilyl)oxy-3-hydroxy-D-ribonolactone (3b). The compound was synthesized following the general procedure using (2R, 3S, 4R)-isopropyl-5-BnO (benzyloxy)-3-hydroxy-2-((tert-butyldiphenylsilyl)oxy)-4-(2,2,6,6-0 tetramethylpiperidin-1-yloxy)-pentanoate (>20:1 dr, 203 mg, 300 µmol, 1.0 HO OTBDPS equiv.), Zn (196 mg, 3.00 mmol, 10 equiv.) and toluene (1.5 mL), but with H₂O:TFA (8:1, 1.5 mL), and needed up to 3 days for completion. The crude product was purified by flash chromatography using 5:1 hexanes: EtOAc to yield the title compound (119 mg, 83% yield, >20:1 dr) as a colorless oil. HPLC analysis (AS, 5% IPA/hexanes, 1.0 mL/min, 220 nm) indicated 91% ee: t_R (major) = 13.8 minutes, t_R (minor) = 25.3 minutes. Due to the similar structural features and the consistent NMR-data of the title compound to 5-benzyloxy-2-(tert-butyldimethylsilyl)oxy-3-hydroxy-D-ribonolactone (see above) the configuration of the title compound was assigned as ribo. IR (thin film): 8 3534, 3048, 2952, 2932, 2859, 1788, 1588, 1472, 1454, 1428, 1391, 1360, 1328, 1204, 1151, 1113, 1095, 1039, 1027, 1009, 974, 931, 862, 840, 822, 740, 701 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.64–7.58 (m, 2H, ArH), 7.48–7.40 (m, 2H, ArH), 7.33–7.25 (m, 2H, ArH), 7.25–7.12 (m, 4H, ArH), 7.08–7.02 (m, 1H, Ar**H**), 6.99 (dd, J = 7.3, 7.3 Hz, 2H, Ar**H**), 6.77 (d, J = 7.0 Hz, 2H, Ar**H**), 4.56 (d, 1H, J = 5.3 Hz, CH(2)), 4.27 (d, 1H, J = 2.2 Hz, CH(4)), 4.16 (d, 1H, J = 11.8 Hz, CH_aPh), 4.03 (d, 1H, J = 11.8 Hz, CH_bPh), 3.67 (d, 1H, J = 5.3 Hz, CH(3)), 3.40 (dd, 1H, J = 10.9, 2.4 Hz, CH(5)_a), 3.30 (dd, 1H, J = 10.9, 2.1 Hz, CH(5)_b), 2.81 (s, 1H, OH), 0.96 (s, 9H, C(CH₃)₃); ¹³C NMR (125 MHz, CDCl₃): δ 174.4 (C(1)), 137.1, 136.0, 135.6, 132.6, 131.4, 130.5, 130.4, 128.5, 128.1, 128.0, 127.9, 127.4 (ArC), 82.9 (C(4)), 73.5 (CH₂Ph), 70.6, 70.5 (C(2), C(3)), 69.1 (C(5)), 26.9 (C(CH₃)₃), 19.5 (C(CH₃)₃); HRMS (ESI-TOF) calculated for $C_{28}H_{32}O_5Si$ [M+Na]⁺ m/z 499.1911, found 499.1911; $\alpha_D^{21} = +32.2$ (c = 1.00, CHCl₃).

5-Benzyloxy-3-hydroxy-2-methoxy-D-ribonolactone (4b). The compound was synthesized following the general procedure using (2R, 3S, 4R)-isopropyl 5-(benzyloxy)-3-hydroxy-2-BnO methoxy-4-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)pentanoate (>20:1 dr, 135 mg, 300 µmol, 1.0 equiv.), Zn (196 mg, 3.00 mmol, 10 equiv.), toluene (1.5 mL) and H₂O:TFA (4:1, 1.5 mL), and needed up to 3 days for completion. The crude product OMe HO was purified by flash chromatography using 2:1 hexanes:EtOAc to yield the title compound (66.1 mg, 87% yield, >20:1 dr) as a colorless oil. HPLC analysis (AD, 10% IPA/hexanes, 1.0 mL/min, 220 nm) indicated 89% ee: t_R (major) = 19.0 minutes, t_R (minor) = 15.1 minutes. IR (thin film): 3443, 2932, 2916, 2866, 2851, 1785, 1494, 1454, 1365, 1315, 1196, 1173, 1128, 1052, 981, 946, 878, 741, 698 cm⁻¹ ¹; ¹H NMR (500 MHz, CDCl₃): δ 7.40–7.28 (m, 5H, Ar**H**), 4.60 (d, 1H, J = 11.9 Hz, C**H**_aPh), 4.57 (d, 1H, J = 11.9 Hz, CH_bPh), 4.39 (ddd, 1H, J = 8.2, 8.2, 3.8 Hz, CH(3)), 4.25 (dt, 1H, J = 7.9, 4.5 Hz, CH(4)), 4.09 (d, 1H, J = 8.5 Hz, CH(2)), 3.76 (dd, 1H, J = 10.8, 4.6 Hz, $CH(5)_{*}$), 3.71 (dd, 2H) $10.9, 4.4 \text{ Hz}, CH(5)_{h}$, 3.67 (s, 3H, OCH₃), 2.88 (d, 1H, J = 5.0 Hz, OH); ¹³C NMR (125 MHz, CDCl₃): δ 172.0 (C(1)), 137.3, 128.7, 128.2, 128.0 (ArC), 82.1 (C(2)), 78.8 (C(4)), 73.9 (CH₂Ph), 73.8 (C(3)), 68.2 (C(5)), 59.2 (OCH₃); HRMS (ESI-TOF) calculated for C₁₃H₁₆O₅ [M+H]⁺ m/z 253.1071, found 253.1076; $\alpha_D^{21} = -2.54$ (c = 1.00, CHCl₃). The configuration of the title compound was determined from the corresponding debenzylated pentose. This compound was prepared by но dissolving the title compound (10.0 mg, 39.6 µmol, 1.0 equiv.) in EtOH (790 µL) and treating it with Pd/C (10%, 5 mg). Hydrogen gas was bubbled through the reaction mixture for 5 minutes and the suspension was stirred for 20 hours at room OMe HO temperature under H₂ atmosphere. The reaction mixture was filtered through Celite and the filtrate was evaporated. The crude product was purified by flash chromatography using EtOAc to yield the title compound as a colorless oil. The experimental data is in disagreement with the title compound in the arabino-configuration.¹³ Due to the consistent facial selectivity observed for the formation of the other Mukaiyama aldol products, the configuration of the title compound was assigned as ribo. ¹H NMR (500 MHz, CDCl₃): δ 4.50 (ddd, 1H, J = 8.3, 8.3, 4.5 Hz, CH(3)), 4.21 (dt, 1H, J = 8.0, 3.4 Hz, CH(4)), 4.13 (d, 1H, J = 8.5 Hz, CH(2)), 3.99 (ddd, 1H, J = 12.8, 5.0, 3.2 Hz, CH(5)), 3.84 (ddd, 1H, J = 12.8, 7.8)3.6 Hz, $CH(5)_{b}$), 3.71 (s, 3H, OCH_{3}), 2.74 (br. d, 1H, J = 3.8 Hz, CH(3)OH), 2.03 (br. t, 1H, J = 6.1Hz, CH₂(5)OH); ¹³C NMR (125 MHz, CDCl₃): δ 172.0 (C(1)), 82.5 (C(2)), 80.1 (C(4)), 72.4 (C(3)), 60.5 (**C**(5)), 59.3 (**OC**H₃).

5-Benzyloxy-2-desoxy-3-hydroxy-D-lyxolactone (5-Benzyloxy-2-desoxy-3-hydroxy-D-xylolactone)

(5b). The compound was synthesized following the general procedure using (3*R*,4*R*)-isopropyl-5-(benzyloxy)-3-hydroxy-4-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)pentanoate (>20:1 dr, 126 mg, 300 μmol, 1.0 equiv.), Zn (196 mg, 3.00 mmol, 10 equiv.), toluene (1.5 mL) and H₂O:TFA (4:1, 1.5 mL). Due to incomplete

¹³ He, Y. Q.; Xue, J. J.; Zhou, Y. M.; Yang, J. S.; Yu, X. M. Tetrahedron Lett. 2009, 50, 2317.

cyclization after 16 hours, the biphasic mixture was treated with additional TFA (1 mL) and stirred for a further 16 hours at room temperature. Following the usual workup (see general procedure), the crude product was purified by flash chromatography using 1:1 hexanes: EtOAc to yield the title compound (60.8 mg, 91% yield, >20:1 dr) as colorless crystals. Due to differences in the between this compound and 5-Benzyloxy-2-desoxy-3-hydroxy-D-ribonolactone (above), the configuration of the product was assigned as lyxo/xylo. HPLC analysis (OD, 5% IPA/hexanes, 1.0 mL/min, 220 nm) indicated 91% ee: t_{R} (major) = 22.9 minutes, t_{R} (minor) = 18.2 minutes. IR (thin film): 3429, 3063, 3028, 2932, 2866, 1781, 1494, 1454, 1401, 1371, 1330, 1290, 1231, 1204, 1164, 1125, 1091, 1054, 941, 784, 743, 700 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.42–7.28 (m, 5H, ArH), 4.68–4.62 (m, 1H, CH(3)), 4.59 (s, 2H, CH₂Ph), 4.56 (dt, 1H, J = 5.0, 5.0 Hz, CH(4)), 3.92 (dd, 1H, J = 10.6, 4.6 Hz, CH(5)_a), 3.87 (dd, 1H, J = 10.6, 4.6 Hz, A = 10.6, 4.6 H = 10.5, 5.3 Hz, CH(5)_b), 3.01 (d, 1H, J = 5.5 Hz, OH), 2.77 (dd, 1H, J = 17.9, 6.6 Hz, CH(2)_b), 2.57 $(dd, 1H, J = 17.9, 2.8 Hz, CH(2)_{b}); {}^{13}C NMR (125 MHz, CDCl_{3}): \delta 175.3 (C(1)), 137.0, 128.8, 128.4,$ 128.0 (ArC), 81.1 (C(4)), 74.1 (CH₂Ph), 68.8 (C(3)), 67.7 (C(5)), 38.5 (C(2)); HRMS (ESI-TOF) calculated for $C_{12}H_{14}O_4$ [M+H]⁺ m/z 223.0965, found 223.0961; $\alpha_D^{22} = +22.9$ (c = 1.00, CHCl₃).

5-Benzyloxy-2-desoxy-3-hydroxy-D-ribonolactone (5-Benzyloxy-2-desoxy-3-hydroxy-Darabinolactone) (6b). The compound was synthesized following the general procedure using (3S,4R)-

BnO

isopropyl-5-(benzyloxy)-3-hydroxy-4-((2,2,6,6-tetramethylpiperidin-1-

yl)oxy)pentanoate (>20:1 dr, 126 mg, 300 µmol, 1.0 equiv.), Zn (196 mg, 3.00 mmol, 10 equiv.), toluene (1.5 mL) and H₂O:TFA (4:1, 1.5 mL). Due to incomplete cyclization after 16 hours, the biphasic mixture was treated with additional TFA (1 НÒ mL) and stirred for a further 16 hours at room temperature. Following the usual workup (see general procedure), the crude product was purified by flash chromatography using 1:1 hexanes: EtOAc to yield the title compound (61.6 mg, 92% yield, >20:1 dr) in the ribo/arabino-configuration as colorless crystals. HPLC analysis (AD, 7% IPA/hexanes, 1.0 mL/min, 220 nm) indicated 90% ee: t_R (major) = 20.0 minutes, t_R (minor) = 24.2 minutes. The experimental data is in agreement with the literature.¹⁴ IR (thin film): 3442, 3028, 2927, 2866, 1762, 1494, 1454, 1364, 1188, 1169, 1113, 1091, 1039, 1027, 943, 740, 699 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.40–7.22 (m, 5H, ArH), 4.48 (d, 1H, J = 12.1 Hz, CH_aPh), 4.48–4.38 (m, 2H, CH(3) and CH(4)), 4.41 (d, 1H, J = 11.9 Hz, CH_bPh), 3.61 (dd, 1H, J = 11.9 Hz, APh), 3.61 (dd, 2H, APh), 3.61 (dd, 2H, APh), 3.61 (dd, 2H, $10.7, 3.0 \text{ Hz}, \text{CH}(5)_{a}$, $3.58 \text{ (dd, 1H, } J = 10.7, 3.5 \text{ Hz}, \text{CH}(5)_{b}$, $2.87 \text{ (dd, 1H, } J = 18.0, 6.7 \text{ Hz}, \text{CH}(2)_{a}$), 2.81 (d, 1H, J = 3.6 Hz, OH), 2.37 (dd, 1H, J = 18.0, 2.5 Hz, CH(2)_b); ¹³C NMR (125 MHz, CDCl₃): δ 176.4 (C(1)), 137.3, 128.7, 128.1, 127.8 (ArC), 86.5 (C(4)), 73.8 (CH₂Ph), 69.9 (C(3)), 69.5 (C(5)), 38.6 (C(2)); HRMS (ESI-TOF) calculated for $C_{12}H_{14}O_4$ [M+H]⁺ m/z 223.0965, found 223.0967; $\alpha_D^{22} =$ +1.55 (c = 1.00, CHCl₃).

¹⁴ Fazio, F.; Schneider, M. P. Tetrahedron: Asymmetry 2000, 11, 1869.

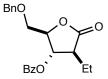
5-Benzyloxy-3-hydroxy-2-methyl-D-arabinolactone (7b). The compound was synthesized

BnO

Me

НÒ

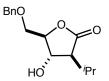
following the general procedure using (2S,3S,4R)-isopropyl-5-(benzyloxy)-3hydroxy-2-methyl-4-(2,2,6,6-tetramethylpiperidin-1-yloxy)-pentanoate (11:1 dr, 131 mg, 300 µmol, 1.0 equiv.), Zn (196 mg, 3.00 mmol, 10 equiv.), toluene (1.5 mL) and H₂O:TFA (4:1, 1.5 mL). The crude product was purified by flash chromatography


using 2:1 hexanes:EtOAc to yield the title compound (69.5 mg, 98% yield, 11:1 dr) as a colorless oil. IR (thin film): 3440, 3063, 3028, 2972, 2932, 2871, 1757, 1494, 1455, 1378, 1363, 1307, 1237, 1176, 1120, 1051, 956, 923, 817, 740, 699 cm⁻¹; ¹H NMR (500 MHz, CDCl₃), arabino-isomer (major): δ 7.42–7.22 (m, 5H, Ar**H**), 4.57 (s, 2H, C**H**₂Ph), 4.24 (dt, 1H, J = 7.4, 4.4 Hz, C**H**(4)), 4.03 (dd, 1H, J = 7.9, 7.9 Hz, C**H**(3)), 3.73 (dd, 1H, J = 10.8, 4.7 Hz, C**H**(5)_a), 3.70 (dd, 1H, J = 10.8, 4.3 Hz, C**H**(5)_b), 3.03 (br. s, 1H, O**H**), 2.61 (dq, 1H, J = 7.2, 7.2, C**H**(2)), 1.28 (d, 3H, J = 7.2 Hz, C**H**₃); ribo-isomer (minor): δ 7.42–7.22 (m, 5H, Ar**H**), 4.53 (d, 1H, J = 12.0 Hz, C**H**_aPh), 4.47 (d, 1H, J = 12.0 Hz, C**H**_bPh), 4.45–4.39 (m, 1H, C**H**(4)), 3.73 (dd, 1H, J = 10.8, 4.7 Hz, C**H**(5)_a), 3.70 (dd, 1H, J = 10.8, 4.3 Hz, C**H**(2)), 1.21 (d, 3H, J = 7.5 Hz, C**H**₃); ¹³C NMR (125 MHz, CDCl₃), arabino-isomer (major): δ 176.9 (C(1)), 137.4, 128.7, 128.1, 127.9 (ArC), 82.1 (C(4)), 75.6 (C(3)), 73.8 (CH₂Ph), 68.8 (C(5)), 43.5 (C(2)), 12.6 (CH₃); ribo-isomer (minor): δ 179.6 (C(1)), 137.2, 128.7, 128.1, 127.7 (ArC), 85.0 (C(4)), 73.8 (CH₂Ph), 71.9 (C(3)), 69.5 (C(5)), 39.9 (C(2)), 8.30 (CH₃); HRMS (ESI-TOF) calculated for C₁₃H₁₆O₄ [M+H]⁺ m/z 237.1121, found 237.1124; α_D²¹ = +11.3 (c = 1.00, CHCl₃). The enantiomeric excess of the

BnO title compound was determined by HPLC analysis of the corresponding benzoyl ester. To prepare this derivative, a 0 °C solution of the title compound in dichloromethane (0.20 M) was treated with 4-dimethylaminopyridine (5 mol%), triethylamine (2.0 equiv.), and benzoyl chloride (1.2 equiv.) The mixture was allowed to warm to rt and stir for 2 h before being quenched with water. The aqueous layer was extracted with three portions of dichloromethane and the combined organic layers were dried over MgSO₄ and concentrated. The residue was purified by preparative TLC to afford the fully protected lactone. HPLC analysis (AS, 6% EtOH/hexanes, 1.0 mL/min, 254 nm) indicated 89% ee: t_R (major) = 12.5 minutes, t_R (minor) = 17.5 minutes. The configuration of the title compound was determined from

¹⁵ Heathcock, C. H.; Young, S. D.; Hagen, J. P.; Pirrung, M. C.; White, C. T.; Vanderveer, D. J. Org. Chem. 1980, 45, 3846.

isomer: δ 176.9 (C(1)), 84.5 (C(4)), 72.8 (C(3)), 59.7 (C(5)), 43.0 (C(2)), 12.4 (CH₃); riboconfigured isomer: δ 179.1 (C(1)), 86.8 (C(4)), 69.9 (C(3)), 60.7 (C(5)), 39.0–40.0 (hidden by d^6 -DMSO, C(2)), 8.40 (CH₃).


5-Benzyloxy-2-ethyl-3-hydroxy-D-arabinolactone (8b). The compound was synthesized following the general procedure using (2S, 3S, 4R)-isopropyl-5-(benzyloxy)-3-hydroxy-2-ethyl-BnO 4-(2,2,6,6-tetramethylpiperidin-1-yloxy)-pentanoate (13:1 dr, 135 mg, 300 µmol, 1.0 equiv.), Zn (196 mg, 3.00 mmol, 10 equiv.), toluene (1.5 mL) and H₂O:TFA (4:1, 1.5 mL). The crude product was purified by flash chromatography using 2:1 ΗÒ hexanes:EtOAc to yield the title compound (74.5 mg, 99% yield, 13:1 dr) as a colorless oil. Due to the similar structural features and the consistent NMR-data of the title compound to 5-benzyloxy-3hydroxy-2-methyl-D-arabinolactone (see above) the configuration of the title compound was assigned as arabino. IR (thin film): 3448, 3063, 3028, 2962, 2932, 2871, 1757, 1494, 1454, 1363, 1317, 1211, 1173, 1115, 1053, 951, 910, 862, 740, 699 cm⁻¹; ¹H NMR (500 MHz, CDCl₃), arabino-isomer (major): $\delta \delta 7.32-7.15$ (m, 5H, Ar**H**), 4.48 (s, 2H, C**H**₂Ph), 4.17 (dt, 1H, J = 6.8, 4.3 Hz, C**H**(4)), 4.09 (dd, 1H, 4.3 Hz, C**H**(4)), 4.09 (d $= 6.9, 6.9 \text{ Hz}, \text{CH}(3)), 3.64 \text{ (dd, 1H, } J = 10.9, 4.4 \text{ Hz}, \text{CH}(5)_{a}), 3.61 \text{ (dd, 1H, } J = 10.9, 4.3 \text{ Hz}, \text{CH}(5)_{b}),$ 3.07 (br. s, 1H, OH), 2.45 (dt, 1H, J = 7.2, 7.2, CH(2)), 1.83–1.51 (m, 2H, CH₂CH₃), 0.96 (t, 3H, J =7.5 Hz, CH₃); ribo-isomer (minor): δ 7.32–7.15 (m, 5H, ArH), 4.50 (d, 1H, J = 11.9 Hz, CH₃Ph), 4.50 $(d, 1H, J = 11.9 \text{ Hz}, CH_{h}Ph), 4.36-4.32 (m, 1H, CH(4)), 3.64 (dd, 1H, J = 10.9, 4.4 \text{ Hz}, CH(5)), 3.61$ $(dd, 1H, J = 10.9, 4.3 Hz, CH(5)_{h}), 3.57-3.53 (m, 1H, CH(3)), 3.07 (br. s, 1H, OH), 2.62 (dt, 1H, J = 10.9), 3.57-3.53 (m, 1H, CH(3)), 3.07 (br. s, 1H, OH), 2.62 (dt, 1H, J = 10.9), 3.57-3.53 (m, 1H, CH(3)), 3.07 (br. s, 1H, OH), 3.62 (dt, 1H, J = 10.9), 3.57-3.53 (m, 1H, CH(3)), 3.07 (br. s, 1H, OH), 3.62 (dt, 1H, J = 10.9), 3.57-3.53 (m, 1H, CH(3)), 3.07 (br. s, 1H, OH), 3.62 (dt, 1H, J = 10.9), 3.57-3.53 (m, 1H, CH(3)), 3.07 (br. s, 1H, OH), 3.62 (dt, 1H, J = 10.9), 3.57-3.53 (m, 1H, CH(3)), 3.07 (br. s, 1H, OH), 3.62 (dt, 1H, J = 10.9), 3.57-3.53 (m, 1H, CH(3)), 3.07 (br. s, 1H, OH), 3.62 (dt, 1H, J = 10.9), 3.57-3.53 (m, 1H, CH(3)), 3.07 (br. s, 1H, OH), 3.62 (dt, 1H, J = 10.9), 3.57-3.53 (m, 1H, CH(3)), 3.07 (br. s, 1H, OH), 3.62 (dt, 1H, J = 10.9), 3.57-3.53 (m, 1H, CH(3)), 3.07 (br. s, 1H, OH), 3.62 (dt, 1H, J = 10.9), 3.57-3.53 (m, 1H, CH(3)), 3.07 (br. s, 1H, OH), 3.62 (dt, 1H, J = 10.9), 3.57-3.53 (m, 1H, CH(3)), 3.07 (br. s, 1H, OH), 3.62 (dt, 1H, J = 10.9), 3.57-3.53 (m, 2H, CH(3)), 3.57-3.53 (m, 2H$ 10.0, 5.8, CH(2)), 1.83–1.51 (m, 2H, CH₂CH₃), 0.96 (t, 3H, J = 7.5 Hz, CH₃); ¹³C NMR (125 MHz, CDCl₃), arabino-isomer (major): δ 176.6 (C(1)), 137.4, 128.6, 128.1, 127.9 (ArC), 82.4 (C(4)), 73.8 (CH₂Ph), 73.4 (C(3)), 68.8 (C(5)), 49.5 (C(2)), 21.3 (CH₂CH₃), 11.5 (CH₃); ribo-isomer (minor): δ 178.9 (C(1)), 137.3, 128.7, 128.1, 127.7 (ArC), 85.3 (C(4)), 73.8 (CH₂Ph), 70.7 (C(3)), 69.3 (C(5)), 49.5 (C(2)), 17.1 (CH₂CH₃), 12.4 (CH₃); HRMS (ESI-TOF) calculated for $C_{14}H_{18}O_4$ [M+H]⁺ m/z 251.1278, found 251.1279; $\alpha_{D}^{21} = +13.4$ (c = 1.00, CHCl₃). The enantiomeric excess of the title

compound was determined by HPLC analysis of the corresponding benzoyl ester. To prepare this derivative, a 0 °C solution of the title compound in dichloromethane (0.20 M) was treated with 4-dimethylaminopyridine (5 mol%), triethylamine (2.0 equiv.), and benzoyl chloride (1.2 equiv.) The mixture was allowed to warm to rt

and stir for 2 h before being quenched with water. The aqueous layer was extracted with three portions of dichloromethane and the combined organic layers were dried over MgSO₄ and concentrated. The residue was purified by preparative TLC to afford the fully protected lactone. HPLC analysis (AS, 6% EtOH/hexanes, 1.0 mL/min, 254 nm) indicated 89% ee: t_R (major) = 11.1 minutes, t_R (minor) = 18.6 minutes.

5-Benzyloxy-3-hydroxy-2-iso-propyl-D-arabinolactone (9b). The compound was synthesized

following the general procedure using (2S,3S,4R)-isopropyl-5-(benzyloxy)-3hydroxy-2-isopropyl-4-(2,2,6,6-tetramethylpiperidin-1-yloxy)-pentanoate (>20:1 dr, 139 mg, 300 µmol, 1.0 equiv.), Zn (196 mg, 3.00 mmol, 10 equiv.), toluene (1.5 mL) and H₂O:TFA (4:1, 1.5 mL). The crude product was purified by flash

chromatography using 2:1 hexanes:EtOAc to yield the title compound (77.9 mg, 98% yield, >20:1 dr)

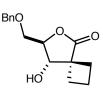
as a colorless oil. HPLC analysis (AS, 10% IPA/hexanes, 1.0 mL/min, 220 nm) indicated 89% ee: t_R (major) = 20.5 minutes, t_R (minor) = 26.9 minutes. Due to the similar structural features and the consistent NMR-data of the title compound to 5-benzyloxy-3-hydroxy-2-methyl-D-arabinolactone (see above) the configuration of the title compound was assigned as arabino. IR (thin film): 3448, 3063, 3028, 2963, 2932, 2876, 1753, 1494, 1464, 1451, 1391, 1368, 1333, 1279, 1171, 1123, 1105, 1053, 986, 936, 867, 747, 699 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta \delta 7.40-7.27$ (m, 5H, Ar**H**), 4.59 (d, 1H, *J* = 12.1 Hz, C**H**_aPh), 4.56 (d, 1H, *J* = 12.0 Hz, C**H**_bPh), 4.32 (dd, 1H, *J* = 8.5, 7.2 Hz, C**H**(3)), 4.21 (dt, 1H, *J* = 6.9, 4.7 Hz, C**H**(4)), 3.76 (dd, 1H, *J* = 10.6, 4.5 Hz, C**H**(5)_a), 3.68 (dd, 1H, *J* = 10.6, 4.9 Hz, C**H**(5)_b), 2.58 (br. s, 1H, O**H**), 2.55 (dd, 1H, *J* = 8.7, 4.7 Hz, C**H**(2)), 2.29-2.18 (m, 1H, C**H**(CH₃)₂), 1.09 (d, 3H, *J* = 7.0 Hz, CH(C**H**₃)_a), 0.99 (d, 3H, *J* = 6.9 Hz, CH(C**H**₃)_b); ¹³C NMR (125 MHz, CDCl₃): $\delta 175.3$ (**C**(1)), 137.5, 128.7, 128.1, 127.9 (Ar**C**), 81.6 (**C**(4)), 73.9 (CH₂Ph), 71.0 (**C**(3)), 69.0 (**C**(5))), 53.8 (**C**(2)), 27.0 (**C**H(CH₃)₂), 20.0 (CH(CH₃)_a), 19.0 (CH(CH₃)_b); HRMS (ESI-TOF) calculated for $C_{15}H_{20}O_4$ [M+H]⁺ m/z 265.1434, found 265.1436; $\alpha_D^{-21} = +21.3$ (c = 1.00, CHCl₃).

5-Benzyloxy-3-hydroxy-2-tert-butyl-D-arabinolactone (10b). The compound was synthesized following the general procedure using (2S, 3S, 4R)-isopropyl-5-(benzyloxy)-3-BnO hydroxy-2-tert-butyl-4-(2,2,6,6-tetramethylpiperidin-1-yloxy)-pentanoate (>20:1 dr, 143 mg, 300 µmol, 1.0 equiv.), Zn (196 mg, 3.00 mmol, 10 equiv.), toluene (1.5 mL) and H₂O:TFA (4:1, 1.5 mL). The crude product was purified by flash ^tBu HO chromatography using 2:1 hexanes: EtOAc to yield the title compound (80.9 mg, 97% yield, >20:1 dr) as a colorless oil. HPLC analysis (AD, 5% IPA/hexanes, 1.0 mL/min, 220 nm) indicated 91% ee: t_R (major) = 19.1 minutes, t_R (minor) = 22.5 minutes. Due to the similar structural features and the consistent NMR-data of the title compound to 5-benzyloxy-3-hydroxy-2-methyl-D-arabinolactone (see above) the configuration of the title compound was assigned as arabino. IR (thin film): 3448, 2960, 2871, 1770, 1747, 1494, 1469, 1454, 1398, 1368, 1274, 1260, 1209, 1158, 1128, 1095, 1057, 1027, 969, 750, 698 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.41–7.24 (m, 5H, ArH), 4.57 (s, 2H, CH₂Ph), 4.32 (dd, 1H, J = 8.4, 7.2 Hz, CH(3)), 4.16 (dt, 1H, J = 7.0, 4.5 Hz, CH(4)), 3.78-3.71 (m, 1H, CH(5)), 3.78-3.71 (m, 1H, CH(5)), 3.78-3.71 (m, 1H, CH(5)))3.68 (dd, 1H, J = 10.7, 4.5 Hz, CH(5)_b), 2.70 (br. s, 1H, OH), 2.40 (d, 1H, J = 8.6 Hz, CH(2)), 1.08 (s, 9H, C(CH₃)₃); ¹³C NMR (125 MHz, CDCl₃): δ 174.7 (C(1)), 137.5, 128.6, 128.1, 127.9 (ArC), 81.1 (C(4)), 73.9 (CH₂Ph), 71.2 (C(3)), 68.9 (C(5)), 57.3 (C(2)), 32.2 (C(CH₃)₃), 57.3 (C(2)), 27.5 $(C(CH_3)_3)$; HRMS (ESI-TOF) calculated for $C_{16}H_{22}O_4$ [M+H]⁺ m/z 279.1591, found 279.1584; $\alpha_D^{22} =$ +21.1 (c = 1.00, CHCl₃).

2-Allyl-5-benzyloxy-3-hydroxy-D-arabinolactone (11b). The compound was synthesized following the general procedure using (2S,3S,4R)-isopropyl-2-allyl-5-(benzyloxy)-3-hydroxy-4-(2,2,6,6-tetramethylpiperidin-1-yloxy)-pentanoate (13:1 dr, 138 mg, 300 µmol, 1.0 equiv.), Zn (196 mg, 3.00 mmol, 10 equiv.), toluene (1.5 mL) and H₂O:TFA (4:1, 1.5 mL). The crude product was purified by flash chromatography using 2:1 hexanes:EtOAc to yield the title compound (77.3 mg, 98% yield, 13:1 dr) as a colorless oil. Due to the similar structural features and the consistent NMR-data of the title compound to 5-benzyloxy-3hydroxy-2-methyl-D-arabinolactone (see above) the configuration of the title compound was assigned as arabino. HPLC analysis (AS, 15% IPA/hexanes, 1.0 mL/min, 220 nm) indicated 91% ee: t_R (major) = 16.1 minutes, t_R (minor) = 18.1 minutes. IR (thin film): 3448, 3078, 3063, 3028, 2922, 2866, 1760, 1641, 1494, 1454, 1363, 1325, 1252, 1173, 1118, 1054, 1027, 1017, 921, 740, 699 cm⁻¹; ¹H NMR (500 MHz, CDCl₃), arabino-isomer (major): δ 7.39–7.24 (m, 5H, Ar**H**), 5.88–5.76 (m, 1H, C**H**=CH₂), 5.19–5.09 (m, 2H, CH=C**H**₂), 4.58 (d, 1H, *J* = 11.9 Hz, C**H**_aPh), 4.55 (d, 1H, *J* = 11.9 Hz, C**H**_bPh), 4.27 (dt, 1H, *J* = 6.8, 4.2 Hz, C**H**(4)), 4.21 (br. ddd, 1H, *J* = 4.1, 7.7, 7.7 Hz, C**H**(3)), 3.71 (d, 2H, *J* = 4.2 Hz, C**H**₂(5)), 2.84 (br. d, 1H, *J* = 3.3 Hz, O**H**), 2.69 (ddd, 1H, *J* = 4.9, 8.2, 8.2 Hz, C**H**(2)), 2.65–2.33 (m, 2H, CH(2)C**H**₂); ¹³C NMR (125 MHz, CDCl₃), arabino-isomer (major): δ 175.7 (C(1)), 137.4 (ArC), 134.2 (CH=CH₂), 128.6, 128.1, 127.9 (ArC), 118.4 (CH=CH₂), 82.4 (C(4)), 73.8 (CH₂Ph), 73.0 (C(3)), 68.7 (C(5)), 48.1 (C(2)), 32.2 (CH(2)CH₂); ribo-isomer (minor): δ 178.1 (C(1)), 137.4 (ArC), 135.7 (CH=CH₂), 128.7, 128.1, 127.7 (ArC), 117.0 (CH=CH₂), 85.1 (C(4)), 73.8 (CH₂Ph), 71.0 (C(3)), 69.4 (C(5)), 44.5 (C(2)), 28.2 (CH(2)CH₂); HRMS (ESI-TOF) calculated for C₁₅H₁₈O₄ [M+H]⁺ m/z 263.1278, found 263.1281; $\alpha_D^{21} = +38.3$ (c = 1.00, CHCl₃).

2-Benzyl-5-benzyloxy-3-hydroxy-D-arabinolactone (12b). The compound was synthesized following the general procedure using (2S,3S,4R)-isopropyl-2-benzyl-5-(benzyloxy)-3-BnO hydroxy-4-(2,2,6,6-tetramethylpiperidin-1-yloxy)-pentanoate (16:1 dr, 154 mg, 300 =0 µmol, 1.0 equiv.), Zn (196 mg, 3.00 mmol, 10 equiv.), toluene (1.5 mL) and H₂O:TFA (4:1, 1.5 mL). The crude product was purified by flash chromatography Bn ΗÒ using 2:1 hexanes:EtOAc to yield the title compound (87.9 mg, 94% yield, >20:1 dr) as a colorless oil. HPLC analysis (AS, 15% IPA/hexanes, 1.0 mL/min, 220 nm) indicated 90% ee: t_R (major) = 20.9 minutes, t_{R} (minor) = 24.4 minutes. Due to the similar structural features and the consistent NMR-data of the title compound to 5-benzyloxy-3-hydroxy-2-methyl-D-arabinolactone (see above) the configuration of the title compound was assigned as arabino. IR (thin film): 3448, 3084, 3058, 3028, 2922, 2861, 1754, 1603, 1494, 1455, 1363, 1325, 1244, 1168, 1110, 1080, 1053, 1027, 1004, 953, 913, 743, 699 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.43–7.21 (m, 10H, Ar**H**), 4.57 (d, 1H, J = 11.9 Hz, $OCH_{a}Ph$), 4.53 (d, 1H, J = 11.9 Hz, $OCH_{b}Ph$), 4.28 (dt, 1H, J = 6.4, 3.9 Hz, CH(4)), 4.22 (ddd, 1H, J = 6.4, 3.9 Hz, CH(4)), 4.22 (ddd, 1H, J = 6.4, 3.9 Hz, CH(4)), 4.22 (ddd, 1H, J = 6.4, 3.9 Hz, CH(4)), 4.22 (ddd, 1H, J = 6.4, 3.9 Hz, CH(4)), 4.22 (ddd, 1H, J = 6.4, 3.9 Hz, CH(4)), 4.22 (ddd, 1H, J = 6.4, 3.9 Hz, CH(4)), 4.20 (ddd, 4.4, 4.3, 6.5 Hz, CH(3)), 3.68–3.60 (m, 2H, CH₂(5)), 2.55 (dt, 1H, J = 9.0, 8.6 Hz, CH(2)), 2.99–2.91 $(m, 2H, CH(2)CH_2), 2.49 (d, 1H, J = 4.3 Hz, OH); {}^{13}C NMR (125 MHz, CDCl_2): \delta 175.8 (C(1)), 137.7,$ 137.4, 129.2, 128.9, 128.6, 128.0, 127.9, 127.0 (ArC), 82.7 (C(4)), 73.7 (OCH₂Ph), 72.6 (C(3)), 68.6 (C(5)), 50.1 (C(2)), 33.7 (C(2)CH₂); HRMS (ESI-TOF) calculated for $C_{10}H_{20}O_4$ [M+H]⁺ m/z 313.1434, found 313.1431; $\alpha_D^{22} = +70.1$ (c = 1.00, CHCl₃).

5-Benzyloxy-2-dimethyl-3-hydroxy-D-ribonolactone (5-Benzyloxy-2-dimethyl-3-hydroxy-D-BnO arabinolactone) (13b). The compound was synthesized following the general procedure using (3*S*,4*R*)-isopropyl 5-(benzyloxy)-3-hydroxy-2,2-dimethyl-4-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)pentanoate (>20:1 dr, 135 mg, 300 µmol, 10 equiv.), Zn (196 mg, 3.00 mmol, 4.0 equiv.), toluene (1.5 mL) and H₂O:TFA (4:1, 1.5 mL). The arada are dust was gwified by flash sharests are hybrid wife 2:1 hybrid are the procedure wield


1.5 mL). The crude product was purified by flash chromatography using 2:1 hexanes:EtOAc to yield the title compound (72.7 mg, 97% yield, >20:1 dr) as colorless crystals. HPLC analysis (OJ, 5% IPA/hexanes, 1.0 mL/min, 220 nm) indicated 90% ee: t_R (major) = 62.6 minutes, t_R (minor) = 58.8 minutes. IR (thin film): 3430, 3063, 3028, 2972, 2935, 2871, 1778, 1753, 1494, 1455, 1388, 1365, 1328, 1287, 1213, 1121, 1105, 1055, 1027, 958, 921, 741, 699 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ

7.40–7.27 (m, 5H, Ar**H**), 4.57 (s, 2H, C**H**₂Ph), 4.25 (dt, 1H, J = 8.0, 4.2 Hz, C**H**(4)), 4.04 (dd, 1H, J = 8.0, 5.1 Hz, C**H**(3)), 3.75 (dd, 1H, J = 10.9, 3.8 Hz, C**H**(5)_a), 3.71 (dd, 1H, J = 10.9, 4.8 Hz, C**H**(5)_b), 3.03 (d, 1H, J = 4.9 Hz, O**H**), 1.23 (s, 3H, C(2)(C**H**₃)_a), 1.17 (s, 3H, C(2)(C**H**₃)_b); ¹³C NMR (125 MHz, CDCl₃): δ 180.4 (C(1)), 137.5, 128.6, 128.1, 127.9 (Ar**C**), 80.4 (C(4)), 76.0 (C(3)), 73.8 (CH₂Ph), 68.9 (C(5)), 43.6 (C(2)), 22.6 (C(2)(CH₃)_a), 17.9 (C(2)(CH₃)_b); HRMS (ESI-TOF) calculated for C₁₄H₁₈O₄ [M+H]⁺ m/z 251.1278, found 251.1282; $\alpha_D^{21} = +34.4$ (c = 1.00, CHCl₃). The configuration

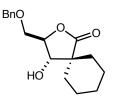
of the title compound was determined from the corresponding debenzylated and diacetylated pentose. This compound was prepared by dissolving the title compound (13.6 mg, 54.3 μ mol, 1.0 equiv.) in EtOH (1.1 mL) and treating it with Pd/C (10%, 5 mg). Hydrogen gas was bubbled through the reaction mixture for 5 minutes and

AcO Me[•] Me[•] 5 mg). Hydrogen gas was bubbled through the reaction mixture for 5 minutes and the suspension was stirred at room temperature for 16 hours under H₂ atmosphere. The reaction mixture was filtered through Celite and the filtrate was evaporated to yield a colorless oil. The crude debenzylated product was dissolved in acetic anhydride (1mL) and pyridine (1mL), and stirred at room temperature for 16 hours. The mixture was concentrated in vacuum and co-evaporated with toluene (3 × 2 mL). The crude product was purified by flash chromatography using 1:1 hexanes:Et₂O to yield the title compound in the ribo/arabino-configuration as a colorless oil. The experimental data is in agreement with the literature.^{16 1}H NMR (500 MHz, CDCl₃): δ 5.11 (d, 1H, *J* = 6.1 Hz, CH(3)), 4.47–4.40 (m, 2H, CH₂(5)), 4.23–4.17 (m, 1H, CH(4)), 2.14, 2.10 (2s, 6H, 2 × C(O)CH₃), 1.36 (s, 3H, C(2)(CH₃)_a), 1.22 (s, 3H, C(2)(CH₃)_b); ¹³C NMR (125 MHz, CDCl₃): δ 178.7 (C(1)), 170.5, 170.2 (2 × C(O)CH₃), 77.9 (C(4)), 76.4 (C(3)), 63.0 (C(5)), 43.2 (C(2)), 24.0 (C(2)(CH₃)_a), 20.8, 20.8 (2 × C(O)CH₃), 19.4 (C(2)(CH₃)_b). The configuration was confirmed by single-crystal X-ray analysis (see appendix).

5-Benzyloxy-3-hydroxy-2-spirocyclobutyl-D-ribonolactone (5-Benzyloxy-3-hydroxy-2-

AcO

spirocyclobutyl-D-arabinolactone) (14b). The compound was synthesized following the general procedure using isopropyl 1-((1*S*,2*R*)-3-(benzyloxy)-1-hydroxy-2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)propyl)cyclobutanecarboxylate (>20:1 dr, 138 mg, 300 μmol, 1.0 equiv.), Zn (196 mg, 3.00 mmol, 10 equiv.), toluene (1.5 mL) and H₂O:TFA (4:1, 1.5 mL). The crude product was purified by


flash chromatography using 3:1 hexanes:EtOAc to yield the title compound (77.7 mg, 99% yield, >20:1 dr) as a white powder. HPLC analysis (OJ, 5% IPA/hexanes, 1.0 mL/min, 220 nm) indicated 90% ee: t_R (major) = 23.7 minutes, t_R (minor) = 26.7 minutes. Due to the similar structural features and the consistent NMR-data of the title compound to 5-benzyloxy-2-dimethyl-3-hydroxy-D-ribonolactone (see above) the configuration of the title compound was assigned as ribo/arabino. IR (thin film): 3438, 3058, 3028, 2987, 2943, 2861, 1749, 1494, 1454, 1363, 1328, 1290, 1244, 1195, 1120, 1052, 1006, 948, 918, 740, 699 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.39–7.25 (m, 5H, ArH), 4.52 (s, 2H, CH₂Ph), 4.25 (dt, 1H, J = 4.6, 4.6 Hz, CH(4)), 4.18 (dd, 1H, J = 4.9, 4.9 Hz, CH(3)), 3.64 (dd, 1H, J = 10.8, 4.5 Hz, CH(5)_a), 3.61 (dd, 1H, J = 10.7, 4.4 Hz, CH(5)_b), 3.18 (br d, 1H, J = 4.9 Hz, OH), 2.57–1.85 (m, 6H, (CH₂)₃); ¹³C NMR (125 MHz, CDCl₃): δ 180.2 (C(1)), 137.4 128.6, 128.1, 127.9 (ArC), 82.5

¹⁶ Ghosh, A. K.; Kass, J.; Anderson, D. D.; Xu, X. M.; Marian, C. Org. Lett. **2008**, 10, 4811.

(C(4)), 75.1 (C(3)), 73.7 (CH₂Ph), 68.9 (C(5)), 48.2 (C(2)), 28.7, 23.5 (CH₂(CH₂)CH₂), 16.4 (CH₂(CH₂)CH₂); HRMS (ESI-TOF) calculated for $C_{15}H_{18}O_4$ [M+H]⁺ m/z 263.1278, found 263.1283; $\alpha_D^{22} = +19.8$ (c = 1.00, CHCl₃).

5-Benzyloxy-3-hydroxy-2-spirocyclopentyl-D-ribonolactone (5-Benzyloxy-3-hydroxy-2spirocyclopentyl-D-arabinolactone) (15b). The compound was synthesized BnO following the general procedure using isopropyl-1-((1S,2R)-3-(benzyloxy)-1hydroxy-2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)propyl)cyclopentanecarboxylate (>20:1 dr, 143 mg, 300 µmol, 1.0 equiv.), Zn (196 mg, 3.00 mmol, 10 equiv.), ΗÒ toluene (1.5 mL) and H₂O:TFA (4:1, 1.5 mL). The crude product was purified by flash chromatography using 3:1 hexanes:EtOAc to yield the title compound (81.1 mg, 98% yield, >20:1 dr) as a colorless oil. HPLC analysis (OJ, 7% IPA/hexanes, 1.0 mL/min, 220 nm) indicated 90% ee: t_R (major) = 18.1 minutes, t_R (minor) = 20.3 minutes. Due to the similar structural features and the consistent NMR-data of the title compound to 5-benzyloxy-2-dimethyl-3-hydroxy-D-ribonolactone (see above) the configuration of the title compound was assigned as ribo/arabino. IR (thin film): 3429, 3063, 3028, 2931, 2862, 1747, 1494, 1452, 1362, 1325, 1312, 1269, 1242, 1185, 1151, 1117, 1080, 1053, 1029, 948, 908, 845, 738, 698 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.39–7.24 (m, 5H, Ar**H**), 4.56 (s, 2H, CH₂Ph), 4.21 (dt, 1H, J = 7.2, 4.8 Hz, CH(4)), 4.10 (dd, 1H, J = 7.1, 5.1 Hz, CH(3)), 3.71 (dd, 1H, J = 10.9, 4.2 Hz, CH(5)), 3.68 (dd, 1H, J = 10.9, 4.9 Hz, CH(5)), 3.18 (br. d, 1H, J = 3.7 Hz)OH), 2.31–1.53 (m, 8H, (CH₂)₄); ¹³C NMR (125 MHz, CDCl₃): δ 181.2 (C(1)), 137.4 128.6, 128.0, 127.8 (ArC), 81.4 (C(4)), 75.6 (C(3)), 73.7 (CH₂Ph), 68.9 (C(5)), 53.5 (C(2)), 35.4, 29.8 $(CH_2(CH_2)_2CH_2)$, 26.1, 26.1 $(CH_2(CH_2)_2CH_2)$; HRMS (ESI-TOF) calculated for $C_{16}H_{20}O_4 [M+H]^+ m/z$ 277.1434, found 277.1432. $\alpha_D^{22} = +19.4$ (c = 1.00, CHCl₃).

5-Benzyloxy-3-hydroxy-2-spirocyclohexyl-D-ribonolactone (5-Benzyloxy-3-hydroxy-2-

spirocyclohexyl-D-arabinolactone) (16b). The compound was synthesized following the general procedure using isopropyl-1-((1S,2R)-3-(benzyloxy)-1-hydroxy-2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)propyl)cyclohexanecarboxylate (>20:1 dr, 147 mg, 300 µmol, 1.0 equiv.), Zn (196 mg, 3.00 mmol, 10 equiv.), toluene (1.5 mL) and H₂O:TFA (4:1, 1.5 mL). The crude product was purified by

flash chromatography using 3:1 hexanes:EtOAc to yield the title compound (85.0 mg, 98% yield, >20:1 dr) as a white powder. HPLC analysis (OJ, 10% IPA/hexanes, 1.0 mL/min, 220 nm) indicated 89% ee: t_R (major) = 19.1 minutes, t_R (minor) = 21.8 minutes. Due to the similar structural features and the consistent NMR-data of the title compound to 5-benzyloxy-2-dimethyl-3-hydroxy-D-ribonolactone (see above) the configuration of the title compound was assigned as ribo/arabino. IR (thin film): 3433, 3063, 3028, 2956, 2866, 1750, 1497, 1451, 1363, 1330, 1276, 1259, 1209, 1156, 1113, 1053, 989, 948, 913, 764, 750, 699 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.40–7.23 (m, 5H, Ar**H**), 4.56 (s, 2H, C**H**₂Ph), 4.29 (dt, 1H, *J* = 7.2, 4.6 Hz, C**H**(4)), 4.03 (dd, 1H, *J* = 6.8, 5.8 Hz, C**H**(3)), 3.71 (dd, 1H, *J* = 11.1, 4.4 Hz, C**H**(5)_a), 3.68 (dd, 1H, *J* = 10.9, 4.9 Hz, C**H**(5)_b), 3.00 (br. s, 1H, O**H**), 2.12–1.20 (m, 10H, (C**H**₂)₅); ¹³C NMR (125 MHz, CDCl₃): δ 179.4 (C(1)), 137.5 128.6, 128.0, 127.8 (ArC), 80.7 (C(4)), 76.2 (C(3)), 73.7 (CH₂Ph), 69.2 (C(5)), 46.3 (C(2)), 32.3, 26.6 (CH₂(CH₂)₃CH₂), 25.3 ((CH₂)₂CH₂(CH₂)₂), 21.6, 21.5 (CH₂CH₂CCH₂CH₂); HRMS (ESI-TOF) calculated for C₁₇H₂₂O₄

 $[M+H]^+$ m/z 291.1591, found 291.1593; $\alpha_D^{21} = +36.8$ (c = 1.00, CHCl₃).

General Procedure for the Reduction of Ribono- and Arabinolactones to the Corresponding Lactols. To a solution of the lactone in toluene (c = 0.1 M) was added diisobutylaluminum hydride (DIBAL-H, 4.0 equiv.) slowly over 1 hour at -78 °C. The solution was stirred for 1 hour at -78 °C, then quenched by the slow addition of MeOH (10 equiv.) over 15 minutes under vigorous stirring. The solution was stirred for 15 minutes at -78 °C, then warmed to room temperature and stirred for an additional 30 minutes, resulting in a gel. This material was transferred into an separatory funnel and diluted with aq. sat. NH₄Cl (5 mL) and H₂O (5 mL). The aqueous layer was extracted vigorously with Et₂O (4 × 5 mL) and the combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum. The crude product was purified by flash chromatography.

5-Benzyloxy-2-(tert-butyldimethylsilyl)oxy-1-hydroxy-3-hydroxy-D-ribose (2c). The compound was synthesized following the general procedure using 5-benzyloxy-2-(tert-BnO butyldimethylsilyl)oxy-3-hydroxy-D-ribonolactone (>20:1 dr, 88.1 mg, 250 µmol, -OH 1.0 equiv.), DIBAL-H (1.0 M in toluene, 1.00 mL, 1.00 mmol, 4.0 equiv.) and OTBS toluene (2.5 mL). The crude product was purified by flash chromatography using нÒ 4:1 hexanes:EtOAc to yield the title compound (56.6 mg, 64% yield, >20:1 dr with respect to the configuration at C(2), C(3) and C(4), 1:1 mixture of α - and β -anomers) as a colorless oil. IR (thin film): 3423, 2952, 2931, 2896, 2856, 1494, 1472, 1462, 1454, 1406, 1388, 1360, 1254, 1211, 1125, 1085, 1047, 1024, 910, 838, 779, 736, 698 cm⁻¹; ¹H NMR (500 MHz, CDCl₃), α-isomer: δ 7.40–7.24 $(m, 5H, ArH), 5.24 (dd, 1H, J = 10.0, 4.4 Hz, CH(1)), 4.59 (d, 1H, J = 12.0 Hz, CH_{0}Ph), 4.52 (d, 1H, J)$ $= 12.0 \text{ Hz}, CH_{h}Ph), 4.23-4.18 (m, 2H, CH(2), CH(4)), 4.06-4.01 (m, 1H, CH(3)), 3.66-3.61 (m, 2H, 2H, 2H))$ $CH_{a}(5), CH(1)OH), 3.60 (dd, 1H, J = 10.6, 3.7 Hz, CH_{b}(5)), 2.57 (d, 1H, J = 4.3 Hz, CH(3)OH), 0.93$ $(s, 9H, C(CH_3)_3)$, 0.15 $(s, 6H, Si(CH_3)_2)$; β -isomer: δ 7.40–7.24 (m, 5H, ArH), 5.10 (d, 1H, J = 8.2 Hz, CH(1)), 4.63 (d, 1H, J = 11.7 Hz, CH_aPh), 4.58 (d, 1H, J = 11.7 Hz, CH_bPh), 4.29 (ddd, 1H, J = 8.4, 5.0, 4.9 Hz, CH(3)), 4.10 (dt, 1H, J = 4.8, 2.7 Hz, CH(4)), 4.06–4.01 (m, 1H, CH(2)), 3.71 (dd, 1H, J = 10.2, 2.6 Hz, $CH_{a}(5)$), 3.66–3.61 (m, 2H, $CH_{b}(5)$, CH(1)OH), 2.72 (d, 1H, J = 8.4 Hz, CH(3)OH), 0.92 (s, 9H, C(CH₃)₃)), 0.15, 0.13 (2s, 6H, Si(CH₃)₂); ¹³C NMR (125 MHz, CDCl₃), α-isomer: δ 137.1, 128.8, 128.2, 128.0 (ArC), 97.1 (C(1)), 81.8 (C(4)), 73.7 (CH₂Ph), 72.6 (C(2)), 72.3 (C(3)), 70.3 (C(5)), 25.9 $(C(CH_3)_3)$, 18.4 $(C(CH_3)_3)$, -4.83, -4.92 (2s, 6H, Si $(CH_3)_2$); β -isomer: δ 138.0, 128.5, 127.8, 127.7 (ArC), 102.9 (C(1)), 84.3 (C(4)), 78.2 (C(2)), 73.9 (CH₂Ph), 71.7 (C(3)), 70.2 (C(5)), 25.9 (C(CH₃)₃), 18.3 (C(CH₃)₃), -4.46, -4.70 (2s, 6H, Si(CH₃)₂); HRMS (ESI-TOF) calculated for $C_{18}H_{30}O_5Si [M+Na]^+ m/z 377.1755$, found 377.1753; $\alpha_D^{21} = +233.0$ (c = 1.00, CHCl₃).

5-Benzyloxy-2-(*tert*-butyldiphenylsilyl)oxy-1-hydroxy-3-hydroxy-D-ribose (3c). The compound was BnO synthesized following the general procedure using 5-benzyloxy-2-(*tert*-butyldiphenylsilyl)oxy-3-hydroxy-D-ribonolactone (>20:1 dr, 119 mg, 250 µmol, 1.0 equiv.), DIBAL-H (1.0 M in toluene, 1.00 mL, 1.00 mmol, 4.0 equiv.) and toluene (2.5 mL). The crude product was purified by flash chromatography using 5:1 to 4:1 hexanes:EtOAc to yield the title compound (73.9 mg, 62% yield, >20:1 dr with respect

to the configuration at C(2), C(3) and C(4), 1:1 mixture of α - and β -anomers) as a colorless oil. IR (thin film): 3409, 3070, 2930, 2893, 2857, 1589, 1472, 1454, 1427, 1362, 1112, 1072, 1044, 1026, 999, 906, 822, 740, 700, 621, 612 cm⁻¹; ¹H NMR (500 MHz, CDCl₃), α-isomer: δ 7.68–6.98 (m, 15H, Ar**H**), 4.85 (dd, 1H, J = 9.6, 4.4 Hz, CH(1)), 4.35 (d, 1H, J = 12.1 Hz, CH_aPh), 4.28 (d, 1H, J = 12.0 Hz, $CH_{h}Ph$), 4.22 (dt, 1H, J = 3.4, 1.9 Hz, CH(4)), 4.16–4.07 (m, 1H, CH(2)), 3.87–3.83 (m, 1H, CH(3)), 2.58 (d, 1H, J = 9.8 Hz, CH(1)OH), 3.38 (d, 2H, J = 3.5 Hz, CH₂(5)), 2.69 (d, 1H, J = 2.3 Hz, CH(3)OH), 1.04 or 1.05 (s, 9H, C(CH₃)₃)); β -isomer: δ 7.68–6.98 (m, 15H, ArH), 4.95 (d, 1H, J = 8.0, Hz, CH(1)), 4.48 (d, 1H, J = 11.8 Hz, CH_aPh), 4.44 (d, 1H, J = 11.7 Hz, CH_bPh), 4.16–4.07 (m, 2H, CH(3), CH(4)), 4.05 (dd, 1H, J = 4.8, 0.9 Hz, CH(2)), 2.60 (dd, 1H, J = 10.2, 2.8 Hz, $CH_a(5)$), 2.50 $(dd, 1H, J = 10.2, 3.1 Hz, CH_{b}(5)), 3.25 (d, 1H, J = 8.0 Hz, CH(1)OH), 2.68 (d, 1H, J = 8.2 Hz),$ CH(3)OH), 1.04 or 1.05 (s, 9H, C(CH₃)₂)); ¹³C NMR (125 MHz, CDCl₃), α -isomer: δ 137.9–127.6 (several ArC), 97.2 (C(1)), 82.7 (C(4)), 73.5 (CH₂Ph), 73.3 (C(2)), 72.5 (C(3)), 70.2 or 70.3 (C(5)), 27.1 (C(CH₃)₃), 19.4 or 19.5 (C(CH₃)₃); β-isomer: δ 137.9–127.6 (several ArC), 102.2 (C(1)), 84.2 (C(4)), 78.8 (C(2)), 73.8 (CH₂Ph), 72.0 (C(3)), 70.2 or 70.3 (C(5)), 27.1 (C(CH₃)₃), 19.4 or 19.5 (C(CH₃)₃); HRMS (ESI-TOF) calculated for $C_{28}H_{34}O_5Si [M+Na]^+ m/z 501.2068$, found 501.2067; α_D^{21} = +107.2 (c = 1.00, CHCl₃).

5-Benzyloxy-1-hydroxy-3-hydroxy-2-methoxy-D-ribose (4c). The compound was synthesized following the general procedure using 5-benzyloxy-3-hydroxy-2-methoxy-D-BnO ribonolactone (>20:1 dr, 63.1 mg, 250 µmol, 1.0 equiv.), DIBAL-H (1.0 M in ·ОН toluene, 1.00 mL, 1.00 mmol, 4.0 equiv.) and toluene (2.5 mL). The crude product НÒ OMe was purified by flash chromatography using 1:1 hexanes:EtOAc to yield the title compound (44.7 mg, 70% yield, >20:1 dr with respect to the configuration at C(2), C(3) and C(4), 1:2 mixture of α - and β -anomers) as a colorless oil. IR (thin film): 3395, 2928, 2832, 1640, 1497, 1454, 1364, 1195, 1087, 1028, 980, 741, 699, 606 cm⁻¹; ¹H NMR (500 MHz, CDCl₃), α-isomer: δ 7.39–7.25 $(m, 5H, ArH), 5.32 (dd, 1H, J = 8.7, 4.4 Hz, CH(1)), 4.60 (d, 1H, J = 11.9 Hz, CH_{3}Ph), 4.57 (d, 1H, J)$ = 11.8 Hz, CH_bPh), 4.28 (ddd, 1H, J = 6.0, 6.0, 4.1 Hz, CH(3)), 4.00–3.93 (m, 1H, CH(4)), 3.87 (d, 1H, J = 8.7 Hz, CH(1)OH), 3.70 (dd, 1H, J = 6.2, 4.4 Hz, CH(2)), 3.58 (dd, 1H, J = 10.0, 4.2 Hz, $CH_{a}(5)$), 3.63 (dd, 1H, J = 10.0, 4.8 Hz, $CH_{b}(5)$), 3.46 (s, 3H, CH_{3}), 2.71 (d, 1H, J = 3.9 Hz, CH(3)OH); β -isomer: δ 7.39–7.25 (m, 5H, ArH), 5.36 (d, 1H, J = 4.8 Hz, CH(1)), 4.58 (d, 1H, J =12.0 Hz, CH_aPh), 4.52 (d, 1H, J = 12.0 Hz, CH_bPh), 4.31 (dt, 1H, J = 6.0, 4.0 Hz, CH(4)), 4.00–3.93 (m, 1H, CH(4)), 3.77 (d, 1H, J = 4.4 Hz, CH(1)OH), 3.70-3.68 (m, 1H, CH(2)), 3.58 (dd, 1H, J = 8.8),3.4 Hz, $CH_{a}(5)$), 3.55 (dd, 1H, J = 8.8, 4.8 Hz, $CH_{b}(5)$), 3.36 (s, 3H, CH_{3}), 2.97 (d, 1H, J = 7.2 Hz, CH(3)OH); ¹³C NMR (125 MHz, CDCl₃), α-isomer: δ 137.4, 128.7, 128.2, 128.1 (ArC), 95.5 (C(1)), 86.8 (C(2)), 80.9 (C(4)), 75.0 (C(3)), 73.8 (CH₂Ph), 70.5 (C(5)), 58.3 (CH₂); β-isomer: δ 137.8, 128.6, 128.0, 128.0 (ArC), 100.7 (C(1)), 90.1 (C(2)), 84.1 (C(4)), 76.3 (C(3)), 73.6 (CH₂Ph), 70.6 (C(5)), 57.7 (CH₃); HRMS (ESI-TOF) calculated for $C_{13}H_{18}O_5$ [M+Na]⁺ m/z 277.1046, found 277.1049; $\alpha_0^{21} =$ +102.9 (c = 1.00, CHCl₃).

5-Benzyloxy-2-desoxy-1-hydroxy-3-hydroxy-D-lyxose (5-Benzyloxy-2-desoxy-1-hydroxy-3-

hydroxy-D-xylose) (5c). The compound was synthesized following the general procedure using 5-benzyloxy-2-desoxy-3-hydroxy-D-lyxolactone (>20:1 dr, 55.6 mg, 250 µmol, 1.0 equiv.), DIBAL-H (1.0 M in toluene, 1.00 mL, 1.00 mmol, 4.0

equiv.) and toluene (2.5 mL). The crude product was purified by flash HO chromatography using 1:2 hexanes: EtOAc to yield the title compound (42.3 mg, 75% yield, >20:1 dr with respect to the configuration at C(3) and C(4), 1:3 mixture of α - and β -anomers along with minor quantities of open aldehyde corresponding to the title compound (4%) as a white powder. IR (thin film): 3406, 3057, 3027, 2924, 2869, 1494, 1454, 1367, 1205, 1099, 1068, 1028, 1009, 836, 742, 699, 614 cm⁻¹; ¹H NMR (500 MHz, CDCl₃), α-isomer: δ 7.40–7.27 (m, 5H, ArH), 5.71 (dt, 1H, J = 4.0, 3.2Hz, CH(1)), 4.59 (s, 2H, CH₂Ph), 4.59–4.51 (m, 1H, CH(3)), 4.28 (dt, 1H, J = 4.7, 4.6 Hz, CH(4)), 3.79 (d, 2H, J = 4.7 Hz, CH₂(5)), 2.96 (d, 1H, J = 2.4 Hz, CH(1)OH), 2.74 (d, 1H, J = 5.3 Hz, CH(3)OH), 2.20–2.07 (m, 2H, CH₂(2)); β -isomer: δ 7.40–7.27 (m, 5H, ArH), 5.47 (dd, 1H, J = 8.1, 4.4 Hz, CH(1)), 4.62 (d, 1H, J = 11.9 Hz, CH_aPh), 4.59 (d, 1H, J = 11.9 Hz, CH_bPh), 4.59–4.51 (m, 1H, CH(3)), 4.09 (dt, 1H, J = 5.7, 3.8 Hz, CH(4)), 3.86 (dd, 1H, J = 10.2, 5.6 Hz, CH_a(5)), 3.84 (dd, 1H, J = 10.2, 5.8 Hz, CH_b(5)), 3.77 (d, 1H, J = 8.2 Hz, CH(1)OH), 3.15 (d, 1H, J = 5.9 Hz, CH(3)OH), 2.17– 1.91 (m, 2H, CH₂(2)); ¹³C NMR (125 MHz, CDCl₃), α -isomer: δ 137.5, 128.7, 128.0, 128.0 (ArC), 98.0 (C(1)), 78.8 (C(4)), 74.0 (CH₂Ph), 72.8 (C(3)), 68.8 (C(5)), 43.7 (C(2)); β-isomer: δ 137.6, 128.7, 128.1, 128.0 (ArC), 99.2 (C(1)), 82.0 (C(4)), 73.9 (C(3)), 72.3 (CH₂Ph), 69.9 (C(5)), 42.1 (C(2)); HRMS (ESI-TOF) calculated for $C_{12}H_{16}O_4$ [M+Na]⁺ m/z 247.0941, found 247.0939; $\alpha_D^{21} = -225.7$ (c = 1.00, CHCl₃).

5-Benzyloxy-2-desoxy-1-hydroxy-3-hydroxy-D-ribose (5-Benzyloxy-2-desoxy-1-hydroxy-3-

hydroxy-D-arabinose) (6c). The compound was synthesized following the general

BnO

procedure using 5-benzyloxy-2-desoxy-3-hydroxy-D-ribonolactone (>20:1 dr, 55.6 ЮH mg, 250 µmol, 1.0 equiv.), DIBAL-H (1.0 M in toluene, 1.00 mL, 1.00 mmol, 4.0 equiv.) and toluene (2.5 mL). The crude product was purified by flash нÒ chromatography using 1:2 hexanes: EtOAc to yield the title compound (43.1 mg, 77% yield, >20:1 dr with respect to the configuration at C(3) and C(4), 1:3 mixture of α - and β -anomers) as a colorless oil. IR (thin film): 3392, 3028, 2922, 2861, 1494, 1454, 1363, 1259, 1209, 1178, 1077, 1027, 961, 915, 842, 741, 699 cm⁻¹; ¹H NMR (500 MHz, CDCl₃), α-isomer: δ 7.33–7.18 (m, 5H, Ar**H**), 5.48 (ddd, 1H, J = 8.0, 5.4, 2.4 Hz, CH(1)), 4.53 (d, 1H, J = 11.7 Hz, CH_aPh), 4.48 (d, 1H, J = 11.8 Hz, CH_bPh), 4.44–4.38 (m, 1H, CH(3)), 4.01 (dt, 1H, J = 3.7, 3.6 Hz, CH(4)), 3.84 (d, 1H, J = 8.1 Hz, CH(1)OH), 3.55 (d, 2H, J = 3.9 Hz, CH₂(5)), 2.18 (d, 1H, J = 5.0 Hz, CH(3)OH), 2.17–1.91 (m, 2H, CH₂(2)); β isomer: δ 7.33–7.18 (m, 5H, Ar**H**), 5.50 (t, 1H, J = 5.0 Hz, C**H**(1)), 4.47 (d, 1H, J = 11.9 Hz, C**H**₂Ph), 4.44 (d, 1H, J = 12.1 Hz, CH_bPh), 4.29 (dt, 1H, J = 4.9, 1.4 Hz, CH(4)), 4.21–4.16 (m, 1H, CH(3)), $3.64 (d, 1H, J = 5.5 Hz, CH(1)OH), 3.43 (dd, 1H, J = 10.1, 4.8 Hz, CH_a(5)), 3.34 (dd, 1H, J = 10.1, 4.8 Hz)$ Hz, CH_b(5)), 2.94 (d, 1H, J = 7.6 Hz, CH(3)OH), 2.17–1.91 (m, 2H, CH₂(2)); ¹³C NMR (125 MHz, CDCl₃), α-isomer: δ 137.2, 128.7, 128.3, 128.1 (ArC), 99.3 (C(1)), 85.2 (C(4)), 73.9 (CH₂Ph), 73.5 (C(3)), 71.3 (C(5)), 44.2 (C(2)); β-isomer: δ 137.9, 128.6, 127.9, 127.8 (ArC), 99.5 (C(1)), 86.3 (C(4)), 73.6 (C(3)), 73.6 (CH₂Ph), 70.6 (C(5)), 41.4 (C(2)); HRMS (ESI-TOF) calculated for C₁₂H₁₆O₄

 $[M+Na]^+$ m/z 247.0941, found 247.0939; $\alpha_D^{20} = +325.5$ (c = 1.00, CHCl₃).

5-Benzyloxy-1-hydroxy-2-methyl-D-arabinose (7c). The compound was synthesized following the general procedure using 5-benzyloxy-3-hydroxy-2-methyl-D-BnO arabinolactone (11:1 dr, 59.1 mg, 250 µmol, 1.0 equiv.), DIBAL-H (1.0 M in OH toluene, 1.00 mL, 1.00 mmol, 4.0 equiv.) and toluene (2.5 mL). The crude product HO was purified by flash chromatography using 1:1 hexanes:EtOAc to yield the title Me compound (48.8 mg, 82% yield, >20:1 dr with respect to the configuration at C(2), C(3) and C(4), 1:1.5 mixture of α - and β -anomers) as colorless crystals. IR (thin film): 3380, 3028, 2962, 2922, 2871, 1494, 1454, 1363, 1274, 1259, 1211, 1054, 1029, 980, 750, 698 cm⁻¹; ¹H NMR (500 MHz, CDCl₃), αisomer: δ 7.39–7.25 (m, 5H, ArH), 5.22 (br. dd, 1H, J = 6.6, 5.2 Hz, CH(1)), 4.61 (d, 1H, J = 11.9 Hz, $CH_{a}Ph$), 4.57 (d, 1H, J = 11.8 Hz, $CH_{b}Ph$), 4.03–3.95 (m, 2H, CH(3), CH(4)), 3.63 (d, 2H, J = 4.0 Hz, $CH_{2}(5)$, 3.49 (d, 1H, J = 6.6 Hz, CH(1)OH), 2.30 (br. s, 1H, CH(3)OH), 2.20–2.08 (m, 1H, CH(2)), 1.10 (d, 3H, J = 6.9 Hz, CH₃); β -isomer: δ 7.39–7.25 (m, 5H, ArH), 5.12 (br. s, 1H, CH(1)), 4.58 (d, 1H, J = 12.3 Hz, CH_aPh), 4.55 (d, 1H, J = 12.2 Hz, CH_bPh), 4.23 (dt, 1H, J = 5.4, 4.9 Hz, CH(4)), 4.73–3.65 (m, 2H, CH(3), CH(1)OH), 3.59 (d, 2H, J = 5.7 Hz, CH₂(5)), 2.77 (br. s, 1H, CH(3)OH), 2.20–2.08 (m, 1H, CH(2)), 1.03 (d, 3H, J = 7.4 Hz, CH₃); ¹³C NMR (125 MHz, CDCl₃), α -isomer: δ 137.4, 128.7, 128.1, 127.9 (ArC), 100.0 (C(1)), 83.6 (C(4)), 77.6 (C(3)), 73.8 (CH₂Ph), 70.8 (C(5)), 47.3 (C(2)), 11.0 (CH₃); β-isomer: δ 137.9, 128.6, 128.0, 127.9 (ArC), 104.0 (C(1)), 84.4 (C(4)), 79.3 (C(3)), 73.6 (CH_2Ph) , 71.1 (C(5)), 49.1 (C(2)), 15.1 (CH_3) ; HRMS (ESI-TOF) calculated for $C_{13}H_{18}O_4$ $[M+Na]^+$ m/z 261.1097, found 261.1100; $\alpha_D^{21} = +2.55$ (c = 1.00, CHCl₃).

5-Benzyloxy-2-ethyl-1-hydroxy-3-hydroxy-D-arabinose (8c). The compound was synthesized following the general procedure using 5-benzyloxy-2-ethyl-3-hydroxy-D-BnO -OH arabinolactone (13:1 dr, 62.6 mg, 250 µmol, 1.0 equiv.), DIBAL-H (1.0 M in toluene, 1.00 mL, 1.00 mmol, 4.0 equiv.) and toluene (2.5 mL). The crude product was purified by flash chromatography using 1:1 hexanes:EtOAc to yield the title НÒ compound (52.8 mg, 84% yield, >20:1 dr with respect to the configuration at C(2), C(3) and C(4), 1:2 mixture of α - and β -anomers) as colorless crystals. The configuration was confirmed by single-crystal X-ray analysis (see appendix). IR (thin film): 3382, 3058, 3028, 2957, 2928, 2871, 1494, 1454, 1360, 1330, 1269, 1244, 1209, 1061, 1022, 971, 910, 867, 802, 735, 698 cm⁻¹; ¹H NMR (500 MHz, CDCl₃), α -isomer: δ 7.38–7.25 (m, 5H, Ar**H**), 5.30 (dd, 1H, J = 6.8, 4.9 Hz, C**H**(1)), 4.60 (d, 1H, J = 11.8 Hz, CH_aPh), 4.56 (d, 1H, J = 11.8 Hz, CH_bPh), 4.04 (br. dd, 1H, CH(3)), 3.98 (dt, 1H, J = 6.0, 4.0 Hz, CH(4)), 3.62 (d, 2H, J = 4.0 Hz, CH₂(5)), 3.62 (br. d, 1H, CH(1)OH), 2.38 (br. d, 1H, J = 4.0 Hz, CH(3)OH), 2.20–1.93 (m, 1H, CH(2)), 1.64–1.50 (m, 2H, CH(2)CH₂), 0.99 (t, 3H, J = 7.4 Hz, CH₃); β-isomer: δ 7.38–7.25 (m, 5H, Ar**H**), 5.18 (dd, 1H, J = 3.9, 1.8 Hz, C**H**(1)), 4.57 (d, 1H, J = 12.2 Hz, $CH_{a}Ph$), 4.54 (d, 1H, J = 12.0 Hz, $CH_{b}Ph$), 4.22 (dt, 1H, J = 5.2, 5.2 Hz, CH(4)), 3.86 (br. d, 1H, CH(1)OH), 4.74 (br. dd, 1H, CH(3)), 3.57 (d, 2H, J = 5.4 Hz, CH₂(5)), 2.85 (d, 1H, J = 6.8 Hz, CH(3)OH), 2.20–1.93 (m, 1H, CH(2)), 1.41 (dq, 2H, J = 7.6, 7.5 Hz, CH(2)CH₂), 0.97 (t, 3H, J = 7.4 Hz, CH₃); ¹³C NMR (125 MHz, CDCl₃), α-isomer: δ 137.4, 128.7, 128.1, 128.0 (ArC), 99.1 (C(1)), 83.9 (C(4)), 76.8 (C(3)), 73.8 (CH₂Ph), 71.2 (C(5)), 45.5 (C(2)), 20.3 (CH(2)CH₂), 12.5 (CH₂); βisomer: δ 137.8, 128.5, 128.1, 127.9 (ArC), 102.7 (C(1)), 83.8 (C(4)), 77.9 (C(3)), 73.6 (CH₂Ph), 70.7 (C(5)), 56.4 (C(2)), 20.4 (CH(2)CH₂), 12.3 (CH₃); HRMS (ESI-TOF) calculated for C₁₄H₂₀O₄ [M+Na]⁺ m/z 275.1254, found 275.1256; $\alpha_D^{22} = -1.24$ (c = 1.00, CHCl₃).

5-Benzyloxy-1-hydroxy-2-isopropyl-D-arabinose (9c). The compound was synthesized following the general procedure using 5-benzyloxy-3-hydroxy-2-isopropyl-D-BnO arabinolactone (>20:1 dr, 66.1 mg, 250 µmol, 1.0 equiv.), DIBAL-H (1.0 M in OH toluene, 1.00 mL, 1.00 mmol, 4.0 equiv.) and toluene (2.5 mL). The crude product was purified by flash chromatography using 1:1 hexanes:EtOAc to yield the title нÒ *i*Pr compound (59.4 mg, 89% yield, >20:1 dr with respect to the configuration at C(2), C(3) and C(4), 1:2.5 mixture of α - and β -anomers) as a colorless crystals. IR (thin film): 3378, 3033, 2964, 2956, 2945, 2927, 2874, 1466, 1454, 1387, 1374, 1358, 1287, 1144, 1117, 1069, 1043, 1030, 985, 874, 854, 749, 695, 611 cm⁻¹; ¹H NMR (500 MHz, CDCl₃), α -isomer: δ 7.38–7.25 (m, 5H, Ar**H**), 5.31 (dd, 1H, J $= 7.5, 4.8 \text{ Hz}, CH(1)), 4.61 (d, 1H, J = 11.8 \text{ Hz}, CH_{a}Ph), 4.57 (d, 1H, J = 11.8 \text{ Hz}, CH_{b}Ph), 4.22-4.15$ (m, 1H, CH(3)), 3.81 (dt, 1H, J = 5.4, 3.9 Hz, CH(4)), 3.76 (d, 1H, J = 7.6 Hz, CH(1)OH), 3.65–3.57 (m, 2H, CH₂(5)), 2.22 (d, 1H, J = 5.7 Hz, CH(3)OH), 1.91–1.59 (m, 2H, CH(2)CH), 1.06 (d, 3H, J = 6.8 Hz, CH(CH₃)_a), 0.97 (d, 3H, J = 6.5 Hz, CH(CH₃)_b); β -isomer: δ 7.38–7.25 (m, 5H, ArH), 5.22 (dd, 1H, J = 4.1, 2.6 Hz, CH(1)), 4.57 (d, 1H, J = 12.1 Hz, CH_aPh), 4.54 (d, 1H, J = 12.1 Hz, CH_bPh), 4.22–4.15 (m, 1H, CH(4)), 3.95 (br. d, 1H, J = 3.3 Hz, CH(1)OH), 3.81 (dd, 1H, J = 6.6, 5.6 Hz, CH(3)), 3.65-3.57 (m, 2H, CH₂(5)), 2.76 (d, 1H, J = 6.9 Hz, CH(3)OH), 1.91-1.59 (m, 2H, CH(2)CH), 0.98 (d, 3H, J = 6.7 Hz, CH(CH₃)_a), 0.96 (d, 3H, J = 6.7 Hz, CH(CH₃)_b); ¹³C NMR (125 MHz, CDCl₃), α-isomer: δ 137.8, 128.7, 128.2, 128.0 (ArC), 99.8 (C(1)), 85.0 (C(4)), 76.2 (C(3)), 73.8 (CH₂Ph), 71.2 (C(5)), 60.0 (C(2)), 27.8 (CH(2)CH), 22.0, 21.2 (CH(CH₃)₂); β-isomer: δ 137.2, 128.5, 127.9, 127.9 (ArC), 101.3 (C(1)), 82.4 (C(4)), 76.4 (C(3)), 73.7 (CH₂Ph), 70.5 (C(5)), 61.6 (C(2)), 28.7 (CH(2)CH), 21.1, 20.6 (CH(CH₃)₂); HRMS (ESI-TOF) calculated for C₁₅H₂₂O₄ [M+Na]⁺ m/z 289.1410, found 289.1406; $\alpha_D^{21} = +123.1$ (c = 1.00, CHCl₃).

5-Benzyloxy-1-hydroxy-3-hydroxy-2-tert-butyl-D-arabinose (10c). The compound was synthesized following the general procedure using 5-benzyloxy-3-hydroxy-2-tert-butyl-D-BnO arabinolactone (>20:1 dr, 69.6 mg, 250 µmol, 1.0 equiv.), DIBAL-H (1.0 M in ·ОН toluene, 1.00 mL, 1.00 mmol, 4.0 equiv.) and toluene (2.5 mL). The crude product was purified on a CHIRALPAK IC SFC column (21×150 mm, 5 µm particle size) HO ^tBu using 20% EtOH/hexanes (60 mL/min, 100 bar, 30 °C)¹⁷ to yield the title compound (62.4 mg, 89%) yield, >20:1 dr with respect to the configuration at C(2), C(3) and C(4), 1:15 mixture of α - and β anomers) as a colorless oil. IR (thin film): 3390, 2959, 2905, 2869, 1497, 1473, 1454, 1370, 1244, $1206, 1180, 1142, 1081, 1015, 974, 937, 922, 866, 736, 698, 605 \text{ cm}^{-1}$; ¹H NMR (500 MHz, CDCl₃), α isomer: δ 7.39–7.24 (m, 5H, Ar**H**), 5.31 (dd, 1H, J = 7.9, 4.7 Hz, C**H**(1)), 4.62 (d, 1H, J = 11.7 Hz, $CH_{a}Ph$), 4.56 (d, 1H, J = 11.7 Hz, $CH_{b}Ph$), 3.43 (ddd, 1H, J = 7.2, 5.7, 5.6 Hz, CH(3)), 4.02 (dt, 1H, J= 5.3, 3.7 Hz, CH(4)), 3.97 (br. s, 1H, CH(1)OH), 3.74 (d, 2H, J = 7.8 Hz, CH₂(5)), 2.12 (d, 1H, J =

¹⁷ Lotus Separations, Department of Chemistry, Frick Laboratory, Princeton University

6.1 Hz, CH(3)OH), 1.90 (dd, 1H, J = 9.4, 4.7 Hz, CH(2)), 1.05 (s, 9H, C(CH₃)₃); β-isomer: δ 7.39– 7.24 (m, 5H, ArH), 5.23 (dd, 1H, J = 3.2, 3.1 Hz, CH(1)), 4.56 (s, 2H, CH₂Ph), 4.21 (ddd, 1H, J = 7.8, 6.1, 4.2 Hz, CH(4)), 3.97 (br. s, 1H, CH(1)OH), 3.82 (dd, 1H, J = 14.2, 6.7 Hz, CH(3)), 3.67 (dd, 1H, J = 10.2, 4.2 Hz, CH_a(5)), 3.62 (dd, 1H, J = 10.2, 6.1 Hz, CH_b(5)), 2.72 (d, 1H, J = 6.5 Hz, CH(3)OH), 1.83 (dd, 1H, J = 6.3, 2.6 Hz, CH(2)), 0.94 (s, 9H, C(CH₃)₃); ¹³C NMR (125 MHz, CDCl₃), α-isomer: δ 137.1, 128.7, 128.2, 127.1 (ArC), 100.5 (C(1)), 84.7 (C(4)), 73.8 (CH₂Ph), 73.2 (C(3)), 71.2 (C(5)), 61.4 (C(2)), 31.0 (C(CH₃)₃), 29.0 (C(CH₃)₃); β-isomer: δ 137.8, 128.5, 128.0, 127.9 (ArC), 99.7 (C(1)), 81.5 (C(4)), 74.6 (C(3)), 73.7 (CH₂Ph), 70.5 (C(5)), 65.3 (C(2)), 31.2 (C(CH₃)₃), 27.8 (C(CH₃)₃); HRMS (ESI-TOF) calculated for C₁₆H₂₄O₄ [M+Na]⁺ m/z 303.1567, found 303.1569; $\alpha_{D}^{21} = +225.6$ (c = 1.00, CHCl₃).

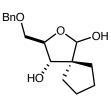
2-Allyl-5-benzyloxy-1-hydroxy-3-hydroxy-D-arabinose (11c). The compound was synthesized following the general procedure using 2-allyl-5-benzyloxy-3-hydroxy-D-BnO arabinolactone (13:1 dr, 65.6 mg, 250 µmol, 1.0 equiv.), DIBAL-H (1.0 M in OH toluene, 1.00 mL, 1.00 mmol, 4.0 equiv.) and toluene (2.5 mL). The crude product HO Allyl was purified by flash chromatography using 2:1 hexanes:EtOAc to yield the title compound (53.0 mg, 80% yield, >20:1 dr with respect to the configuration at C(2), C(3) and C(4), 1:1.5 mixture of α - and β -anomers) as colorless crystals. The configuration was confirmed by singlecrystal X-ray analysis (see appendix). IR (thin film): 3387, 3068, 3028, 2918, 2866, 1641, 1494, 1454, 1363, 1310, 1269, 1206, 1072, 1027, 989, 974, 918, 865, 736, 699 cm⁻¹; ¹H NMR (500 MHz, CDCl₃), α -isomer: δ 7.39–7.25 (m, 5H, Ar**H**), 5.94–5.84 (m, 1H, C**H**=CH₂), 5.28 (br. dd, 1H, J = 5.9, 5.0 Hz, CH(1)), 5.18–5.01 (m, 2H, CH=CH₂), 4.62 (d, 1H, J = 11.8 Hz, CH₂Ph), 4.58 (d, 1H, J = 11.8 Hz, $CH_{b}Ph$), 4.11 (br. dd, 1H, J = 8.1, 6.5 Hz, CH(3)), 4.01 (dt, 1H, J = 6.1, 3.9 Hz, CH(4)), 3.57–3.65 (hidden by CH₂(5), 1H, CH(1)OH), 3.64 (d, 2H, J = 3.9 Hz, CH₂(5)), 2.40–2.24 (m, 1H, CH(2)), 2.23– 2.07 (m, 2H, CH(2)CH₂), 1.92 (br. s, 1H, CH(3)OH); β-isomer: δ 7.39–7.25 (m, 5H, ArH), 5.84–5.74 (m, 1H, CH=CH₂), 5.20 (br. s, 1H, CH(1)), 5.18–5.01 (m, 2H, CH=CH₂), 4.57 (s, 2H, CH₂Ph), 4.25 (dt, 1H, J = 5.1, 5.1 Hz, CH(4)), 3.80 (br. s, 1H, CH(3)), 3.57-3.65 (hidden by CH₂(5), 1H, CH(1)OH), $3.59 (d, 2H, J = 5.2 Hz, CH_2(5)), 2.69 (br. s, 1H, CH(3)OH), 2.40-2.24 (m, 1H, CH(2)), 2.23-2.07 (m, 1H, CH(2)), 2.23-2.07 (m, 2H, 2H))$ 2H, CH(2)CH₂); ¹³C NMR (125 MHz, CDCl₃), α -isomer: δ 137.4 (ArC), 136.7 (CH=CH₂), 128.7, 128.2, 127.9 (ArC), 116.5 (CH=CH₂), 99.2 (C(1)), 83.7 (C(4)), 76.4 (C(3)), 73.8 (CH₂Ph), 71.0 (C(5)), 52.5 (C(2)), 31.8 (CH(2)CH₂); β-isomer: δ 137.8 (ArC), 135.7 (CH=CH₂), 128.6, 128.0, 127.9 (ArC), 117.1 (CH=CH₂), 102.3 (C(1)), 84.2 (C(4)), 77.5 (C(3)), 73.7 (CH₂Ph), 70.5 (C(5)), 54.0 (C(2)), 34.3 $(CH(2)CH_2)$; HRMS (ESI-TOF) calculated for $C_{15}H_{20}O_4$ [M+Na]⁺ m/z 287.1254, found 287.1254; α_D^{22} = +4.41 (c = 1.00, CHCl₃).

2-Benzyl-5-benzyloxy-1-hydroxy-3-hydroxy-D-arabinose (12c). The compound was synthesized BnO following the general procedure using 2-benzyl-5-benzyloxy-3-hydroxy-Darabinolactone (>20:1 dr, 78.1 mg, 250 µmol, 1.0 equiv.), DIBAL-H (1.0 M in toluene, 1.00 mL, 1.00 mmol, 4.0 equiv.) and toluene (2.5 mL). The crude product was purified by flash chromatography using 2:1 hexanes:EtOAc to yield the title compound (67.0 mg, 85% yield, >20:1 dr with respect to the configuration at C(2), C(3) and C(4),

1:1.5 mixture of α - and β -anomers) as a colorless oil. IR (thin film): 3400, 3062, 3028, 2914, 2861, 1603, 1496, 1453, 1363, 1207, 1100, 1053, 1028, 972, 944, 912, 865, 737, 698, 613 cm⁻¹; ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3), \alpha$ -isomer: δ 7.46–7.12 (m, 10H, Ar**H**), 5.20 (dd, 1H, J = 6.7, 4.7 Hz, CH(1)), 4.65 $(d, 1H, J = 11.9 \text{ Hz}, \text{OCH}_{P}\text{Ph}), 4.61 (d, 1H, J = 11.8 \text{ Hz}, \text{OCH}_{P}\text{Ph}), 4.22 (ddd, 1H, J = 8.9, 5.8, 4.7 \text{ Hz})$ CH(3), 4.03 (dt, 1H, J = 6.1, 4.0 Hz, CH(4)), 3.71–3.63 (m, 3H, $CH_2(5)$, CH(1)OH), 2.94 (dd, 1H, J = 6.1, 4.0 Hz, CH(4)), 3.71–3.63 (m, 3H, $CH_2(5)$, CH(1)OH), 2.94 (dd, 1H, J = 6.1, 4.0 Hz, CH(4)), 3.71–3.63 (m, 3H, $CH_2(5)$), CH(1)OH), 2.94 (dd, 1H, J = 6.1, 4.0 Hz, CH(4)), 3.71–3.63 (m, 3H, $CH_2(5)$), CH(1)OH), 2.94 (dd, 1H, J = 6.1, 4.0 Hz, CH(4)), CH(4), 13.7, 9.0 Hz, CH(2)CH_a), 2.85 (dd, 1H, J = 13.6, 6.7 Hz, CH(2)CH_b), 2.39 (ddt, 1H, J = 9.0, 6.6, 4.7Hz, CH(2)), 1.97 (d, 1H, J = 4.5 Hz, CH(3)OH); β-isomer: δ 7.46–7.12 (m, 10H, ArH), 5.25 (dd, 1H, J $= 4.1, 1.3 \text{ Hz}, \text{CH}(1)), 4.62 \text{ (d, 1H, } J = 12.1 \text{ Hz}, \text{OCH}_{a}\text{Ph}), 4.59 \text{ (d, 1H, } J = 12.1 \text{ Hz}, \text{OCH}_{b}\text{Ph}), 4.29$ (dt, 1H, J = 4.8, 4.8 Hz, CH(4)), 3.88 (ddd, 1H, J = 7.1, 4.2, 3.2 Hz, CH(3)), 3.71-3.63 (m, 3H, 3H) $CH_{2}(5)$, CH(1)OH), 2.74 (dd, 1H, J = 14.1, 8.5 Hz, $CH(2)CH_{2}$), 2.68 (dd, 1H, J = 14.1, 8.2 Hz, $CH(2)CH_{b}$, 2.63 (d, 1H, J = 7.2 Hz, CH(3)OH), 2.48 (ddt, 1H, J = 8.3, 2.8, 1.4 Hz, CH(2)); ¹³C NMR (125 MHz, CDCl₃), aryl carbons: δ 140.04, 139.12, 137.80, 137.35, 128.98, 128.94, 128.73, 128.71, 128.68, 128.54, 128.13, 128.01, 127.98, 127.92, 126.49, 126.36 (ArC); α-isomer: δ 99.0 (C(1)), 83.7 (C(4)), 76.1 (C(3)), 73.8 (OCH_2Ph) , 71.0 (C(5)), 54.7 (C(2)), 33.3 $(CH(2)CH_2)$; β -isomer: δ 102.2 (C(1)), 84.6 (C(4)), 77.2 (C(3)), 73.7 (OCH₂Ph), 70.4 (C(5)), 55.9 (C(2)), 35.9 (CH(2)CH₂); HRMS (ESI-TOF) calculated for $C_{19}H_{22}O_4$ [M+Na]⁺ m/z 337.1410, found 337.1411; $\alpha_D^{21} = +97.5$ (c = 1.00, CHCl₃).

5-Benzyloxy-2-dimethyl-1-hydroxy-3-hydroxy-D-ribose (5-Benzyloxy-2-dimethyl-1-hydroxy-3-

BnO O HO Me Me **hydroxy-D-arabinose**) (13c). The compound was synthesized following the general procedure using 5-benzyloxy-2-dimethyl-3-hydroxy-D-ribonolactone (>20:1 dr, 62.6 mg, 250 µmol, 1.0 equiv.), DIBAL-H (1.0 M in toluene, 1.00 mL, 1.00 mmol, 4.0 equiv.) and toluene (2.5 mL). The crude product was purified by


flash chromatography using 2:1 hexanes:EtOAc to yield the title compound (45.3 mg, 72% yield, >20:1 dr with respect to the configuration at C(2), C(3) and C(4), 1:1.5 mixture of α - and β -anomers) as a colorless oil. IR (thin film): 3389, 2963, 2914, 2871, 1497, 1469, 1453, 1368, 1332, 1311, 1204, 1087, 1074, 1012, 978, 948, 910, 854, 805, 737, 698, 604 cm⁻¹; ¹H NMR (500 MHz, CDCl₃), α-isomer: δ 7.38–7.26 (m, 5H, Ar**H**), 4.98 (d, 1H, J = 4.9 Hz, C**H**(1)), 4.60 (d, 1H, J = 12.0 Hz, C**H**₂Ph), 4.56 (d, 1H, J = 12.0 Hz, CH_bPh), 4.23 (dt, 1H, J = 5.7, 3.9, Hz, CH(4)), 3.68–3.61 (m, 2H, CH₂(5)), 3.98 (dd, 1H, J = 8.3, 3.8 Hz, CH(3)), 3.30 (d, 1H, J = 4.7 Hz, CH(1)OH), 2.43 (d, 1H, J = 8.3 Hz, CH(3)OH), 1.10 (s, 3H, CH(2)(CH₃)), 0.99 (s, 3H, CH(2)(CH₃)); β -isomer: δ 7.38–7.26 (m, 5H, ArH), 4.86 (d, 1H, J = 6.5 Hz, CH(1)), 4.62 (d, 1H, J = 11.9 Hz, CH_aPh), 4.58 (d, 1H, J = 11.8 Hz, CH_bPh), 4.07 (dd, 1H, J = 6.9, 6.1 Hz, CH(3), 3.96 (dt, 1H, J = 7.2, 3.8, Hz, CH(4)), $3.68-3.61 (m, 2H, CH_2(5))$, $3.34 (d, 2H, CH_2$ 1H, J = 6.5 Hz, CH(1)OH), 1.90 (d, 1H, J = 6.0 Hz, CH(3)OH), 1.07 (s, 3H, (CH(2)(CH₃)_a), 1.00 (s, 3H, $(CH(2)(CH_3)_{h})$; ¹³C NMR (125 MHz, CDCl₃), α -isomer: δ 137.9, 128.5, 128.1, 128.0 (ArC), 105.0 (C(1)), 85.2 (C(4)), 80.0 (C(3)), 73.8 or 73.6 (CH₂Ph), 71.2 (C(5)), 46.0 (C(2)), 24.8 (CH(2)(CH₃)_{*}), 16.4 (CH(2)(CH₂)_k); β-isomer: δ 137.5, 128.7, 128.1, 127.9 (ArC), 105.1 (C(1)), 82.0 (C(4)), 77.8 (C(3)), 73.8 or 73.6 (CH_2Ph) , 70.8 (C(5)), 46.3 (C(2)), 26.2 $(CH(2)(CH_3))$, 18.9 $(CH(2)(CH_3))$; HRMS (ESI-TOF) calculated for $C_{14}H_{20}O_4$ [M+Na]⁺ m/z 275.1254, found 275.1252; $\alpha_D^{21} = +108.2$ (c = 1.00, CHCl₃).

5-Benzyloxy-1-hydroxy-3-hydroxy-2-spirocyclobutyl-D-ribose (5-Benzyloxy-1-hydroxy-3-

BnO O O O O H **hydroxy-2-spirocyclobutyl-D-arabinose**) (14c). The compound was synthesized following the general procedure using 5-benzyloxy-3-hydroxy-2-spirocyclobutyl-D-ribonolactone (>20:1 dr, 65.6 mg, 250 µmol, 1.0 equiv.), DIBAL-H (1.0 M in

toluene, 1.00 mL, 1.00 mmol, 4.0 equiv.) and toluene (2.5 mL). The crude product ΗÒ was purified by flash chromatography using 2:1 hexanes: EtOAc to yield the title compound (46.4 mg, 70% yield, >20:1 dr with respect to the configuration at C(2), C(3) and C(4), 1:3 mixture of α - and β anomers) as a colorless oil. IR (thin film): 3394, 3030, 2931, 2862, 1650, 1497, 1453, 1432, 1367, 1249, 1208, 1178, 1097, 1063, 1027, 984, 908, 873, 847, 736, 697, 605 cm⁻¹; ¹H NMR (500 MHz, CDCl₃), α -isomer: δ 7.39–7.24 (m, 5H, ArH), 5.23 (d, 1H, J = 6.2 Hz, CH(1)), 4.59 (d, 1H, J = 11.9Hz, CH_aPh), 4.56 (d, 1H, J = 11.9 Hz, CH_bPh), 4.11 (br. dd, 1H, J = 6.5, 5.8 Hz, CH(3)), 3.80 (dt, 1H, 1) $J = 6.9, 4.2, \text{Hz}, \text{CH}(4)), 3.65 \text{ (d, 1H, } J = 6.2 \text{ Hz}, \text{CH}(1)\text{OH}), 3.61 \text{ (d, 2H, } J = 4.2 \text{ Hz}, \text{CH}_2(5)), 2.46 \text{ (d, 2H, } J = 4.2 \text{ Hz}, \text$ 1H, J = 5.6 Hz, CH(3)OH), 2.44–1.64 (m, 6H, (CH₂)₃); β -isomer: δ 7.39–7.24 (m, 5H, ArH), 5.31 (d, 1H, J = 5.9 Hz, CH(1)), 4.56 (d, 1H, J = 11.9 Hz, CH_aPh), 4.50 (d, 1H, J = 12.0 Hz, CH_bPh), 4.33 (dt, 1H, J = 6.2, 1.4, Hz, CH(4)), 3.86 (br. d, 1H, J = 7.8 Hz, CH(3)), 3.84 (br. d, 1H, J = 6.0 Hz, CH(1)OH), 3.46 (dd, 1H, J = 10.0, 6.4 Hz, CH_a(5)), 3.38 (dd, 1H, J = 10.0, 6.0 Hz, CH_b(5)), 2.97 (d, 1H, J = 8.0 Hz, CH(3)OH), 2.44–1.64 (m, 6H, (CH₂)₂); ¹³C NMR (125 MHz, CDCl₃), α -isomer: δ 137.6, 128.6, 128.0, 127.9 (ArC), 103.7 (C(1)), 81.1 (C(4)), 75.5 (C(3)), 73.7 (CH₂Ph), 70.9 (C(5)), 52.5 (C(2)), 24.3, 23.7 (CH₂(CH₂)CH₂), 16.2 (CH₂(CH₂)CH₂); β-isomer: δ 137.8, 128.5, 128.0, 128.0 (ArC), 104.7 (C(1)), 86.2 (C(4)), 79.4 (C(3)), 73.5 (CH₂Ph), 70.8 (C(5)), 52.0 (C(2)), 30.5, 22.2 $(CH_2(CH_2)CH_2)$, 16.1 $(CH_2(CH_2)CH_2)$; HRMS (ESI-TOF) calculated for $C_{15}H_{20}O_4$ $[M+Na]^+$ m/z 287.1254, found 287.1254; $\alpha_D^{21} = +170.4$ (c = 1.00, CHCl₃).

5-Benzyloxy-1-hydroxy-3-hydroxy-2-spirocyclopentyl-D-ribose (5-Benzyloxy-1-hydroxy-3-

hydroxy-2-spirocyclopentyl-D-arabinose) (**15c**). The compound was synthesized following the general procedure using 5-benzyloxy-3-hydroxy-2-spirocyclopentyl-D-ribonolactone (>20:1 dr, 69.1 mg, 250 µmol, 1.0 equiv.), DIBAL-H (1.0 M in toluene, 1.00 mL, 1.00 mmol, 4.0 equiv.) and toluene (2.5 mL). The crude product was purified by flash chromatography using 2:1 hexanes:EtOAc to yield the title

compound (50.7 mg, 73% yield, >20:1 dr with respect to the configuration at C(2), C(3) and C(4), 1:2 mixture of α- and β-anomers) as a colorless oil. IR (thin film): 3407, 2952, 2867, 1497, 1453, 1208, 1103, 1048, 1028, 984, 945, 859, 739, 698 cm⁻¹; ¹H NMR (500 MHz, CDCl₃), α-isomer: δ 7.37–7.25 (m, 5H, Ar**H**), 4.87 (d, 1H, J = 5.1 Hz, C**H**(1)), 4.60 (d, 1H, J = 11.8 Hz, C**H**_aPh), 4.57 (d, 1H, J = 11.8 Hz, C**H**_bPh), 4.23 (br. dd, 1H, C**H**(3)), 3.84 (dt, 1H, J = 7.5, 4.1, Hz, C**H**(4)), 3.64 (d, 2H, J = 4.1 Hz, C**H**₂(5)), 3.59–3.52 (m, 1H, CH(1)O**H**), 2.20 (d, 1H, J = 5.0 Hz, CH(3)O**H**), 2.05–1.20 (m, 8H, (C**H**₂)₄); β-isomer: δ 7.37–7.25 (m, 5H, Ar**H**), 4.53 (d, 1H, J = 12.0 Hz, C**H**_bPh), 4.33 (dt, 1H, J = 6.1, 1.7, Hz, C**H**(4)), 3.76 (d, 1H, J = 4.7 Hz, CH(1)O**H**), 3.62 (d, 1H, J = 7.9 Hz, C**H**(3)), 3.59–3.52 (m, 2H, C**H**₂(5)), 2.90 (d, 1H, J = 8.7 Hz, CH(3)O**H**), 2.05–1.20 (m, 8H, (C**H**₂)₄); ¹³C NMR (125 MHz, CDCl₃), α-isomer: δ 137.6, 128.6, 128.0, 127.9 (Ar**C**), 103.9 (**C**(1)), 81.4 (**C**(4)), 76.3 (**C**(3)), 73.7 (**C**H₂Ph), 70.9 (**C**(5)), 57.8 (**C**(2)), 30.6, 28.6 (**C**H₂(CH₂)₂CH₂), 25.9, 25.5 (CH₂(**C**H₂)₂CH₂); β-isomer: δ 137.9, 128.5, 128.0, 127.9 (Ar**C**),

104.8 (C(1)), 86.4 (C(4)), 80.1 (C(3)), 73.5 (CH₂Ph), 70.9 (C(5)), 58.4 (C(2)), 35.7, 27.3 (CH₂(CH₂)₂CH₂), 25.5, 25.1 (CH₂(CH₂)₂CH₂); HRMS (ESI-TOF) calculated for C₁₆H₂₂O₄ [M+Na]⁺ m/z 301.1410, found 301.1413; $\alpha_D^{21} = +73.9$ (c = 1.00, CHCl₃).

5-Benzyloxy-1-hydroxy-3-hydroxy-2-spirocyclohexyl-D-ribose (5-Benzyloxy-1-hydroxy-3hydroxy-2-spirocyclohexyl-D-arabinose) (16c). The compound was synthesized BnO following the general procedure using 5-benzyloxy-3-hydroxy-2-spirocyclohexyl-.OH D-ribonolactone (>20:1 dr, 72.6 mg, 250 µmol, 1.0 equiv.), DIBAL-H (1.0 M in toluene, 1.00 mL, 1.00 mmol, 4.0 equiv.) and toluene (2.5 mL). The crude product HÔ was purified by flash chromatography using 2:1 hexanes:EtOAc to yield the title compound (53.5 mg, 73% yield, >20:1 dr with respect to the configuration at C(2), C(3) and C(4), 1:1 mixture of α - and β -anomers) as a colorless oil. IR (thin film): 3395, 3030, 2924, 2855, 1497, 1452, 1362, 1310, 1257, 1208, 1173, 1094, 1078, 1047, 1028, 999, 930, 906, 858, 849, 793, 737, 698, 636, 613 cm⁻¹; ¹H NMR (500 MHz, CDCl₃), α-isomer: δ 7.37–7.26 (m, 5H, Ar**H**), 5.24 (d, 1H, J = 6.2 Hz, CH(1)), 4.61 (d, 1H, J = 11.8 Hz, CH_aPh), 4.57 (d, 1H, J = 11.9 Hz, CH_bPh), 3.98–3.92 (m, 2H, CH(3), CH(4)), 3.68–3.57 (m, 2H, $CH_2(5)$), 3.43 (d, 1H, J = 6.2 Hz, CH(1)OH), 2.05–1.99 (m, 1H, CH(3)OH), 1.83–1.12 (m, 10H, (CH₂)₅); β -isomer: δ 7.37–7.26 (m, 5H, ArH), 5.13 (d, 1H, J = 4.0 Hz, CH(1)), 4.59 (d, 1H, J = 12.1 Hz, CH_aPh), 4.54 (d, 1H, J = 12.0 Hz, CH_bPh), 4.27 (ddd, 1H, J = 2.8, 4.4, 6.7 Hz, CH(4)), 3.68–3.57 (m, 3H, CH(3), CH₂(5)), 3.51 (d, 1H, J = 4.1 Hz, CH(1)OH), 2.53 (d, 1H, J = 9.3 Hz, CH(3)OH), 1.83–1.12 (m, 10H, (CH₂)₅); ¹³C NMR (125 MHz, CDCl₃), α -isomer: δ 137.9, 128.6, 127.9, 127.8 (ArC), 103.6 (C(1)), 81.2 (C(4)), 78.0 (C(3)), 73.7 (CH₂Ph), 71.1 (C(5)), 49.2 (C(2)), 30.0 ((CH₂)₂CH₂(CH₂)₂), 26.2, 26.0 (CH₂(CH₂)₃CH₂), 23.5, 22.6 (CH₂CH₂CCH₂CH₂); βisomer: δ 137.5, 128.5, 128.0, 127.9 (ArC), 101.2 (C(1)), 86.2 (C(4)), 78.0 (C(3)), 73.5 (CH₂Ph), 71.2 $(C(5)), 49.7 (C(2)), 32.9 ((CH_2)_2CH_2(CH_2)_2), 26.6, 25.9 (CH_2(CH_2)_3CH_2), 23.3, 22.7$ (CH₂CH₂CCH₂CH₂); HRMS (ESI-TOF) calculated for $C_{17}H_{24}O_4$ [M+Na]⁺ m/z 315.1567, found 315.1572; $\alpha_{D}^{21} = +5.74$ (c = 1.00, CHCl₃).

Alternative Procedure for the Synthesis of Ribono- and Arabinolactols from Mukaiyama Aldol Products. Due to the slow cyclization of the three Mukaiyama aldol products (2R,3S,4R)-isopropyl-5-(benzyloxy)-3-hydroxy-2-((*tert*-butyldimethylsilyl)oxy)-4-(2,2,6,6-tetramethylpiperidin-1-yloxy)pentanoate, (2R,3S,4R)-isopropyl-5-(benzyloxy)-3-hydroxy-2-((*tert*-butyldiphenylsilyl)oxy)-4-(2,2,6,6tetramethylpiperidin-1-yloxy)-pentanoate, and (2R,3S,4R)-isopropyl 5-(benzyloxy)-3-hydroxy-2methoxy-4-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)pentanoate, an alternative procedure is given. To a solution of the Mukaiyama aldol product in toluene (c = 0.2 M) was added H₂O:AcOH (8:1, c = 0.2 M) and Zn powder (10 equiv.), and the resulting biphasic suspension was stirred vigorously at room temperature until the reaction was judged to be finished by TLC-analysis (usually 16 hours). The mixture was neutralized with aq. sat. NaHCO₃ (2 mL) and poured over H₂O. The aqueous layer was extracted with Et₂O (3 × 5 mL) and the combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum to yield the corresponding TMP-deprotected Mukaiyama aldol product. To a solution of the crude reaction product in toluene (c = 0.1 M) was added diisobutylaluminum hydride (DIBAL-H, 4.0 equiv.) slowly over 1 hour at -78 °C. The solution was stirred for 1.5 hours at -78 °C,

characterization data, see above.

then quenched by the addition of MeOH (10 equiv.) over 15 minutes under vigorous stirring. The solution was stirred for 15 minutes at -78 °C, then warmed to room temperature and stirred for an additional 30 minutes, resulting in a gel. This material was transferred into an extraction funnel and diluted with sat. aq. NH₄Cl (5 mL) and H₂O (5 mL). The aqueous layer was extracted vigorously with Et₂O (3 × 5 mL) and the combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum. The crude product was purified by flash chromatography.

5-Benzyloxy-2-(*tert*-butyldimethylsilyl)oxy-1-hydroxy-3-hydroxy-D-ribose (2c). The compound was BnO synthesized following the general procedure using (2*R*,3*S*,4*R*)-isopropyl-5-(benzyloxy)-3-hydroxy-2-((*tert*-butyldimethylsilyl)oxy)-4-(2,2,6,6tetramethylpiperidin-1-yloxy)-pentanoate (>20:1 dr, 166 mg, 300 µmol, 1.0 equiv.), HO OTBS Zn (196 mg, 3.00 mmol, 10 equiv.), toluene (1.5 mL) and H₂O:AcOH (8:1, 1.5 mL) then DIBAL-H (1.0 M in toluene, 1.20 mL, 1.20 mmol, 4.0 equiv.) and toluene (3 mL). The crude product was purified by flash chromatography using 4:1 hexanes:EtOAc to yield the title compound (4.2 - 4.2) O(4) O(4)

(64.2 mg, 60% yield, >20:1 dr with respect to the configuration at C(2), C(3) and C(4), 1:1 mixture of α - and β -anomers) as a colorless oil. For characterization data, see above.

5-Benzyloxy-2-(*tert*-butyldiphenylsilyl)oxy-1-hydroxy-3-hydroxy-D-ribose (3c). The compound was BnO synthesized following the general procedure using (2*R*,3*S*,4*R*)-isopropyl-5-(benzyloxy)-3-hydroxy-2-((*tert*-butyldiphenylsilyl)oxy)-4-(2,2,6,6tetramethylpiperidin-1-yloxy)-pentanoate (>20:1 dr, 203 mg, 300 µmol, 1.0 equiv.), Zn (196 mg, 3.00 mmol, 10 equiv.), toluene (1.5 mL) and H₂O:AcOH (8:1, 1.5 mL) then DIBAL-H (1.0 M in toluene, 1.20 mL, 1.20 mmol, 4.0 equiv.) and toluene (3 mL). The crude product was purified by flash chromatography using 5:1 to 4:1 hexanes:EtOAc to yield the title compound (87.2 mg, 61% yield, >20:1 dr with respect to the configuration at C(2), C(3) and C(4), 1:1 mixture of α- and β-anomers) as a colorless oil. For characterization data, see above.

5-Benzyloxy-1-hydroxy-3-hydroxy-2-methoxy-D-ribose (4c). The compound was synthesized following the general procedure using (2R,3S,4R)-isopropyl 5-(benzyloxy)-3hydroxy-2-methoxy-4-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)pentanoate (>20:1 dr, 135 mg, 300 µmol, 1.0 equiv.), Zn (196 mg, 3.00 mmol, 10 equiv.), toluene (1.5 Mo mL) and H₂O:AcOH (8:1, 1.5 mL) then DIBAL-H (1.0 M in toluene, 1.20 mL, 1.20 mmol, 4.0 equiv.) and toluene (3 mL). The crude product was purified by flash chromatography using 1:1 hexanes:EtOAc to yield the title compound (48.8 mg, 64% yield, >20:1 dr with respect to the configuration at C(2), C(3) and C(4), 1:2 mixture of α - and β -anomers) as a colorless oil. For

V. Synthesis of C-Nucleosides. All compounds reported in this section were prepared from aldehyde 1,83% ee.

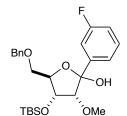
Synthesis of Fully Protected Lactone Substrate

5-Benzyloxy-3-(tert-butyldimethylsilyl)oxy-2-methoxy-D-ribonolactone (17). A flame-dried roundbottom flask under N₂ atmosphere was charged with lactone **4b** (564 mg, 2.24 mmol, BnO 1.0 equiv.) and dichloromethane (5.59 mL, 0.40 M) to give a colorless solution. The solution was cooled to 0 °C before 2,6-lutidine (519 µl, 4.47 mmol, 2.0 equiv.) and ́ОМе TBSO TBSOTf (771 μ l, 3.35 mmol, 1.5 equiv.) were added. The solution was allowed to stir at 0 °C for 15 min, then warmed to rt and allowed to stir for an additional 2 h. The reaction was then quenched with sat. aq. NaHCO₃. The resulting mixture was poured over H₂O and the aqueous layer was extracted with three portions of Et₂O. The combined organic layers were dried over MgSO₄, filtered, and concentrated. The residue was chromatographed on silica eluting with 10% Et₂O/hexanes to afford the title compound as a colorless oil (751 mg, 2.05 mmol, 92% yield). IR (thin film): 2931, 2858, 1792, 1497, 1472, 1454, 1407, 1362, 1319, 1252, 1195, 1124, 1053, 1028, 1006, 983, 940, 888, 837, 779, 736, 697, 673 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.37–7.27 (m, 5H, CHPh), 4.59 (d, J = 12.1 Hz, 1H, CH₂Ph), 4.56 (d, J = 12.0 Hz, 1H, CH₂Ph), 4.37 (dd, J = 7.9, 7.9 Hz, 1H, C(3)H), 4.20 (ddd, J = 7.7, 4.3, 2.4 Hz, 1H, C(4)H), 3.96 (d, J = 8.1 Hz, 1H, C(2)H), 3.74 (dd, J = 11.5, 2.4 Hz, 1H, 1H) $C(5)H_a$, 3.66 (s, 3H, OCH₃), 3.61 (dd, J = 11.5, 4.3 Hz, 1H $C(5)H_b$), 0.86 (s, 9H, (CH₃)₃CSi), 0.10 (s, 3H, (CH₃)_aSi), 0.05 (s, 3H, (CH₃)_bSi). ¹³C NMR (125 MHz, CDCl₃): δ 172.60 (C=O), 137.43 (PhC), 128.47 (PhC), 127.86 (PhC), 127.78 (PhC), 83.02 (C(2)), 80.52 (C(4)), 73.57 (CH₂Ph), 72.64 (C(3)), 67.19 (C(5)), 59.14 (OCH₃), 25.58 ((CH₃)₃CSi), 17.88 ((CH₃)₃CSi), -4.61 (CH₃)₈Si, -5.17 (CH₃)_bSi. HRMS (ESI-TOF) calculated for $C_{19}H_{30}O_5Si [M+Na]^+ m/z 389.1755$, found 389.1754. $a_D^{20} = +7.19$ (c = 1.00, CHCl₃)

Preparation of C(1)-Arylated Lactols

BnO

TBSO

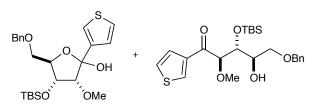

́ОМе

5-Benzyloxy-3-(tert-butyldimethylsilyl)oxy-1-phenyl-2-methoxy-D-ribofuranose (18). An ovendried vial under N₂ atmosphere was charged with OTBS lactone 17 (100 mg, 0.273 mmol, 1.0 equiv.) and THF (2.73 ml, 0.10 M) to give a colorless solution. The OBn solution was cooled to -78 °C with stirring before ŌMe ŌΗ phenyllithium (1.8 M in dibutyl ether, 167 μ l, 0.300

mmol, 1.1 equiv.) was added dropwise. The resulting solution was stirred for 1 h at -78 °C. The reaction was quenched with sat. aq. NH₄Cl and diluted with H₂O. The aqueous layer was then extracted with three portions of Et₂O. The combined organic layers were then dried over MgSO₄, filtered, and concentrated. The residue was chromatographed on silica eluting with 10% Et₂O/hexanes to afford the product as a colorless oil and a 22:1 lactol:ketone mixture (110 mg, 0.247 mmol, 91% yield). Characterization was carried out on the isolated mixture of lactol anomers and ketone. IR (thin film): 3420, 3064, 3032, 2952, 2929, 2857, 1496, 1472, 1450, 1388, 1361, 1312, 1252, 1192, 1101, 1049,

1027, 1003, 916, 867, 836, 777, 762, 735, 697, 672 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): Lactol anomer 1: δ 7.69–7.63 (m, 2H, PhH), 7.39–7.27 (m, 8H, PhH), 4.69 (d, J = 12.0 Hz, 1H, CH₂Ph), 4.58 $(d, J = 12.0 \text{ Hz}, 1\text{H}, CH_{b}\text{Ph}), 4.43 (dd, J = 6.7, 5.9 \text{ Hz}, 1\text{H}, C(3)\text{H}), 4.26 (s, 1\text{H}, O\text{H}), 4.17 (ddd, J = 6.7, 5.9 \text{ Hz}, 100 \text{ Hz})$ 5.8, 3.3, 3.3 Hz, 1H, C(4)**H**), 3.72 (d, J = 6.7 Hz, 1H, C(2)**H**), 3.68–3.57 (m, 2H, C(5)**H**₂), 3.22 (s, 3H) OCH₃), 0.84 (s, 9H, (CH₃)₃CSi), 0.06 (s, 3H, (CH₃)_aSi), 0.01 (s, 3H, (CH₃)_bSi); Lactol anomer 2: δ 7.61–7.58 (m, 2H, Ph**H**), 7.39–7.27 (m, 8H, Ph**H**), 4.64 (d, J = 12.1 Hz, 1H, C**H**₂Ph), 4.58 (d, J = 12.0Hz, 1H, CH_bPh), 4.45 (s, 1H, OH), 4.40 (ddd, J = 7.3, 5.6, 2.5 Hz, 1H, C(4)H), 4.27 (dd, J = 2.6, 1.7 Hz, 1H C(3)H), 3.75–3.70 (m, 1H, C(5)H_a), 3.68–3.63 (m, 1H, C(5)H_b), 3.58 (d, J = 1.7 Hz, 1H, C(2)**H**), 2.90 (s, 3H OC**H**₃), 0.93 (s, 9H, (C**H**₃)₃CSi), 0.16 (s, 3H, (C**H**₃)_aSi), 0.15 (s, 3H, (C**H**₃)_bSi); Ketone: δ 8.06–8.02 (m, 2H, PhH), 7.39–7.27 (m, 8H, PhH), 4.60–4.56 (m, 2H, CH₂Ph, C(2/3)H), 4.51 $(d, J = 11.7 \text{ Hz}, 1\text{H}, CH_{b}\text{Ph}), 4.29-4.25 \text{ (m, 1H, C(3/2)H)}, 3.91 \text{ (dddd}, J = 5.7 \text{ Hz}, 1\text{H}, C(4)\text{H}), 3.68-$ 3.57 (m, 2H, C(5) \mathbf{H}_2), 3.31 (s, 3H, OC \mathbf{H}_3), 2.92 (d, J = 6.0 Hz, 1H, OH), 0.80 (s, 9H, (CH₃)₃CSi), -0.04 (s, 3H, (CH₃)₂Si), -0.20 (s, 3H, (CH₃)_bSi). ¹³C NMR (125 MHz, CDCl₃): Lactol anomer 1: δ 142.18 (PhC), 137.32 (PhC), 128.66 (PhC), 128.22 (PhC), 128.18 (PhC), 128.09 (PhC), 127.30 (PhC), 125.99 (PhC), 101.84 (C(1)), 93.84 (C(2)), 82.03 (C(4)), 75.68 (C(3)), 73.80 (CH₂Ph), 69.62 (C(5)), 59.71 (OCH₃), 25.77 ((CH₃)₃CSi), 18.00 ((CH₃)₃CSi), -4.47 ((CH₃)₃Si), -4.73 ((CH₃)₃Si); Lactol anomer 2: § 138.65 (PhC), 138.31 (PhC), 128.47 (PhC), 128.35 (PhC), 128.26 (PhC), 127.79 (PhC), 127.74 (PhC), 127.30 (PhC), 107.22 (C(1)), 91.84 (C(2)), 84.25 (C(4)), 77.49 (C(3)), 73.40 (CH₂Ph), 70.12 (C(5)), 58.46 (OCH₃), 25.84 ((CH₃)₃CSi), 18.07 ((CH₃)₃CSi), -4.77 ((CH₃)₅Si), -4.79 ((CH₃)₅Si). HRMS (ESI-TOF) calculated for $C_{25}H_{36}O_5Si [M-OH]^+ m/z 427.2299$, found 427.2300.

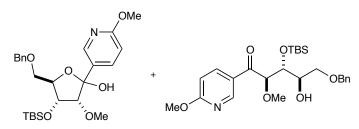
5-Benzyloxy-3-(tert-butyldimethylsilyl)oxy-1-(3-fluorophenyl)-2-methoxy-D-ribofuranose (19). An



oven-dried vial was charged with 1-bromo-3-fluorobenzene (60.8 μ l, 0.546 mmol, 2.0 equiv.) and THF (5.46 mL, 0.050 M). The resulting colorless solution was cooled to -78 °C before the reaction mixture was added to *tert*-butyllithium (1.7 M in pentane, 642 μ l, 1.09 mmol 4.0 equiv.). The resulting solution was stirred for 1 h before lactone **17** (100 mg, 0.273 mmol, 1.0 equiv.) was added as a solution in THF and the mixture was allowed to stir for 30 min. The reaction was quenched

with sat. aq. NH₄Cl and diluted with water and Et₂O. The aqueous layer was extracted with three portions of Et₂O. The combined organic layers were dried over MgSO₄, filtered, and concentrated. The residue was chromatographed on silica eluting with 15% Et₂O/hexanes to afford the title compound as a colorless oil (118 mg, 0.255 mmol, 93% yield). Characterization was carried out on the isolated mixture of lactol anomers. IR (thin film): 3408, 3031, 2953, 2930, 2857, 1616, 1592, 1488, 1472, 1444, 1389, 1362, 1251, 1099, 1052, 1028, 1004, 974, 939, 836, 778, 734, 697, 671 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): Anomer 1: δ 7.46–7.41 (m, 1H, Ar_FH), 7.41–7.27 (m, 7H, ArH), 7.04–6.97 (m, 1H, Ar_FH), 4.68 (d, *J* = 12.0 Hz, 1H, CH_aPh), 4.60–4.55 (m, 1H, CH_bPh), 4.44–4.37 (dd, *J* = 6.0, 6.0 Hz 1H, C(3)H), 4.36 (s, 1H, OH), 4.16 (ddd, *J* = 5.8, 3.3, 3.3 Hz, 1H, C(4)H), 3.74–3.67 (m, 1H, C(2)H), 3.66–3.58 (m, 2H, C(5)H), 3.24 (s, 3H, OCH₃), 0.84 (s, 9H, (CH₃)₃CSi), 0.06 (s, 3H, (CH₃)_aSi), 0.01 (s, 3H, (CH_aPh), 4.60–4.55 (m, 1H, CH_bPh), 4.44–4.37 (ddd, *J* = 12.1 Hz, 1H, CH_aPh), 4.54 (s, 1H, OH), 4.44–4.37 (ddd, *J* = 7.6, 5.4, 2.2 Hz, 1H, C(4)H), 4.28 (dd, *J* = 1.9, 1.9 Hz, 1H, C(3)H), 3.74–3.67 (m, 1H, CH_aPh), 3.66–3.58 (m, 1H, CH_bPh), 4.54 (s, 1H, OH), 4.44–4.37 (ddd, *J* = 7.6, 5.4, 2.2 Hz, 1H, C(4)H), 4.28 (dd, *J* = 1.9, 1.9 Hz, 1H, C(3)H), 3.74–3.67 (m, 1H, CH_aPh), 3.66–3.58 (m, 1H, CH_bPh), 4.54 (s, 1H, OH), 4.44–4.37 (ddd, *J* = 7.6, 5.4, 2.2 Hz, 1H, C(4)H), 4.28 (dd, *J* = 1.9, 1.9 Hz, 1H, C(3)H), 3.74–3.67 (m, 1H, CH_aPh), 3.66–3.58 (m, 1H, CH_bPh), 4.54 (s, 1H, OH), 4.44–4.37 (ddd, *J* = 7.6, 5.4, 2.2 Hz, 1H, C(4)H), 4.28 (dd, *J* = 1.9, 1.9 Hz, 1H, C(3)H), 3.74–3.67 (m, 1H, CH_aPh), 3.66–3.58 (m, 1H, CH_bPh), 3.56 (d, *J* = 1.6 Hz, 1H, C(2)H), 2.93 (s, 3H, OCH₃), 0.93 (s, 9H, (CH₃)₃CSi), 0.16 (s, 3H, (CH₃)_aSi), 0.16 (s)

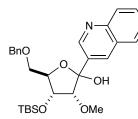
0.15 (s, 3H, (CH₃)_bSi). ¹³C NMR (125 MHz, CDCl₃): Anomer 1: δ 163.79, 163.48 (Ar_FC), 141.26, 141.20 (Ar_FC), 137.21 (PhC), 129.82, 129.75 (Ar_FC), 128.69–127.79 (PhC), 121.75, 121.73 (Ar_FC), 115.16, 115.08 (Ar_FC), 113.49, 113.31 (Ar_FC), 106.76–101.47 (C(1)), 93.77 (C(2)), 82.32 (C(4)), 75.60 (C(3)), 73.83, (CH₂Ph), 69.44 (C(5)), 59.75 (OCH₃), 25.82 ((CH₃)₃CSi), 17.97 ((CH₃)₃CSi), – 4.50 ((CH₃)_aSi), –4.73 ((CH₃)_bSi); Anomer 2: δ 161.84, 161.54 (Ar_FC), 144.97, 144.91 (Ar_FC), 138.22 (PhC), 129.18, 129.12 (Ar_FC), 128.69–127.79 (PhC), 123.07, 123.05 (Ar_FC), 115.16, 115.08 (Ar_FC), 114.83, 114.65 (Ar_FC), 106.76–101.47 (C(1)), 91.61 (C(2)), 84.63 (C(4)), 77.26 (C(3)), 73.42 (CH₂Ph), 70.01 (C(5)), 58.47 (OCH₃), 25.74 ((CH₃)₃CSi), 18.06 ((CH₃)₃CSi), –4.77 ((CH₃)_aSi), –4.82 ((CH₃)_bSi). HRMS (ESI-TOF) calculated for C₂₅H₃₅FO₅Si [M–OH]⁺ m/z 445.2205, found 445.2205.


5-Benzyloxy-3-(tert-butyldimethylsilyl)oxy-2-methoxy-1-(thiophen-3-yl)-D-ribofuranose (20). An

oven-dried vial was charged with 3-bromothiophene (51.1 μ l, 0.546 mmol, 2.0 equiv.) and THF (5.46 mL, 0.050 M). The resulting colorless solution was cooled to -78 °C before the reaction mixture was added to *tert*-butyllithium (1.7 M in pentane, 642 μ l, 1.09

mmol, 4.0 equiv.). The solution was stirred for 30 min before lactone 17 (100 mg, 0.273 mmol, 1.0 equiv.) was added as a solution in THF and the mixture was allowed to stir for 30 min. The reaction was quenched with sat. aq. NH₄Cl and diluted with H₂O. The aqueous layer was extracted with three portions of Et₂O. The combined organic layers were dried over MgSO₄, filtered, and concentrated. The residue was chromatographed on silica eluting with 20% Et₂O/hexanes to afford the title compound as a colorless oil (4:1 lactol:ketone, 111 mg, 0.246 mmol, 90% yield). Characterization was carried out on the isolated mixture of lactol anomers and ketone. IR (thin film): 3411, 2952, 2928, 2856, 1666, 1497, 1472, 1463, 1454, 1410, 1388, 1361, 1251, 1097, 1052, 1028, 1004, 973, 939, 867, 835, 795, 777, 735, 697, 670 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): Lactol anomer 1: δ 7.50 (dd, J = 3.0, 1.2 Hz, 1H, Ar_sH), 7.38–7.27 (m, 6H, Ar**H**), 7.21 (dd, J = 5.1, 1.2 Hz, 1H, Ar_s**H**), 4.68 (d, J = 12.0 Hz, 1H, C**H**_sPh), 4.57 $(d, J = 12.1 \text{ Hz}, 1\text{H}, C\mathbf{H}_{h}\text{Ph}), 4.40 (dd, J = 6.2, 6.2 \text{ Hz}, 1\text{H}, C(3)\mathbf{H}), 4.27 (s, 1\text{H}, O\mathbf{H}), 4.11 (ddd, J = 6.2)$ 6.1, 3.2, 3.2 Hz, 1H, C(4)H), 3.75 (d, J = 6.6 Hz, 1H, C(2)H), 3.65–3.61 (m, 1H C(5)H_a), 3.60–3.55 $(m, 1H, C(5)H_b)$, 3.28 (s, 3H, OCH₃), 0.85 (s, 9H, (CH₃)₃CSi), 0.06 (s, 3H, (CH₃)₄Si), 0.01 (s, 3H, $(CH_3)_{b}Si$; Lactol anomer 2: δ 7.43 (dd, J = 3.1, 1.2 Hz, 1H, Ar_sH), 7.38–7.27 (m, 5H, PhH), 7.23 (dd, J = 5.0, 3.1 Hz, 1H, Ar_sH), 7.15 (dd, J = 5.0, 1.2 Hz, 1H, Ar_sH), 4.62 (d, J = 12.1 Hz, 1H, CH_sPh), 2.3, 2.3 Hz, 1H, C(3)H), 3.67 (dd, J = 9.9, 5.6 Hz, 1H, C(5)H_a), 3.65–3.61 (m, 1H, C(5)H_b), 3.60–3.56 (m, 1H, C(2)H), 3.00 (s, 3H, OCH₃), 0.91 (s, 9H, (CH₃)₃CSi), 0.14 (s, 3H, (CH₃)₈Si), 0.13 (s, 3H, $(CH_3)_{h}Si$; Ketone: δ 8.39 (dd, J = 3.0, 1.2 Hz, 1H, Ar_sH), 7.63 (dd, J = 5.1, 1.2 Hz, 1H, Ar_sH), 7.38– 7.27 (m, 6H, Ar**H**), 4.60–4.57 (m, 1H, C**H**_aPh), 4.51 (d, J = 11.8 Hz, 1H, C**H**_bPh), 4.29 (d, J = 4.0 Hz, 1H, C(2)H), 4.20 (dd, J = 5.6, 4.0 Hz, 1H, C(3)H), 3.90 (m, 1H, C(4)H), 3.65–3.61 (m, 2H, C(5)H₂), 3.34 (s, 3H, OCH₃), 2.89 (d, J = 5.9 Hz, 1H, OH), 0.79 (s, 9H, (CH₃)₃CSi), -0.02 (s, 3H, (CH₃)₈Si), -0.22 (s, 3H, (CH₃)_bSi). ¹³C NMR (125 MHz, CDCl₃): Lactol anomer 1: δ 144.14 (Ar_sC), 137.31 (PhC), 128.66 (ArC), 128.17 (ArC), 128.10 (ArC), 127.79 (ArC), 125.88 (Ar_sC), 122.99 (Ar_sC), 100.65 (C(1)), 93.09 (C(2)), 81.76 (C(4)), 75.46 (C(3)), 73.80 (CH₂Ph), 69.57, (C(5)), 59.56 (OCH₃), 25.78 ((CH₃)₃CSi), 18.01 ((CH₃)₃CSi), -4.46 ((CH₃)₈Si), -4.74, (CH₃)_bSi; Lactol anomer 2: δ 140.81 (Ar_sC), 138.28 (PhC), 128.62 (ArC), 128.47 (ArC), 127.54 (ArC), 126.07 (ArC), 124.91 (Ar_sC), 123.82 (Ar_sC), 105.78 (C(1)), 91.77 (C(2)), 83.87 (C(4)), 77.31 (C(3)), 73.41 CH₂Ph, 70.07, (C(5)), 58.57, OCH₃, 25.83, ((CH₃)₃CSi), 18.32 ((CH₃)₃CSi), -4.43 (CH₃)_aSi, -4.78, (CH₃)_bSi; Ketone: δ 194.37 (C=O), 140.40 (Ar_sC), 137.84 (PhC), 134.63 (Ar_sC), 128.02 (Ar_sC), 127.99 (Ar_sC), 127.75 (PhC), 125.67 (PhC), 125.65 (PhC), 88.98 (C(2)), 74.45 (C(3)), 73.58, (CH₂Ph), 71.75 (C(4)), 71.01 (C(5)), 58.90 (OCH₃), 25.97 ((CH₃)₃CSi), 18.06 ((CH₃)₃CSi), -4.80 ((CH₃)_aSi), -4.85 ((CH₃)_bSi). HRMS (ESI-TOF) calculated for C₂₄H₃₄O₅SSi [M–OH]⁺ m/z 433.1863, found 433.1864.

5-Benzyloxy-3-(tert-butyldimethylsilyl)oxy-2-methoxy-1-(6-methoxpyridin-3-yl)-D-ribofuranose



(21). An oven-dried vial under N₂ atmosphere was charged with 5-bromo-2-methoxypyridine (106 μ l, 0.819 mmol, 2.0 equiv.) and THF (4.09 mL, 0.10 M). The resulting solution was cooled to -78 °C with stirring before being added to a flame-dried 50 mL round-bottom

flask containing tert-butyllithium (1.7 M in pentane, 963 µl, 1.64 mmol, 4.0 equiv.). The resulting mixture was allowed to stir for 30 min before lactone 17 (150 mg, 0.409 mmol, 1.0 equiv.) was added. The mixture was allowed to stir for an additional 30 min before it was quenched with sat. aq. NH₄Cl and diluted with water. The aqueous layer was extracted with three portions of Et₂O. The combined organic layers were dried over MgSO₄, filtered, and concentrated. Purification by column chromatography on silica eluting with 15% EtOAc/hexanes afforded the title compound as a colorless oil and a 10:1 lactol:ketone mixture (179 mg, 0.376 mmol, 92% yield). Characterization was carried out on the isolated mixture of lactol anomers and ketone. IR (thin film): 3402, 2929, 2857, 1607, 1575, 1495, 1463, 1375, 1284, 1254, 1101, 1051, 1023, 989, 938, 866, 834, 778, 735, 697, 671 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): Lactol anomer 1: δ 8.36 (d, J = 2.3 Hz, 1H, Ar_NH), 7.74 (dd, J = 8.7, 2.4 Hz, 1H, $Ar_{N}H$, 7.38–7.27 (m, 5H, PhH), 6.68 (d, J = 8.6 Hz, 1H, $Ar_{N}H$), 4.63 (d, J = 12.1 Hz, 1H, CH₂Ph), $4.54 (d, J = 12.0 Hz, 1H, CH_{b}Ph), 4.54 (s, 1H, OH), 4.38 (ddd, J = 7.6, 5.6, 1.9 Hz, 1H, C(4)H), 4.28$ (dd, J = 1.8, 1.8 Hz, 1H, C(3)H), 3.94 (s, 3H, Ar_NOCH₃), 3.70–3.57 (m, 2H, C(5)H₂), 3.51 (d, J = 1.5Hz, 1H, C(2)H), 2.98 (s, 3H, C(2)OCH₃), 0.92 (s, 9H, (CH₃)₃CSi), 0.16 (s, 3H, (CH₃)₃Si), 0.15 (s, 3H, $(CH_{3})_{b}Si$; Lactol anomer 2: δ 8.44 (d, J = 2.4 Hz, 1H, Ar_NH), 7.81 (dd, J = 8.7, 2.5 Hz, 1H, Ar_NH), 7.38–7.27 (m, 5H, Ph**H**), 6.72 (d, J = 8.7 Hz, 1H, Ar_N**H**), 4.68 (d, J = 12.1 Hz, 1H, C**H**_aPh), 4.61–4.55 (m, 1H, CH_bPh), 4.41 (dd, J = 6.0 Hz, 1H, C(3)H), 4.34 (s, 1H, OH), 4.14 (ddd, J = 6.3, 3.3, 3.3 Hz, 1H, C(4)H), 3.94 (s, 3H, Ar_NOCH₃), 3.70–3.57 (m, 3H, C(5)H₂ and C(2)H), 3.27 (s, 3H, C(2)HOCH₃), 0.83 (s, 9H, (CH₃)₃CSi), 0.05 (s, 3H, (CH₃)₉Si), 0.00 (s, 3H, (CH₃)₆Si); Ketone: δ 8.99 (d, J = 2.3 Hz, 1H, Ar_NH), 8.25 (dd, J = 8.8, 2.4 Hz, 1H, Ar_NH), 7.38–7.27 (m, 5H, PhH), 6.75 (d, J = 8.9 Hz, 1H, $Ar_{N}H$, 4.57–4.52 (m, 1H, CH₂Ph), 4.50 (d, J = 11.8 Hz, 1H, CH₂Ph), 4.35–4.33 (m, 1H, C(2)H), 4.20 $(dd, J = 6.0, 4.5 Hz, 1H, C(3)H), 4.01 (s, 3H, Ar_NOCH_3), 3.87 (dddd, J = 5.9, 5.9, 5.9, 5.9, Hz, 1H, 1H)$ C(4)H, 3.70–3.57 (m, 2H, $C(5)H_2$), 3.29 (s, 3H, $C(2)OCH_3$), 2.81 (d, J = 5.9 Hz, 1H, OH), 0.80 (s, 9H, $(CH_3)_3CSi$, 0.01 (s, 3H, $(CH_3)_3Si$), -0.17 (s, 3H, $(CH_3)_5Si$). ¹³C NMR (125 MHz, CDCl₃): Lactol anomer 1: δ 164.21 (Ar_NC), 146.19 (Ar_NC), 138.32 (Ar_NC), 138.19 (PhC), 128.49 (PhC), 127.83 (PhC), 127.80 (PhC), 127.21 (Ar_NC), 109.60 (Ar_NC), 106.43 (C(1)), 91.36 (C(2)), 84.56 (C(4)), 77.05 (C(3)), 73.45 (CH₂Ph), 70.01 (C(5)), 58.38 (C(2)HOCH₃), 53.60 (Ar_NOCH₃), 25.83 ((CH₃)₃CSi), 18.06

((CH₃)₃CSi), -4.76 (CH₃)_aSi, -4.82 (CH₃)_bSi; Lactol anomer 2: δ 164.15 (Ar_NC), 145.18 (Ar_NC), 137.21 (PhC), 136.92 (Ar_NC), 130.75 (Ar_NC), 128.69 (PhC), 128.20 (PhC), 128.16 (PhC), 110.20 (Ar_NC), 101.25 (C(1)), 93.58 (C(2)), 82.26 (C(4)), 75.54 (C(3)), 73.81 (CH₂Ph), 69.45 (C(5)), 59.77 (C(2)HOCH₃), 53.67 (Ar_NOCH₃), 25.75 ((CH₃)₃CSi), 17.97 ((CH₃)₃CSi), -4.51 ((CH₃)_aSi), -4.71 ((CH₃)_bSi); Ketone: δ 198.20 (C=O), 166.71 (Ar_NC), 150.51 (Ar_NC), 139.48 (Ar_NC), 137.79 (PhC), 128.59 (PhC), 128.07 (PhC), 127.99 (PhC), 126.19 (Ar_NC), 110.98 (Ar_NC), 89.11 (C(2)), 74.48 (C(3)), 73.55 (CH₂Ph), 71.72 (C(4)), 70.87 (C(5)), 58.72 (C(2)HOCH₃), 54.21 (Ar_NOCH₃), 25.99 ((CH₃)₃CSi), -4.12 ((CH₃)_aSi), -4.80 ((CH₃)_bSi). HRMS (ESI-TOF) calculated for C₂₅H₃₇NO₆Si [M+H]⁺ m/z 476.2463, found 476.2465.

5-Benzyloxy-3-(tert-butyldimethylsilyl)oxy-2-methoxy-1-(quinolin-3-yl)-D-ribofuranose (22). A

flame-dried round-bottom flask under N₂ atmosphere was charged with lactone **17** (100 mg, 0.273 mmol, 1.0 equiv.), 3-bromoquinoline (74.1 μ l, 0.546 mmol, 2.0 equiv.) and THF (2.73 mL, 0.10 M). The resulting solution was cooled to -78 °C with stirring before *n*-butyllithium (2.5 M in hexanes, 218 μ l, 0.546 mmol, 2.0 equiv.) was added over 30 min. The resulting mixture was allowed to stir for 5 min before it was quenched with sat. aq. NH₄Cl and

diluted with water and Et₂O. The aqueous layer was extracted with three portions of Et₂O. The combined organic layers were dried ($MgSO_4$), filtered, and concentrated. The residue was chromatographed on silica eluting with 20% EtOAc/hexanes to afford the title compound as a viscous orange oil (110 mg, 0.222 mmol, 81% yield). Characterization was carried out on the isolated mixture of lactol anomers. IR (thin film): 3382, 2929, 2857, 1576, 1498, 1463, 1362, 1252, 1099, 1055, 1005, 957, 916, 836, 778, 734, 697, 672 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): Lactol anomer 1: δ 9.16 (d, J = 2.2 Hz, 1H, $Ar_{N}H$), 8.45 (d, J = 2.1 Hz, 1H, $Ar_{N}H$), 8.13–8.09 (m, 1H, $Ar_{N}H$), 7.85 (dd, J = 8.2, 1.7Hz, 1H, Ar_NH), 7.74–7.69 (m, 1H, Ar_NH), 7.58–7.51 (m, 1H), Ar_NH, 7.40–7.28 (m, 5H, PhH), 4.71 (d, J = 12.0 Hz, 1H, CH₂Ph), 4.65 (s, 1H, OH), 4.63–4.56 (m, 1H, CH₂Ph), 4.52–4.46 (m, 1H, C(3)H), 4.27 (ddd, J = 5.2, 3.2, 3.2 Hz, 1H, C(4)H), 3.79 (d, J = 6.2 Hz, 1H, C(2)H), 3.72–3.63 (m, 2H, C(5)H₂), 3.26 (s, 3H, OCH₃), 0.83 (s, 9H, (CH₃)₃CSi), 0.06 (s, 3H, (CH₃)₄Si), 0.02 (s, 3H, (CH₃)₆Si). Lactol anomer 2: δ 9.06 (d, J = 2.1 Hz, 1H, Ar_N**H**), 8.39 (d, J = 2.1 Hz, 1H, Ar_N**H**), 8.11 (dd, J = 8.5, 4.6 Hz, 1H, $Ar_{N}H$), 7.82 (dd, J = 8.1, 1.6 Hz, 1H, $Ar_{N}H$), 7.74–7.69 (m, 1H, $Ar_{N}H$), 7.58–7.51 (m, 1H, $Ar_{N}H$), 7.40–7.28 (m, 5H, PhH), 4.83 (s, 1H, OH), 4.68 (d, J = 12.2 Hz, 1H, CH_aPh), 4.63–4.56 (m, 1H, CH_bPh), 4.52–4.46 (m, 1H, C(4)H), 4.36 (dd, J = 1.7, 1.7 Hz, 1H, C(3)H), 3.80–3.76 (m, 1H, C(5)H_a), 3.72–3.62 (m, 2H, C(5)H_b, C(2)H), 2.95 (s, 3H, OCH₃), 0.95 (s, 9H, (CH₃)₃CSi), 0.19 (s, 3H, $(CH_3)_{a}Si$, 0.18 (s, 3H, $(CH_3)_{b}Si$). ¹³C NMR (125 MHz, CDCl₃): Lactol anomer 1: δ 149.19 (Ar_NC), 147.92 (Ar_NC), 137.12 (PhC), 134.90 (Ar_NC), 133.53 (Ar_NC), 129.82 (Ar_NC), 129.26 (Ar_NC), 128.74 (PhC), 128.54 (Ar_NC), 128.22 (PhC), 127.88 (PhC), 127.45 (Ar_NC), 126.90 (Ar_NC), 101.37 (C(1)), 93.78 (C(2)), 82.72 (C(4)), 75.71 (C(3)), 73.88 (CH₂Ph), 69.41 (C(5)), 59.92 (OCH₃), 25.73 $((CH_3)_3CSi)$, 17.97 $((CH_3)_3CSi)$, -4.52 $((CH_3)_3Si)$, -4.67 $((CH_3)_5Si)$; Lactol anomer 2: δ 150.50 (Ar_NC), 147.89 (Ar_NC), 138.17 (PhC), 134.63 (Ar_NC), 131.43 (Ar_NC), 129.71 (Ar_NC), 129.23 (Ar_NC), 128.50 (Ar_NC), 128.41 (PhC), 128.22 (PhC), 127.86 (PhC), 127.38 (Ar_NC), 126.61 (Ar_NC), 106.46 (C(1)), 91.45 (C(2)), 85.17 (C(4)), 76.84 (C(3)), 73.51 (CH₂Ph), 69.99 (C(5)), 58.34 (OCH₃), 25.84 $((CH_3)_3CSi)$, 18.08 $((CH_3)_3CSi)$, -4.73 $((CH_3)_3Si)$, -4.81 $((CH_3)_5Si)$. HRMS (ESI-TOF) calculated for C₂₈H₃₇NO₅Si [M+H]⁺ m/z 496.2514, found 496.2518.

5-Benzyloxy-1-(5-bromopyridin-3-yl)-3-(tert-butyldimethylsilyl)oxy-2-methoxy-D-ribofuranose

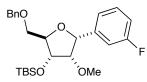
(23). A flame-dried round-bottom flask under N_2 atmosphere was charged with lactone 17 (100 mg, 0.273 mmol, 1.0 equiv.), 3,5-dibromopyridine (78

mg, 0.327 mmol, 1.2 equiv.), and THF (2.73 mL, 0.10 M). The resulting

BnO O TBSO OMe

solution was cooled to -78 °C with stirring before *n*-butyllithium (2.4 M in hexanes, 136 μ l, 0.327 mmol, 1.2 equiv.) was added over 30 min. The ́ОМе resulting mixture was allowed to stir for 5 min before it was quenched with sat. aq. NH₄Cl and diluted with H₂O and Et₂O. The aqueous layer was extracted with three portions of Et₂O. The combined organic layers were dried over MgSO₄, filtered, and concentrated. The residue was purified by column chromatography eluting with 15% EtOAc/hexanes to afford the title compound as a colorless oil (103 mg, 0.196 mmol, 72% yield). Characterization was carried out on the isolated mixture of lactol anomers. IR (thin film): 3347, 3064, 2929, 2857, 1585, 1497, 1472, 1454, 1418, 1389, 1361, 1305, 1252, 1215, 1097, 1051, 1023, 1000, 939, 865, 835, 777, 735, 697, 672 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): Anomer 1: δ 8.69 (d, J = 1.9 Hz, 1H, Ar_NH), 8.62 (dd, J = 2.0, 2.0 Hz, 1H, Ar_NH), 8.02 (dd, J $= 2.0 \text{ Hz}, 1\text{H}, \text{Ar}_{N}\text{H}), 7.39-7.27 \text{ (m, 5H, PhH)}, 4.79 \text{ (s, 1H, OH)}, 4.64 \text{ (d, } J = 12.2 \text{ Hz}, 1\text{H}, \text{CH}_{2}\text{Ph}),$ 4.55 (d, J = 12.1 Hz, 1H, CH_bPh), 4.43–4.39 (m, 1H, C(4)H), 4.31 (dd, J = 1.5, 1.5 Hz, 1H C(3)H), 3.70 (dd, J = 9.6, 5.6 Hz, 1H, C(5)H_a), 3.66–3.57 (m, 1H, C(5)H_b), 3.54 (d, J = 1.3 Hz, 1H, C(2)H), 2.99 (s, 3H, OCH₃), 0.93 (s, 9H (CH₃)₃CSi), 0.17 (s, 3H, (CH₃)₂Si), 0.17 (s, 3H, (CH₃)_bSi). Anomer 2: δ δ 8.78 (d, J = 1.9 Hz, 1H, Ar_NH), 8.62 (dd, J = 2.0, 2.0 Hz, 2H, Ar_NH), 8.10 (dd, J = 2.1, 2.1 Hz, 1H, $Ar_{N}H$), 7.39–7.27 (m, 5H, PhH), 4.67 (d, J = 12.1 Hz, 1H, CH_aPh), 4.62 (s, 1H, OH), 4.59 (d, J = 12.0Hz, 1H, CH_bPh), 4.43 (dd, J = 5.4, 5.4 Hz, 1H, C(3)H), 4.19 (ddd, J = 4.9, 3.5, 3.5 Hz, 1H, C(4)H), 3.65 (d, J = 5.7 Hz, 1H, C(2)H), 3.63–3.56 (m, 2H, CH₂Ph), 3.30 (s, 3H, OCH₃), 0.83 (s, 9H, $(CH_3)_3CSi$, 0.05 (s, 3H, $(CH_3)_aSi$), 0.01 (s, 3H, $(CH_3)_bSi$). ¹³C NMR (125 MHz, CDCl₃): Anomer 1: δ 150.53 (Ar_NC), 146.30 (Ar_NC), 138.06 (PhC), 137.95 (Ar_NC), 135.80 (Ar_NC), 128.55 (PhC), 127.88 (PhC), 127.85 (PhC), 120.03 (Ar_NC), 105.74 (C(1)), 91.01 (C(2)), 85.34 (C(4)), 76.54 (C(3)), 73.45 (CH₂Ph), 69.81 (C(5)), 58.21 (OCH₃), 25.80 ((CH₃)₃CSi), 18.04 ((CH₃)₃CSi), -4.75 ((CH₃)_aSi), -4.86 $((CH_3)_bSi)$. Anomer 2: δ 150.55 (Ar_NC), 146.30 (Ar_NC), 139.65 (Ar_NC), 137.05 (PhC), 136.76 (Ar_NC), 128.74 (PhC), 128.26 (PhC), 128.20 (PhC), 120.44 (Ar_NC), 100.95 (C(1)), 93.46 (C(2)), 83.10 (C(4)), 75.60 (C(3)), 73.86 (CH₂Ph), 69.26 (C(5)), 59.84 (OCH₃), 25.71 ((CH₃)₃CSi), 17.94 ((CH₃)₃CSi), -4.59 ((CH₃)_aSi), -4.68 ((CH₃)_bSi). HRMS (ESI-TOF) calculated for $C_{24}H_{34}BrNO_5Si [M+H]^+ m/z$ 524.1462, found 524.1464.

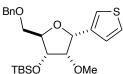
Reduction of Lactols to α-*C***-Nucleosides**


5-Benzyloxy-3-(*tert*-butyldimethylsilyl)oxy-1-deoxy-2-methoxy-1a-phenyl-D-ribofuranose (24α).

BnO O TBSO[®]OMe An oven-dried vial under N₂ atmosphere was charged with lactol **18** (100 mg, 0.225 mmol 1.0 equiv.), triethylsilane (71.8 μ l, 0.450 mmol, 2.0 equiv.), and dichloromethane (1.13 ml, 0.20 M). The mixture was cooled to -40 °C before boron trifluoride etherate (56.5 μ l, 0.450 mmol, 2.0 equiv.) was added and the

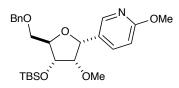
S54

mixture was allowed to stir for 2 h. Sat. aq. K₂CO₃ was then added and the mixture was allowed to warm to rt. The resulting mixture was diluted with H₂O and the aqueous layer was extracted with three portions of Et₂O. The combined organic layers were dried over MgSO₄, filtered, and concentrated. ¹H NMR analysis of the crude mixture indicated >20:1 α : β . The residue was chromatographed on silica eluting with 10% Et₂O/hexanes to afford the title compound as a colorless oil (93 mg, 0.217 mmol, 96% yield, >20:1 α;β). IR (thin film): 3065, 3032, 2891, 2929, 2857, 1604, 1496, 1472, 1454, 1388, 1362, 1310, 1252, 1189, 1097, 1066, 1028, 1005, 939, 835, 776, 756, 733, 696, 670 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.45–7.41 (m, 2H, Ar**H**), 7.38–7.24 (m, 8H, Ar**H**), 4.88 (d, J = 5.4 Hz, 1H, C(1)**H**), 4.62 (d, J = 12.3 Hz, 1H, CH₃Ph), 4.59 (d, J = 12.3 Hz, 1H, CH₅Ph), 4.28 (dd, J = 4.4, 4.4 Hz, 1H, 10.3, 4.8 Hz, 1H, C(5) \mathbf{H}_{a}), 3.62 (dd, J = 10.3, 5.4 Hz, 1H, C(5) \mathbf{H}_{b}), 3.29 (s, 3H, OC \mathbf{H}_{3}), 0.82 (s, 9H, $(CH_3)_3CSi$, 0.04 (s, 3H, $(CH_3)_aSi$), 0.04 (s, 3H $(CH_3)_bSi$). ¹³C NMR (125 MHz, CDCl₃): δ 141.29 (PhC), 138.33 (PhC), 128.46 (PhC), 128.44 (PhC), 127.85 (PhC), 127.69 (PhC), 126.59 (PhC), 94.32 (C(2)), 84.12 and 84.12 (C(1)) and C(4), 77.57 (C(3)), 73.50 (CH_2Ph) , 69.93 (C(5)), 58.60 (OCH_3) , 25.73 ((CH₃)₃CSi), 17.96 ((CH₃)₃CSi), -4.63 ((CH₃)₄Si), -4.69 ((CH₃)_bSi). HRMS (ESI-TOF) calculated for $C_{25}H_{36}O_4Si [M+Na]^+ m/z 451.2275$, found 451.2272. $a_D^{22} = +0.11$ (c = 1.00, CHCl₃).


5-Benzyloxy-3-(tert-butyldimethylsilyl)oxy-1-deoxy-1a-(3-fluorophenyl)-2-methoxy-D-

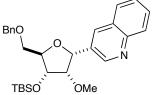
ribofuranose (25 α). An oven-dried vial under N₂ atmosphere was charged with lactol 19 (100 mg, 0.216 mmol, 1.0 equiv.) and dichloromethane (1.08 mL, 0.20 M). The mixture was cooled to -40 °C before triethylsilane (69.0 μ l, 0.432 mmol, 2.0 equiv.) and boron trifluoride etherate (54.3 μ l, 0.432 mmol,

2.0 equiv.) were added. The mixture was allowed to stir for 2 h. Sat. aq. K₂CO₃ was then added and the mixture was allowed to warm to rt. The resulting mixture was diluted with H₂O and the aqueous layer was extracted with three portions of Et_2O . The combined organic layers were dried over MgSO₄, filtered, and concentrated. ¹H NMR analysis of the crude mixture indicated >20:1 α : β . The residue was chromatographed on silica to afford the title compound as a colorless oil (94 mg, 0.210 mmol, 97% yield, >20:1 α:β). IR (thin film): 3033, 2929, 2894, 2857, 1616, 1592, 1488, 1472, 1452, 1389, 1362, 1251, 1190, 1095, 1029, 1005, 972, 938, 8852, 836, 776, 734, 695, 670 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.39–7.27 (m, 6H, PhCH), 7.20–7.14 (m, 2H, Ar_FH), 6.98–6.90 (m, 1H, Ar_FH), 4.90 (d, J =4.8 Hz, 1H, CHAr_E), 4.62 (d, J = 12.2 Hz, 1H, CH_aPh), 4.58 (d, J = 12.2 Hz, 1H, CH_bPh), 4.27 (dd, J = 12.2 3.9, 3.9 Hz, 1H, C(3)**H**), 4.23 (ddd, J = 5.0, 5.0, 5.0 Hz, 1H, (C(4)**H**), 3.68 (dd, J = 4.9, 3.6 Hz, 1H, C(2)H, 3.65–3.62 (m, 1H, $C(5)H_a$), 3.62–3.59 (m, 1H, $C(5)H_b$) 3.32 (s, 3H, OCH_3), 0.80 (s, 9H, (CH₃)₃CSi), 0.03 (s, 3H, (CH₃)₃Si), 0.03 (s, 3H, (CH₃)_bSi). ¹³C NMR (125 MHz, CDCl₃): δ 163.05 (d, J $= 245.4 \text{ Hz}, \text{Ar}_{\text{F}}$ C), 144.11 (d, $J = 7.0 \text{ Hz}, \text{Ar}_{\text{F}}$ C), 138.27 (PhC), 129.87 (d, $J = 8.2 \text{ Hz}, \text{Ar}_{\text{F}}$ C), 128.48 (PhC), 127.85 (PhC), 127.73 (PhC), 121.98 (d, J = 2.8 Hz, Ar_EC), 114.43 (d, J = 21.3 Hz, Ar_EC), 113.39 (d, J = 22.2 Hz), 94.32 (C(2)), 84.64 (C(4)), 83.67, 83.65 (C(1)), 77.40 (C(3)), 73.50 (CH₂Ph), 69.88 (C(5)), 58.54 (OCH₃), 25.68 ((CH₃)₃CSi), 17.91 ((CH₃)₃CSi), -4.69, ((CH₃)₃Si). HRMS (ESI-TOF) calculated for $C_{25}H_{35}FO_4Si [M+Na]^+ m/z$ 469.2181, found 469.2183. $a_D^{21} = +3.09$ (c = 1.00, CHCl₃).


5-Benzyloxy-3-(tert-butyldimethylsilyl)oxy-1-deoxy-2-methoxy-1a-(thiophen-3-yl)-D-

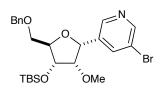
ribofuranose (26 α). An oven-dried vial under N₂ atmosphere was charged with lactol 20 (as a mixture with the corresponding open-chain ketone, 100 mg, 0.222 mmol, 1.0 equiv.), triethylsilane (70.9 μ l, 0.444 mmol, 2.0 equiv.), and dichloromethane (1.11 mL, 0.20 M). The mixture was cooled to -40 °C before

boron trifluoride etherate (55.7 μ l, 0.444 mmol, 2.0 equiv.) was added. The mixture was allowed to stir for 2 h. Sat. aq. K₂CO₃ was then added and the mixture was allowed to warm to rt. The resulting mixture was diluted with H₂O and the aqueous layer was extracted with three portions of Et₂O. The combined organic layers were dried over MgSO₄, filtered, and concentrated. ¹H NMR analysis of the crude mixture indicated >20:1 α : β . The residue was chromatographed on silica eluting with 10% Et₂O/hexanes to afford the title compound as a colorless oil (90 mg, 0.207 mmol, 93% yield, >20:1 α:β). IR (thin film): 3031, 2929, 2893, 2856,1496, 1472, 1462, 1454, 1408, 1388, 1361, 1251, 1190, 1096, 1072, 1029, 1005, 938, 852, 836, 776, 734, 697, 670 cm⁻¹, ¹H NMR (500 MHz, CDCl₂); δ 7.38– 7.31 (m, 4H, Ph**H**), 7.31–7.27 (m, 3H, Ph**H**), 7.16 (dd, J = 5.0, 1.3 Hz, 1H, Ar_s**H**), 4.97 (d, J = 5.0 Hz, 1H, C(1)H), 4.60 (s, 2H, CH, Ph), 4.25 (dd, J = 5.1, 3.9 Hz, 1H, C(3)H), 4.14 (ddd, J = 5.0, 5.0, 5.0 Hz, $= 10.4, 5.5 \text{ Hz}, 1\text{H}, C(5)\mathbf{H}_{b}, 3.32 \text{ (s, 3H, OCH}_{3}), 0.84 \text{ (s, 9H, (CH}_{3})_{3}\text{CSi}), 0.06 \text{ (s, 3H, (CH}_{3})_{a}\text{Si}), 0.04$ (s, 3H, (CH₃)_bSi). ¹³C NMR (125 MHz, CDCl₃): δ 142.34 (Ar_sC), 138.29 (PhC), 128.46 (PhC), 127.87 PhC), 127.70 (PhC), 126.33 (Ar_sC), 126.15 (Ar_sC), 122.18 (Ar_sC), 93.48 (C(2)), 83.65 (C(4)), 80.35 (C(1)), 77.69 (C(3)), 73.51 (CH₂Ph), 69.86 (C(5)),58.48 (OCH₃), 25.78 ((CH₃)₃CSi), 18.00 $((CH_3)_3CSi)$, -4.60 $((CH_3)_aSi)$, -4.70 $((CH_3)_bSi)$. HRMS (ESI-TOF) calculated for $C_{23}H_{34}O_4SSi$ $[M+Na]^+$ m/z 457.18393, found 457.18330. $a_D^{21} = +7.87$ (c = 1.00, CHCl₃).


5-Benzyloxy-3-(tert-butyldimethylsilyl)oxy-1-deoxy-2-methoxy-1a-(6-methoxypyridin-3-yl)-D-

ribofuranose (27 α). An oven-dried vial under N₂ atmosphere was charged with lactol 21 (100 mg, 0.210 mmol, 1.0 equiv.), triethylsilane (67.2 μ l, 0.420 mmol, 2.0 equiv.) and dichloromethane (1.05 mL, 0.20 M). The mixture was cooled to 0 °C before boron trifluoride etherate (79 μ l, 0.631 mmol, 3.0 equiv.) was added. The mixture was allowed to stir

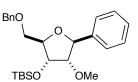
 $(CH_3)_aSi)$, 0.00 (s, 3H, $(CH_3)_bSi$). ¹³C NMR (125 MHz, CDCl₃): δ 164.03 (Ar_NC), 145.30 (Ar_NC), 138.22 (PhC), 137.41 (Ar_NC), 129.50 (Ar_NC), 128.48 (PhC), 127.86 (PhC), 127.74 (PhC), 110.97 (Ar_NC), 93.96 (C(2)), 84.25 (C(4)), 81.90 (C(1)), 77.43 (C(3)), 73.50 (CH₂Ph), 69.77 (C(5)), 58.66 (CHOCH₃), 53.62 (ArOCH₃), 25.75 ((CH₃)₃CSi), 17.99 ((CH₃)₃CSi), -4.62 ((CH₃)_aSi), -4.68 ((CH₃)_bSi). HRMS (ESI-TOF) calculated for C₂₅H₃₇NO₅Si [M+H]⁺ m/z 460.2514, found 460.2511. $a_D^{21} = -3.80$ (c = 1.00, CHCl₃).


5-Benzyloxy-3-(tert-butyldimethylsilyl)oxy-1-deoxy-2-methoxy-1a-(quinolin-3-yl)-D-ribofuranose

(28 α). An oven-dried vial under N₂ atmosphere was charged with lactol 22 (100 mg, 0.202 mmol, 1.0 equiv.), dichloromethane (1.01 mL, 0.20 M), and triethylsilane (64.4 μ l, 0.403 mmol, 2.0 equiv.), and boron trifluoride etherate (101 μ l, 0.807 mmol, 4.0 equiv.). The mixture was allowed to stir for 2 h at rt. Sat. aq. K₂CO₃ was then added and the resulting mixture was

diluted with H₂O and Et₂O. The aqueous layer was extracted with three portions of Et₂O. The combined organic layers were dried over MgSO₄, filtered, and concentrated. 1H NMR analysis of the crude mixture indicated >20:1 α : β . The residue was chromatographed eluting with 15% EtOAc/hexanes to afford the title compound as a yellow oil (77 mg, 0.161 mmol, 80% yield, >20:1 α : β). IR (thin film): 3031, 2929, 2895, 2857, 1738, 1607, 1572, 1496, 1471, 1462, 1455, 1388, 1361, 1323, 1251, 1190, 1094, 1071, 1029, 1006, 955, 939, 908, 836, 777, 749, 697, 670 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 8.95 (d, J = 2.1 Hz, 1H, Ar_NH), 8.22 (d, J = 2.4 Hz, 1H, Ar_NH), 8.10 (d, J = 8.5 Hz, 1H, Ar_NH), 7.84– 7.78 (m, 1H, Ar_NH), 7.73–7.65 (m, 1H, Ar_NH), 7.57–7.49 (m, 1H, Ar_NH), 7.41–7.27 (m, 5H, PhH), 5.13 (d, J = 4.8 Hz, 1H, C(1)H), 4.65 (d, J = 12.2 Hz, 1H, CH_aPh), 4.61 (d, J = 12.2 Hz, 1H, CH_bPh), 4.36-4.32 (m, 2H, C(3)**H** and C(4)**H**), 3.79 (dd, J = 4.7, 4.0 Hz, 1H, C(2)**H**), 3.67 (m, 2H, C(5)**H**₂), 3.35 (s, 3H, OCH₃), 0.77 (s, 9H, (CH₃)₃CSi), 0.04 (s, 3H, (CH₃)₃Si), 0.02 (s, 3H, (CH₃)_bSi). ¹³C NMR (125 MHz, CDCl₃): § 149.59 (Ar_NC), 147.87 (Ar_NC), 138.19 (PhC), 134.05 (Ar_NC), 133.38 (Ar_NC), 129.40 (Ar_NC), 129.33 (Ar_NC), 128.52 (PhC), 127.99 (Ar_NC), 127.91 (Ar_NC), 127.89 (PhC), 127.80 (PhC), 126.88 (Ar_NC), 94.24 (C(2)), 85.02 (C(4)), 82.55 (C(1)), 77.54 (C(3)), 73.55 (CH₂Ph), 69.83 (C(5)), 58.70 (OCH_3) , 25.66, $((CH_3)_3CSi)$ 17.90 $((CH_3)_3CSi)$, -4.66 $((CH_3)_3Si)$, -4.69 $((CH_3)_5Si)$. HRMS (ESI-TOF) calculated for $C_{28}H_{37}NO_4Si [M+H]^+ m/z 480.2565$, found 480.2562. $a_D^{21} = +9.48$ (c $= 1.00, CHCl_3$).

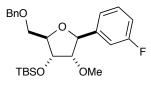
5-Benzyloxy-1a-(5-bromopyridin-3-yl)-3-(tert-butyldimethylsilyl)oxy-1-deoxy-2-methoxy-D-



ribofuranose (29 α). An oven-dried vial under N₂ atmosphere was charged with lactol 23 (100 mg, 0.191 mmol, 1.0 equiv.), dichloromethane (0.953 mL, 0.20 M), triethylsilane (60.9 μ l, 0.381 mmol, 2.0 equiv.) and boron trifluoride etherate (96 μ l, 0.763 mmol, 4.0 equiv.). The mixture was heated to 35 °C and allowed to stir for 2 h, then allowed to cool to rt and quenched

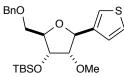
with sat. aq. K_2CO_3 . The resulting mixture was poured over H_2O and the aqueous layer was extracted with three portions of Et_2O . The combined organic layers were dried over MgSO₄, filtered, and concentrated. ¹H NMR analysis of the crude mixture indicated >20:1 α : β . The residue was chromatographed on silica eluting with 25% Et_2O /hexanes to afford the title compound as a colorless oil (64 mg, 0.126 mmol, 66% yield, >20:1 α : β). IR (thin film): 3032, 2929, 2857, 1583, 1557, 1496, 1471, 1462, 1455, 1421, 1389, 1362, 1252, 1199, 1093, 1071, 1020, 1006, 939, 883, 836, 776, 735, 696, 671 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 8.56 (d, J = 2.2 Hz, 1H, Ar_NH), 8.50 (d, J = 1.8 Hz, 1H, Ar_NH), 7.98–7.96 (m, 1H, Ar_NH), 7.37–7.27 (m, 5H, PhH), 4.96 (d, J = 4.0 Hz, 1H, C(1)H), 4.63 (d, J = 12.1 Hz, 1H, CH_aPh), 4.57 (d, J = 12.1 Hz, 1H, CH_bPh), 4.30–4.24 (m, 2H, C(3)H, C(4)H), 3.67–3.64 (m, 1H, C(2)H), 3.63–3.58 (m, 2H, C(5)H₂), 3.35 (s, 3H, OCH₃), 0.79 (s, 9H, (CH₃)₃CSi), 0.04 (s, 3H, (CH₃)_aSi), 0.02 (s, 3H, (CH₃)_bSi). ¹³C NMR (125 MHz, CDCl₃): δ 149.99 (Ar_NC), 146.06 (Ar_NC), 138.82 (Ar_NC), 138.13 (PhC), 136.79 (Ar_NC), 128.52 (PhC), 127.86 (PhC), 127.82 (PhC), 120.94 (Ar_NC), 94.10 (C(2)), 85.69 (C(4)), 81.92 (C(1)), 77.24 (C(3)), 73.51 (CH₂Ph), 69.71 (C(5)), 58.45 (OCH₃), 25.66 ((CH₃)₃CSi), 17.89 ((CH₃)₃CSi), -4.68 ((CH₃)_aSi), -4.79 ((CH₃)_bSi). HRMS (ESI-TOF) calculated for C₂₄H₃₄BrNO₄Si [M+H]⁺ m/z 508.1513, found 508.1509. a_D²¹ = +16.9 (c = 1.00, CHCl₃).

Reduction of Lactols to β-C-Nucleosides


5-Benzyloxy-3-(*tert*-butyldimethylsilyl)oxy-1-deoxy-2-methoxy-1b-phenyl-D-ribofuranose (24β). An oven-dried vial under N₂ atmosphere was charged with lactol **18** (100 mg, 0.225 mmol 1.0 equiv.),

Hantzsch ester (diethyl 1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate, 114 mg, 0.450 mmol, 2.0 equiv.), and dichloromethane (2.25 ml, 0.10 M). The mixture was cooled to -40 °C before boron trifluoride etherate (56.5 μ l, 0.450 mmol, 2.0 equiv.) was added and the mixture was allowed to stir for 2 h. Sat.

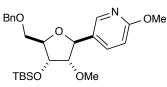
aq. K₂CO₃ was then added and the mixture was allowed to warm to rt. The resulting mixture was diluted with H₂O and the aqueous layer was extracted with three portions of Et₂O. The combined organic layers were dried over MgSO₄, filtered, and concentrated. ¹H NMR analysis of the crude mixture indicated >20:1 β : α . The residue was chromatographed on silica eluting with 5% Et₂O/hexanes to afford the product as a colorless oil (88 mg, 0.205 mmol, 91% yield, >20:1 β : α). IR (thin film): 3032, 2952, 2928, 2891, 2857, 1496, 1472, 1454, 1362, 1310, 1206, 1189, 1084, 1061, 1028, 1006, 939, 908, 854, 835, 777, 730, 696, 670 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.42–7.24 (m, 10H, Ph**H**), 5.10 (d, J = 3.8 Hz, 1H, C(1)H), 4.65 (d, J = 12.1 Hz, 1H, CH₂Ph), 4.59 (d, J = 12.1 Hz, 1H, CH₂Ph), 6.1 Hz, 1H, C(5) \mathbf{H}_{a}), 3.67 (dd, J = 10.0, 6.3 Hz, 1H, C(5) \mathbf{H}_{b}), 3.59 (dd, J = 3.9, 1.5 Hz, 1H, C(2) \mathbf{H}), 2.96 (s, 3H, OCH₃), 0.91 (s, 9H, (CH₃)₃CSi), 0.12 (s, 3H, (CH₃)₂Si), 0.11 (s, 3H, (CH₃)_bSi). ¹³C NMR (125 MHz, CDCl₂): δ 138.47 (PhC), 137.06 (PhC), 128.44 (PhC), 127.95 (PhC), 127.86 (PhC), 127.66 (PhC), 127.54 (PhC), 89.61 (C(2)), 84.77 (C(4)), 82.72 (C(1)), 77.75 (C(3)), 73.42 (C(5)), 70.45 (CH₂Ph), 58.30 (OCH₃), 25.89 ((CH₃)₃CSi), 18.13 ((CH₃)₃CSi), -4.55 ((CH₃)₄Si), -4.62 ((CH₃)_bSi). HRMS (ESI-TOF) calculated for $C_{25}H_{36}O_4Si [M+Na]^+ m/z 451.2275$, found 451.2277. $a_D^{21} = +25.0$ (c = 1.00, CHCl₃).


5-Benzyloxy-3-(tert-butyldimethylsilyl)oxy-1-deoxy-1b-(3-fluorophenyl)-2-methoxy-D-

ribofuranose (25 β). An oven-dried vial under N₂ atmosphere was charged with lactone 19 (100 mg, 0.216 mmol, 1.0 equiv.), Hantzsch ester (diethyl 1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate, 110 mg, 0.432 mmol,

2.0 equiv.), and dichloromethane (2.16 mL, 0.10 M). The mixture was cooled to -40 °C before boron trifluoride etherate (81 μ l, 0.648 mmol, 3.0 equiv.) was added. The mixture was allowed to stir for 1 h. Sat. aq. K_2CO_3 was then added and the mixture was allowed to warm to rt. The resulting mixture was diluted with H₂O and the aqueous layer was extracted with three portions of Et₂O. The combined organic layers were dried over MgSO₄, filtered, and concentrated. ¹H NMR analysis of the crude mixture indicated >20:1 β : α . The residue was chromatographed on silica to afford the title compound as a colorless oil (91 mg, 0.204 mmol, 94% yield, 17:1 β : α). IR (thin film): 2952, 2929, 2896, 2858, 1617, 1593, 1490, 1472, 1451, 1363, 1251, 1191, 1111, 1090, 1030, 1006, 978, 940, 836, 777, 750, 735, 696, 670 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): β-Anomer: δ 7.39–7.24 (m, 6H, Ar**H**), 7.16–7.11 (m, 2H, $Ar_{E}H$), 6.98–6.92 (m, 1H, $Ar_{E}H$), 5.09 (d, J = 3.8 Hz, 1H, C(1)H), 4.65 (d, J = 12.1= 6.2, 6.2, 2.7 Hz, 1H C(4)H), 3.69 (dd, J = 9.9, 6.0 Hz, 1H, C(5)H_a), 3.65 (dd, J = 9.9, 6.5 Hz, 1H, $C(5)H_{b}$, 3.58 (dd, J = 3.8, 1.5 Hz, 1H, C(2)H), 2.99 (s, 3H, OCH₃), 0.91 (s, 9H, (CH₃)₃CSi), 0.12 (s, 3H, $(CH_3)_{a}Si$, 0.11 (s, 3H, $(CH_3)_{b}Si$). α -Anomer: see compound 25 α above. ¹³C NMR (125 MHz, CDCl₃): β -Anomer: δ 162.78 (d, J = 244.6 Hz, Ar_FC), 139.92 (d, J = 7.6 Hz, Ar_FC), 138.39 (PhC), 129.33 (d, J = 8.2 Hz, Ar_EC), 128.47 (PhC), 127.86 (PhC), 127.71 (PhC), 122.94 (d, J = 2.8 Hz, Ar_EC), 114.63 (d, J = 22.2 Hz, Ar_FC), 114.39 (d, J = 21.2 Hz, Ar_FC), 89.44 (C(2)), 85.01 (C(4)), 82.09 (C(1)), 77.45 (C(3)), 73.43 (CH₂Ph), 70.36, (C(5)), 58.29 (OCH₃), 25.88 (CH₃)₃CSi, 18.12 (CH₃)₃CSi, -4.57 (CH₃)_aSi, -4.61, (CH₃)_bSi. α-Anomer: see compound 25α above. HRMS (ESI-TOF) calculated for $C_{25}H_{35}FO_4Si [M+H]^+ m/z 469.2181$, found 469.2180. $a_D^{21} = +20.9 (c = 1.00, CHCl_3)$.

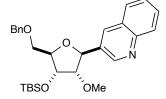
5-Benzyloxy-3-(tert-butyldimethylsilyl)oxy-1-deoxy-2-methoxy-1b-(thiophen-3-yl)-D-ribofuranose



(26 β). An oven-dried vial under N₂ atmosphere was charged with lactol 20 (as a mixture with the corresponding open-chain ketone, 100 mg, 0.222 mmol, 1.0 equiv.), Hantzsch ester (diethyl 1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate, 112 mg, 0.444 mmol, 2.0 equiv.) and dichloromethane

(2.22 mL, 0.10 M). The mixture was cooled to -40 °C before boron trifluoride etherate (55.7 μ l, 0.444 mmol, 2.0 equiv.) was added. The mixture was allowed to stir for 2 h. Sat. aq. K₂CO₃ was then added and the mixture was allowed to warm to rt. The resulting mixture was diluted with H₂O and the aqueous layer was extracted with three portions of Et₂O. The combined organic layers were dried over MgSO₄, filtered, and concentrated. ¹H NMR analysis of the crude mixture indicated 10:1 β : α . The residue was purified on silica gel eluting with 4% Et₂O/hexanes to afford the title compound as a colorless oil (87.4 mg, 0.201 mmol, 91 % yield, 10:1 β : α). Characterization was carried out on the isolated mixture of anomers. IR (thin film): 2952, 2928, 2891, 2857, 1497, 1472, 1462, 1408, 1388, 1362, 1252, 1191, 1109, 1088, 1030, 1006, 939, 835, 775, 734, 697, 670 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): β -Anomer : δ 7.38–7.32 (m, 4H, ArH), 7.30–7.24 (m, 3H, ArH), 7.11 (dd, *J* = 5.0, 1.2 Hz, 1H, Ar₈H), 5.14 (d, *J* = 3.8 Hz, 1H, C(1)H), 4.63 (d, *J* = 12.1 Hz, 1H, CH_aPh), 4.57 (d, *J* =12.1Hz, 1H, CH_bPh), 4.22 (dd, *J* = 3.1, 1.7 Hz, 1H, C(3)H), 3.98 (ddd, *J* = 6.1, 6.1, 3.1 Hz, 1H, C(4)H), 3.66 (dd, *J* = 8.9, 4.8 Hz, 1H, C(5)H_a), 3.63 (dd, *J* = 8.9, 5.1 Hz, 1H, C(5)H_b), 3.58 (dd, *J* = 3.8, 1.7 Hz, 1H, C(2)H), 3.06 (s, 3H, OCH₃), 0.90 (s, 9H, (CH₃)₃CSi), 0.11 (s, 3H, (CH₃)_aSi), 0.10 (s, 3H, (CH₃)_bSi); α -Anomer: see compound **26** α above. ¹³C NMR (125 MHz, CDCl₃): β -Anomer : δ 138.42 (ArC), 138.10

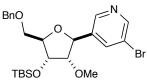
(ArC), 128.43 (ArC), 127.87 (ArC), 127.66 (ArC), 127.58 (Ar_sC), 125.06 (ArC), 122.94 (ArC), 89.20 (C(2)), 84.56 (C(4)), 79.13 (C(1)), 77.52 (C(3)), 73.41 (CH₂Ph), 70.42 (C(5)), 58.23 (OCH₃), 25.88 ((CH₃)₃CSi), 18.11 ((CH₃)₃CSi), -4.56 ((CH₃)_aSi), -4.64 ((CH₃)_bSi); α-Anomer: see compound **26α** above. HRMS (ESI-TOF) calculated for $C_{23}H_{34}O_4SSi$ [M+Na]⁺ m/z 457.1839, found 457.1839. $a_D^{21} = +16.3$ (c = 1.00, CHCl₃).


5-Benzyloxy-3-(tert-butyldimethylsilyl)oxy-1-deoxy-2-methoxy-1b-(6-methoxypyridin-3-yl)-D-

ribofuranose (27 β). An oven-dried vial under N₂ atmosphere was charged with lactol 21 (100 mg, 0.210 mmol, 1.0 equiv.), Hantzsch ester (diethyl 1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate, 160 mg, 0.631 mmol, 3.0 equiv.), and dichloromethane (2.10 mL, 0.10 M). boron trifluoride

etherate (79 µ1, 0.631 mmol, 3.0 equiv.) was added and the mixture was allowed to stir for 2 h. Sat. aq. K₂CO₃ was then added and the resulting mixture was poured over H₂O. The aqueous layer was extracted with three portions of Et₂O. The combined organic layers were dried over MgSO₄, filtered, and concentrated. ¹H NMR analysis of the crude mixture indicated 17:1 β : α . The residue was chromatographed by column chromatography on silica gel eluting with 2% Et₂O/toluene, then by preparative TLC eluting with 10% EtOAc/toluene to afford the title compound as a colorless oil (71 mg, 0.154 mmol, 74 % yield, >20:1 β:α). IR (thin film): 2947, 2929, 2896, 2857, 1611, 1577, 1495, 1462, 1392, 1362, 1333, 1284, 1253, 1207, 1190, 1109, 1089, 1026, 938, 834, 776, 735, 697, 671 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 8.11 (d, J = 2.3 Hz, 1H, Ar_NH), 7.65 (dd, J = 8.5, 2.3 Hz, 1H, Ar_NH), 7.38–7.27 (m, 5H, Ph**H**), 6.70 (d, J = 8.5 Hz, 1H, Ar_N**H**), 5.03 (d, J = 4.0 Hz, 1H, C(1)**H**), 4.63 (d, J = 4.0 Hz, 12.1 Hz, 1H, CH_aPh), 4.57 (d, J = 12.1 Hz, 1H, CH_bPh), 4.22 (dd, J = 3.2, 1.7 Hz, 1H, C(3)H), 4.00 $(ddd, J = 6.0, 3.2 \text{ Hz}, 1\text{H}, C(4)\text{H}), 3.93 (s, 3\text{H}, Ar_{N}OCH_{3}), 3.67 (dd, J = 10.5, 6.1 \text{ Hz}, 1\text{H}, C(5)\text{H}_{3}), 3.63$ $(dd, J = 10.5, 6.3 Hz, 1H, C(5)H_{b}), 3.53 (dd, J = 4.0, 1.7 Hz, 1H, C(2)H), 3.02 (s, 3H, C(1)OCH_{3}), 0.90$ (s, 9H, (CH₃)₃CSi), 0.11 (s, 3H, (CH₃)₈Si), 0.10 (s, 3H, (CH₃)₅Si). ¹³C NMR (125 MHz, CDCl₃): δ 164.00 (Ar_NC), 145.97 (Ar_NC), 139.26 (Ar_NC), 138.34 (PhC), 128.46 (PhC), 127.87 (PhC), 127.71 (PhC), 125.45 (Ar_NC), 110.30 (Ar_NC), 89.32 (C(2)), 84.63 (C(4)), 80.39 (C(1)), 77.46 (C(3)), 73.45 (CH₂Ph), 70.27 (C(5)), 58.20 (C(2)OCH₃), 53.56 (Ar_NOCH₃), 25.88 ((CH₃)₃CSi), 18.13 ((CH₃)₃CSi), -4.55 ((CH₃)_aSi), -4.63 ((CH₃)_bSi). HRMS (ESI-TOF) calculated for $C_{25}H_{37}NO_5Si$ [M+H]⁺ m/z 460.2514, found 460.2516. $a_D^{21} = +27.3$ (c = 1.00, CHCl₃).

5-Benzyloxy-3-(tert-butyldimethylsilyl)oxy-1-deoxy-2-methoxy-1b-(quinolin-3-yl)-D-ribofuranose



(28 β). An oven-dried vial under N₂ atmosphere was charged with lactol 22 (100 mg, 0.202 mmol, 1.0 equiv.), Hantzsch ester (diethyl 1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate, 204 mg, 0.807 mmol, 4.0 equiv.), and dichloromethane (2.02 mL, 0.10 M). Boron trifluoride etherate (152 μ l, 1.210 mmol, 6.0 equiv.) was added and the mixture was allowed to stir for 2

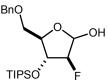
h. Sat. aq. K_2CO_3 was then added and the resulting mixture was poured over H_2O . The aqueous layer was extracted with three portions of Et₂O. The combined organic layers were dried over MgSO₄, filtered, and concentrated. ¹H NMR analysis of the crude mixture indicated 5:1 β : α . The residue was chromatographed on silica eluting with 15% EtOAc/hexanes to afford the title compound as a pale

yellow oil (66 mg, 0.132 mmol, 66% yield, 6:1 β:α). Characterization was carried out on the isolated mixture of anomers. IR (thin film): 2929, 2891, 2857, 1607, 1572, 1496, 1471, 1462, 1362, 1321, 1253, 1191, 1088, 1068, 1029, 1005, 956, 939, 908, 836, 777, 747, 697, 670 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): β-Anomer : δ 8.88 (d, J = 2.1 Hz, 1H, Ar_NH), 8.20 (d, J = 2.0 Hz, 1H, Ar_NH), 8.09 (d, J = 8.4 Hz, 1H, Ar_NH), 7.78 (m, 1H, Ar_NH), 7.69 (ddd, J = 8.4, 6.8, 1.5 Hz, 1H, Ar_NH), 7.53 (ddd, J = 8.0, 6.8, 1.1 Hz, 1H, Ar_NH), 7.43–7.28 (m, 5H, PhH), 5.31 (d, J = 3.8 Hz, 1H, C(1)H), 4.69 (d, J = 12.1 Hz, 1H, CH_aPh)), 4.61 (d, J = 12.0 Hz, 1H, CH_bPh), 4.31 (dd, J = 2.8, 1.5 Hz, 1H, C(3)H), 4.12 (ddd, J = 6.2, 2.8 Hz, 1H, C(4)H), 3.78–3.64 (m, 3H, C(5)H₂ and C(2)H), 3.01 (s, 3H, OCH₃), 0.93 (s, 9H, (CH₃)₃CSi), 0.14 (s, 3H, (CH₃)_aSi), 0.13 (s, 3H (CH₃)_bSi); α-Anomer: see compound **28α** above. ¹³C NMR (125 MHz, CDCl₃): β-Anomer : δ 150.49 (Ar_NC), 147.76 (Ar_NC), 127.90 (2C, Ar_NC and PhC)), 127.77 (PhC), 126.63 (Ar_NC), 89.27 (C(2)), 85.24 (C(4)), 81.03 (C(1)), 77.23 (C(3)), 73.49 (CH₂Ph), 70.30 (C(5)), 58.21 (OCH₃), 25.90 ((CH₃)₃CSi), 18.15 ((CH₃)₃CSi), -4.53 ((CH₃)_aSi), -4.58 ((CH₃)_bSi); α-Anomer: see compound **28α** above. HRMS (ESI-TOF) calculated for C₂₈H₃₇NO₄Si [M+H]⁺ m/z 480.2565, found 480.2561. a_D²¹ = +8.03 (c = 1.00, CHCl₃).

5-Benzyloxy-1b-(5-bromopyridin-3-yl)-3-(tert-butyldimethylsilyl)oxy-1-deoxy-2-methoxy-D-

ribofuranose (29 β). An oven-dried vial under N₂ atmosphere was charged with lactol **23** (100 mg, 0.191 mmol, 1.0 equiv.), Hantzsch ester (diethyl 1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate, 386 mg, 1.53 mmol, 8.0 equiv.), and nitromethane (1.91 mL, 0.10 M). Boron trifluoride etherate (239

 μ 1, 1.91 mmol, 10.0 equiv.) was added before the mixture was heated to 50 °C and allowed to stir for 2 h, then allowed to cool to rt and quenched with sat. aq. K₂CO₃. The resulting mixture was poured over H₂O and the aqueous layer was extracted with three portions of Et₂O. The combined organic layers were dried over MgSO₄, filtered, and concentrated. ¹H NMR analysis of the crude mixture indicated 2:1 $\beta:\alpha$. The residue was purified twice by column chromatography (10-20% Et₂O/hexanes) and once by preparative TLC (40% Et₂O/hexanes) to afford the title compound as a pale yellow oil (66 mg, 0.130 mmol, 68% yield, 2:1 β : α). Characterization was carried out on the isolated mixture of anomers. IR (thin film): 2952, 2929, 2896, 2857, 1585, 1557, 1496, 1471, 1462, 1422, 1362, 1295, 1252, 1206, 1090, 019, 1006, 938, 883, 836, 776, 735, 696, 671 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): β-Anomer : δ 8.57 (d, J = 2.3 Hz, 1H, Ar_NH), 8.47 (d, J = 1.7 Hz, 1H, Ar_NH), 7.90 (dd, J = 2.0, 2.0 Hz, 1H, Ar_NH), 7.39 - 7.33 (m, 4H, PhH), 7.33 - 7.27 (m, 1H, PhH), 5.09 (d, J = 3.8 Hz, 1H C(1)H), 4.65 (d, J = 12.1Hz, 1H, CH_aPh), 4.58 (d, J = 12.2 Hz, 1H CH_bPh), 4.26 (dd, J = 2.4, 1.4 Hz, 1H C(3)H), 4.06 (ddd, J = 2.4, 1H C(3)H 6.3, 2.4 Hz, 1H C(4)**H**), 3.67 (dd, J = 9.9, 6.1 Hz, 1H, C(5)**H**_a), 3.65–3.60 (m, 1H, C(5)**H**_b), 3.58 (dd, J $= 3.9, 1.4 \text{ Hz}, 1\text{H}, C(2)\text{H}, 3.05 \text{ (s}, 3\text{H} (\text{OCH}_3), 0.91 \text{ (s}, 9\text{H}, (\text{CH}_3)_3\text{CSi}), 0.12 \text{ (s}, 3\text{H}, (\text{CH}_3)_3\text{Si}), 0.11 \text{ (s}, 3\text{H}, (\text{CH}$ 3H, (CH₃)_bSi); α -Anomer: see compound **29** α above. ¹³C NMR (125 MHz, CDCl₃): β -Anomer : δ 150.05 (Ar_NC), 147.04 (Ar_NC), 138.31 (Ar_NC), 138.26 (PhC), 134.86 (Ar_NC), 128.52 (PhC), 127.87 (PhC), 127.80 (PhC), 120.56 (Ar_NC), 89.06 (C(2)), 85.43 (C(4)), 80.03 (C(1)), 76.97 (C(3)), 73.47 (CH₂Ph), 70.19 (C(5)), 58.09 (OCH₃), 25.88 ((CH₃)₃CSi), 18.12 ((CH₃)₃CSi), -4.56 ((CH₃)_aSi), -4.58 ((CH₃)_bSi); α -Anomer: see compound **29** α above. HRMS (ESI-TOF) calculated for C₂₄H₃₄BrNO₄Si $[M+H]^+$ m/z 508.1513, found 508.1513. $a_D^{22} = +11.9$ (c = 1.00, CHCl₃).


VI. Synthesis of Fluorinated Pentose Derivatives. All compounds reported in this section were prepared from aldehyde 1, 83% ee.

Preparation of C(2)-Fluorinated Lactols

(4S,5R)-5-(benzyloxymethyl)-4-(triisopropylsilyloxy)-dihydrofuran-2(3H)-one. To a solution of 5benzyloxy-2-desoxy-3-hydroxy-D-ribonolactone (380 mg, 1.71 mmol, 1.0 equiv.) in BnO CH₂Cl₂ (4 mL) was added imidazole (466 mg, 6.85 mmol, 4.0 equiv.), DMAP (21 mg, 171 µmol, 0.1 equiv.) and triisopropylsilyl chloride (990 mg, 5.14 mmol, 3 equiv.). The reaction mixture was stirred 24 h at room temperature then guenched by TIPSO the addition of water (5 mL). The aqueous layer was extracted with EtOAc (3 x 10 mL) and the combined organic layers were washed with brine then dried over Na₂SO₄, filtered, and concentrated under vacuum. The crude product was purified by flash chromatography using 4:1 hexanes/EtOAc to yield the title compound (597 mg, 92% yield) as a colorless oil. IR (thin film): 2943, 2866, 1787, 1453, 1362, 1166, 1100, 1014, 882, 740, 688 cm⁻¹; ¹H NMR (500 MHz, CDCl₂): δ 7.38–7.26 (m, 5H, Ar**H**), 4.58–4.55 (m, 1H, CH(3)), 4.55 (s, 1H, CH₂Ar), 4.50 (s, 1H, CH₂Ar), 4.48–4.44 (m, 1H, CH(4)), 3.70– 3.62 (m, 2H, CH₂(5)), 2.90 (dd, J = 17.6, 6.5 Hz, 1H, CH₂(2), 2.43 (dd, J = 17.7, 2.1 Hz, 1H, $CH_2(2)_b$, 1.08–0.95 (m, 21H, CH_3 , $CH(CH_3)_2$); ¹³C NMR (125 MHz, $CDCl_3$): δ 176.1 (C(1)), 137.5 (CAr), 128.6 (CHAr), 128.1 (CHAr), 127.8 (CHAr), 87.6 (CH(4)), 73.8 (CH₂Ar), 70.4 (CH(3)), 69.3 $(CH_2(5))$, 39.5 $(CH_2(2))$, 18.0 (CH_3) , 12.0 $(CH(CH_3)_2)$; HRMS (ESI-TOF) calculated for $C_{21}H_{34}O_4Si$ $[M+H]^+$ m/z 379.2299, found 379.2300; $\alpha_D^{21} = +14.1$ (c = 1.10, CHCl₃).

(3S,4R,5R)-5-(benzyloxymethyl)-3-fluoro-4-(triisopropylsilyloxy)-dihydrofuran-2(3H)-one (31a). A solution of (4S,5R)-5-(benzyloxymethyl)-4-(triisopropylsilyloxy)-dihydrofuran-BnO 2(3H)-one (100 mg, 264 µmol, 1.0 equiv.) and N-fluorodibenzenesulfonamide (125 mg, 396 µmol, 1.5 equiv.) in dry THF (2.6 mL) was cooled to -78 °C. To the solution was slowly added LiHMDS (343 μ L, 343 μ mol, 1 M in THF, 1.5 equiv.) TIPSO and the mixture was stirred at -78 °C for 1.5 h before being quenched by the addition of a sat. aq. sol. of NH₄Cl (1 mL) and allowed to warm up to room temperature. The aqueous layer was extracted with EtOAc (3 x 5 mL) and the combined organic layers were washed with a sat. aq. sol. of NaHCO₃ then dried over Na₂SO₄, filtered, and concentrated under vacuum. The crude product was purified by flash chromatography using 25:1 hexanes/EtOAc to yield the title compound (75.3 mg, 72% yield, dr >20:1), as a colorless oil. IR (thin film): 2945, 2868, 1808, 1463, 1239, 1165, 1110, 1069, 883, 799, 685 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.39–7.27 (m, 5H, Ar**H**), 5.12 (dd, J = 51.3, 7.5 Hz, 1H, C**H**(2)), 4.82 $(ddd, J = 18.0, 7.5, 7.5 Hz, 1H, CH(3)), 4.62-4.53 (m, 2H, CH_2Ar), 4.26 (ddd, J = 7.3, 2.9, 2.9 Hz, 1H, 1H)$ CH(4)), 3.81 (ddd, J = 11.6, 2.1, 2.1 Hz, 1H, CH₂(5), 3.70 (dd, J = 11.6, 3.5 Hz, 1H, CH₂(5), 1.12– 0.99 (m, 21H, CH₂, CH(CH₂)₂); ¹³C NMR (125 MHz, CDCl₂): δ 168.5 (d, J = 23.1 Hz, C(1)), 137.1 (CAr), 128.5 (CHAr), 128.0 (CHAr), 127.9 (CHAr), 92.4 (d, J = 199.4 Hz, CH(2)), 80.4 (d, J = 10.7 Hz, CH(4)), 73.7 (CH₂Ar), 72.5 (d, J = 20.5 Hz, CH(3)), 66.5 (CH₂(5)), 17.8 (CH₃), 17.7 (CH₃), 12.1 $(CH(CH_3)_2)$; ¹⁹F NMR (282 MHz, CDCl₃): δ –201.2 (ddd, J = 51.4, 17.6, 1.6 Hz); HRMS (ESI-TOF) calculated for $C_{21}H_{33}FO_4Si [M+H]^+ m/z 397.2205$, found 397.2209; $\alpha_D^{21} = +31.4$ (c = 1.36, CHCl₃).

(3*S*,4*R*,5*R*)-5-(benzyloxymethyl)-3-fluoro-4-(triisopropylsilyloxy)-tetrahydrofuran-2-ol (31b).

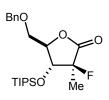
To a solution of (3S,4R,5R)-5-(benzyloxymethyl)-3-fluoro-4-(triisopropylsilyloxy)-dihydrofuran-2(3H)-one (28.2 mg, 71 µmol, 1.0 equiv.) in toluene (0.7 mL) at -78 °C was slowly added DIBAL-H (284 µL, 284 µmol, 1 M in toluene, 4.0 equiv.). The reaction was stirred at -78 °C for 2 h then quenched by

the slow addition of MeOH ($29 \,\mu$ L, 711 μ mol, 10 equiv.) and allowed to warm up to room temperature. A 0.1 M HCl solution (1 mL) was added and the mixture was stirred vigorously for 10 min. The aqueous layer was extracted with $Et_2O(3 \times 5 \text{ mL})$ and the combined organic layers were washed with a sat. aq. sol. of NaHCO₃, water and brine, then dried over Na₂SO₄, filtered, and concentrated under vacuum. The crude product was purified by preparative TLC plate using 2:1 hexanes/Et₂O to yield the title compound (25.5 mg, 90% yield as a 1:4 mixture of anomers) as a colorless oil. IR (thin film): 3431, 2872, 2866, 1463, 1383, 1258, 1097, 1027, 882, 822, 736, 684 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): major anomer: δ 7.38–7.28 (m, 5H, ArH), 5.42 (dd, J = 9.8, 9.8 Hz, 1H, CH(1)), 4.83 (d, J = 50.3 Hz, 1H, CH(2)), 4.61–4.50 (m, 2H, CH₂Ar), 4.41 (t, J = 6.7 Hz, 1H, CH(4)), 4.36 (d, J = 14.1 Hz, 1H, CH(3)), 3.62–3.56 (m, 1H, CH₂(5)_a), 3.52–3.46 (m, 1H, CH₂(5)_b), 3.43 (d, J = 10.4 Hz, 1H, OH), 1.16–0.95 (m, 21H, CH₃, CH(CH₃)₂); minor anomer: δ 7.38–7.28 (m, 5H, ArH), 5.31 (dt, J = 10.8, 4.0 Hz, 1H, CH(1)), 4.77 (ddd, J = 52.6, 4.2, 4.2 Hz, 1H, CH(2)), 4.66 (d, J = 11.9 Hz, 1H, CH(3)), 4.61– 4.50 (m, 2H, CH₂Ar), 4.03–3.95 (m, 1H, CH(4)), 3.81 (s, 1H, OH), 3.62–3.56 (m, 2H, CH₂(5)), 1.16– 0.95 (m, 21H, CH₃, CH(CH₃)₂); ¹³C NMR (125 MHz, CDCl₃): major anomer: δ 137.9 (CAr), 128.5 (CHAr), 127.8 (CHAr), 127.8 (CHAr), 100.8 (d, J = 31.6 Hz, CH(1)), 98.2 (d, J = 186.2 Hz, CH(2)), 85.7 (CH(4)), 76.3 (d, J = 26.0 Hz, CH(3)), 73.5 (CH₂Ar), 69.8 (d, J = 2.4 Hz, CH₂(5)), 17.9 (CH₃), 11.9 (CH(CH₃)₂); minor anomer: δ 137.0 (CAr), 128.7 (CHAr), 128.3 (CHAr), 128.2 (CHAr), 97.4 (d, J = 193.3 Hz, CH(2), 95.8 (d, J = 19.0 Hz, CH(1)), 83.2 (d, J = 7.8 Hz, CH(4)), 74.7 (d, J = 24.0 Hz, CH(3)), 73.8 (CH₂Ar), 69.4 (CH₂(5)), 17.9 (CH₃), 12.1 (CH(CH₃)₂); ¹⁹F NMR (282 MHz, CDCl₃): major-anomer: δ –189.0 (ddd, J = 50.4, 14.3, 9.8 Hz), minor anomer: δ –204.1 (dd, J = 52.2, 17.1 Hz); HRMS (ESI-TOF) calculated for $C_{21}H_{33}FO_4Si [M+Na]^+ m/z 421.2181$, found 421.2191.

(4R,5R)-5-(benzyloxymethyl)-4-(triisopropylsilyloxy)-dihydrofuran-2(3H)-one. To a solution of 5benzyloxy-2-desoxy-3-hydroxy-D-lyxolactone (74.7 mg, 336 µmol, 1.0 equiv.) and BnQ 2,6-di-tert-butylpyridine (302 µL, 1.34 mmol, 4.0 equiv.) in dry THF (3.4 mL) at 0 °C was slowly added triisopropylsilyltrifluoromethanesulfonate (182 μ L, 672 μ mol, 2.0 equiv.) The reaction was allowed to slowly warm up to room temperature and TIPSO stirred for 5 h then was quenched by the addition of water (2 mL). The aqueous layer was extracted with Et₂O (3 x 5 mL) and the combined organic layers were dried over Na₂SO₄, filtered, and concentrated under vacuum. The crude product was purified by flash chromatography using 10:1 hexanes/Et₂O to yield the title compound (112 mg, 88% yield) as a colorless oil. IR (thin film): 2943, 2867, 1789, 1463, 1365, 1205, 1161, 1132, 1099, 1062, 940, 882, 697 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.40–7.27 (m, 5H, ArH), 4.77–4.71 (m, 1H, CH(4)), 4.62–4.52 (m, 3H, CH₂Ar, CH(3)), 3.85 (dd, J = 10.7, 3.9 Hz, 1H, CH₂(2)_a), 3.81 (dd, J = 10.7, 5.5 Hz, 1H, CH₂(2)_b), 2.71 (dd, J = 17.2, 6.1 Hz, 1H, $CH_2(5)_a$), 2.63 (dd, J = 17.1, 4.1 Hz, 1H, $CH_2(5)_b$), 1.06–1.01 (m, 21H, CH_3 , $CH(CH_3)_2$); ¹³C NMR (125 MHz, CDCl₃): δ 175.0 (C(1)), 137.8 (CAr), 128.5 (CHAr), 127.9 (CHAr), 127.9 (CHAr), 83.0 (CH(3)), 73.8 (CH₂Ar), 69.4 (CH(4)), 68.1 (CH₂(2)), 39.2 (CH₂(5), 18.0 (CH₃), 12.2 (CH(CH₃)₂); HRMS (ESI-TOF) calculated for C₂₁H₃₄O₄Si [M+H]⁺ m/z 379.2299, found 379.2293; $\alpha_D^{21} = +8.16$ (c = 1.06, CHCl₃).

To a solution of manganese(II) bromide (68 mg, 317 µmol, 4.0 equiv.)¹⁸ and N-BnO fluorodibenzenesulfonamide (100 mg, 317 µmol, 4.0 equiv.) in dry THF (0.8 mL) =0 was added a solution of (4R,5R)-5-(benzyloxymethyl)-4-(triisopropylsilyloxy)-TIPSO F dihydrofuran-2(3H)-one (30 mg, 79 µmol, 1.0 equiv.) and the solution was cooled to -78 °C. To the solution was slowly added LiHMDS (396 µL, 396 µmol, 1 M in THF, 5.0 equiv.) and the mixture was stirred at -78 °C for 1.5 h then quenched by the addition of a sat. aq. sol. of NH₄Cl (1 mL). The aqueous layer was extracted with Et₂O (3 x 5 mL) and the combined organic layers were washed with a sat. aq. sol. of NaHCO₃ then dried over Na₂SO₄, filtered, and concentrated under vacuum. The crude product was purified by flash chromatography using 10:1 hexanes/Et₂O to yield the title compound (28.3 mg, 90% yield, dr >20:1), as a colorless oil. IR (thin film): 2923, 2867, 1803, 1463, 1362, 1340, 1231, 1162, 1106, 1077, 1056, 911, 882, 810, 739, 686 cm⁻¹; ¹H NMR (500 MHz, $CDCl_3$: δ 7.37–7.26 (m, 5H, ArH), 5.43 (dd, J = 53.5, 7.8 Hz, 1H, CH(2)), 4.82 (ddd, J = 22.1, 7.9, 7.97.9 Hz, 1H, CH(3)), 4.60–4.49 (m, 3H, CH₂Ar, CH(4)), 3.84 (dd, J = 10.6, 1.5 Hz, 1H, CH₂(5), 3.72 $(ddd, J = 10.6, 2.5, 2.5 Hz, 1H, CH_2(5)_h), 1.20-0.99 (m, 21H, CH_3, CH(CH_3)_2); {}^{13}C NMR (125 MHz, CH_2(5)_h), 1.20-0.99 (m, 21H, CH_3, CH(CH_3)_2); {}^{13}C NMR (125 MHz, CH_3), CH(CH_3)_2); {}^{13}C NMR (125 MHz, CH_3)_3; {}^{13}C NMZ (125 MHz, CH_3)_3; {}^{13}C NMR (125 MHz, CH_3)_3; {}^{13}C$ CDCl₃): δ 169.9 (d, J = 22.9 Hz, C(1)), 137.4 (CAr), 128.6 (CHAr), 128.0 (CHAr), 127.7 (CHAr), 90.6 (d, J = 193.0 Hz, CH(2)), 77.7 (d, J = 10.4 Hz, CH(4)), 74.1 (d, J = 20.4 Hz, CH(3)), 73.8 (CH₂Ar),66.4 (CH₂(5)), 18.0 (CH₃), 17.8 (CH₃), 12.1 (CH(CH₃)₂); ¹⁹F NMR (282 MHz, CDCl₃): δ –195.97 (ddd, J = 53.4, 22.3, 2.1 Hz); HRMS (ESI-TOF) calculated for $C_{21}H_{33}FO_4Si [M+Na]^+ m/z 419.2024$, found 419.2022; $\alpha_D^{21} = +25.0$ (c = 1.07, CHCl₃).

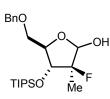
(3R,4S,5R)-5-(benzyloxymethyl)-3-fluoro-4-(triisopropylsilyloxy)-tetrahydrofuran-2-ol (32b). To a (3R,4S,5R)-5-(benzyloxymethyl)-3-fluoro-4-(triisopropylsilyloxy)solution of BnO dihydrofuran-2(3H)-one (18.9 mg, 48 µmol, 1.0 equiv.) in toluene (0.5 mL) at -78 .OH °C was slowly added DIBAL-H (191 µL, 191 µmol, 1 M in toluene, 4.0 equiv.). The reaction was stirred at -78 °C for 2 hours then quenched by the slow addition TIPSO of MeOH (20 µL, 480 µmol, 10 equiv.) and allowed to warm up to room temperature. A 0.1 M HCl solution (1 mL) was added and the mixture was stirred vigorously for 10 min. The aqueous layer was extracted with Et₂O (3 x 5 mL) and the combined organic layers were washed with a sat. aq. sol. of NaHCO₃, water and brine, then dried over Na₂SO₄, filtered, and concentrated under vacuum. The crude product was purified by preparative TLC plate using 2:1 hexanes/Et₂O to yield the title compound (13.4 mg, 70% yield) 1:3.5 mixture of anomers as a colorless oil. IR (thin film): 3440, 2943, 2866, 1463, 1384, 1365, 1238, 1145, 1100, 1028, 997, 881, 827, 735, 681 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) major isomer: δ 7.41–7.28 (m, 5H, Ar**H**), 5.24 (ddd, J = 14.3, 12.5, 1.5 Hz, 1H, C**H**(1)), 4.86 (ddd, J =53.5, 4.1, 1.5 Hz, 1H, CH(2)), 4.65–4.49 (m, 3H, CH₂Ar, CH(3)), 4.33 (dt, J = 6.5, 3.4 Hz, 1H, CH(4)), 4.22 (d, J = 12.4 Hz, 1H, OH), 3.78–3.67 (m, 2H, CH₂(5)), 1.20–0.92 (m, 21H, CH₃, CH(CH₃)₂); minor isomer: δ 7.41–7.28 (m, 5H, ArH), 5.52 (ddd, J = 9.4, 9.4, 3.5 Hz, 1H, CH(1)), 4.81


¹⁸ Nakano, T.; Makino, M.; Morizawa, Y.; Matsumura, Y. Angew. Chem. Int. Ed. Engl. 1996, 35, 1019.

(ddd, J = 52.4, 3.4, 3.4 Hz, 1H, CH(2)), 4.65–4.49 (m, 3H, CH₂Ar, CH(3)), 4.45–4.39 (m, 1H, CH(4)), 3.72–3.67 (m, 1H, CH₂(5)_a), 3.62 (dd, J = 10.2, 5.9 Hz, 1H, CH₂(5)_b), 1.20–0.92 (m, 21H, CH₃, CH(CH₃)₂); ¹³C NMR (125 MHz, CDCl₃): major isomer: δ 136.9 (CAr), 128.8 (CHAr), 128.3 (CHAr), 102.2 (d, J = 185.5 Hz, CH(2)), 101.1 (d, J = 35.5 Hz, CH(1)), 80.9 (d, J = 5.7 Hz, CH(4)), 76.1 (d, J = 24.7 Hz, CH(3)), 74.1 (CH₂Ar), 68.4 (CH₂(5)), 18.0 (CH₃), 17.9 (CH₃), 12.2 (CH(CH₃)₂); minor isomer: δ 138.1 (CAr), 128.5 (CHAr), 128.0 (CHAr), 127.8 (CHAr), 95.8 (d, J = 17.1 Hz, CH(1)), 95.4 (d, J = 190.0 Hz, CH(2)), 78.5 (d, J = 4.1 Hz, CH(4)), 74.9 (d, J = 24.9 Hz, CH(3)), 73.6 (CH₂Ar), 68.8 (CH₂(5)), 18.0 (CH₃), 17.9 (CH₃), 12.3 (CH(CH₃)₂); ¹⁹F NMR (282 MHz, CDCl₃): major-isomer: δ –189.2 (ddd, J = 53.5, 21.1, 14.7 Hz); minor-isomer: δ –203.7 to –205.1 (m); HRMS (ESI-TOF) calculated for C₂₁H₃₅FO₄Si [M+Na]⁺ m/z 421.2181, found 421.2182.

(3S,4S,5R)-5-(benzyloxymethyl)-3-methyl-4-(triisopropylsilyloxy)-dihydrofuran-2(3H)-one. To a

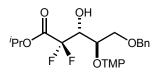
solution of 5-benzyloxy-3-hydroxy-2-methyl-D-arabinolactone (49.3 mg, 209 µmol, BnO 1.0 equiv.) in CH₂Cl₂ (0.5 mL) was added imidazole (85 mg, 1.25 mmol, 6.0 equiv.), DMAP (2.5 mg, 21 µmol, 0.1 equiv.) and triisopropylsilyl chloride (161 mg, 835 µmol, 4.0 equiv.). The reaction mixture was stirred for 24 h at room TIPSO Me temperature then quenched by the addition of water (2 mL). The aqueous layer was extracted with EtOAc (3 x 5 mL) and the combined organic layers were washed with brine then dried over Na_2SO_4 , filtered, and concentrated under vacuum. The crude product was purified by flash chromatography using 15:1 hexanes/EtOAc to yield the title compound (76.1 mg, 93% yield), as a colorless oil. IR (thin film): 2942, 2866, 1780, 1455, 1381, 1238, 1170, 1121, 1064, 957, 918, 881, 840, 786, 735 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.39–7.27 (m, 5H, Ar**H**), 4.55 (dd, J = 12.0, 12.0 Hz, 2H, C**H**₂Ar), 4.30 (dt, J = 5.6, 3.1 Hz, 1H, CH(4)), 4.26 (t, J = 5.4 Hz, 1H, CH(3)), 3.73 (dd, J = 11.1, 2.7 Hz, 1H, 1H) $CH_{2}(5)_{a}$, 3.63 (dd, J = 11.1, 3.6 Hz, 1H, $CH_{2}(5)_{b}$), 2.65–2.56 (m, 1H, CH(2)), 1.32 (d, J = 7.5 Hz, 3H, CH₃), 1.02 (m, 21H, CH(CH₃)₂, CH(CH₃)₂); ¹³C NMR (125 MHz, CDCl₃): δ 177.8 (C(1)), 137.5 (CAr), 128.5 (CHAr), 128.1 (CHAr), 128.0 (CHAr), 84.9 (CH(4)), 75.8 (CH(3)), 73.7 (CH₂Ar), 68.3 (CH₂(5)), 45.2 (CH(2)), 18.1 (CH(CH₃)₂), 13.8 (CH₃), 12.4 (CH(CH₃)₂); HRMS (ESI-TOF) calculated for $C_{22}H_{36}O_4Si [M+H]^+ m/z 393.2456$, found 393.2457; $\alpha_D^{21} = +14.1$ (c = 1.03, CHCl₃).


(3S,4R,5R)-5-(benzyloxymethyl)-3-fluoro-3-methyl-4-(triisopropylsilyloxy)-dihydrofuran-2(3H)-

one (33a). To a solution of (3S,4S,5R)-5-(benzyloxymethyl)-3-methyl-4-(triisopropylsilyloxy)-dihydrofuran-2(3H)-one (60 mg, 153 µmol, 1.0 equiv.) in CH₂Cl₂ (1.5 mL) at 0 °C was added triethylamine (68 µL, 489 µmol, 3.2 equiv.) followed by *tert*-butyldimethylsilyl trifluoromethanesulfonate (56 µL, 245 µmol, 1.6 equiv.). The reaction was stirred at 0 °C for 30 min then quenched by the addition of

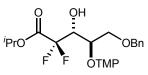
water (2 mL). The aqueous layer was extracted with CH_2Cl_2 (3 x 5 mL) and the combined organic layers were dried over Na_2SO_4 , filtered, and concentrated under vacuum. The product was carried forward. The crude silyl ketene acetal was dissolved in DMF (1.5 mL) and cooled to -40 °C and Selectfluor[®] (108 mg, 306 µmol, 2.0 equiv.) was added. The reaction was stirred at this temperature for 1 h then quenched by the addition of water (5 mL). The aqueous layer was extracted with EtOAc (3 x 5 mL) and the combined organic layers were dried over Na_2SO_4 , filtered, and concentrated under vacuum. The crude product was purified by flash chromatography using gradient elution 15:1 to 12:1 hexanes/Et₂O to yield the title compound (45.1 mg, 72% yield, dr >20:1), as a colorless oil. IR (thin film): 2925, 2867, 1802, 1463, 1364, 1322, 1208, 1139, 1102, 1057, 883, 820, 769, 740, 685 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.39–7.29 (m, 5H, Ar**H**), 4.80 (dd, *J* = 18.8, 7.6 Hz, 1H, CH(3)), 4.57 (s, 2H, C**H**₂Ar), 4.13–4.05 (m, 1H, C**H**(4)), 3.83–3.77 (m, 1H, C**H**₂(5)_a), 3.69 (dd, *J* = 11.5, 3.8 Hz, 1H, C**H**₂(5)_b), 1.58 (d, *J* = 19.8 Hz, 3H, C(2)C**H**₃), 1.08–1.01 (m, 21H, CH(C**H**₃)₂, C**H**(CH₃)₂); ¹³C NMR (125 MHz, CDCl₃): δ 172.0 (d, *J* = 26.3 Hz, C(1)), 137.2 (CAr), 128.5 (CHAr), 128.0 (CHAr), 128.0 (CHAr), 95.6 (d, *J* = 194.1 Hz, C(2)), 80.9 (d, *J* = 10.0 Hz, CH(4)), 73.8 (CH₂Ar), 73.7 (CH(3)), 66.7 (CH₂(5)), 17.8 (d, *J* = 4.1 Hz, CH(C**H**₃)₂), 16.1 (d, *J* = 25.9 Hz, CH₃), 12.4 (CH(CH₃)₂); ¹⁹F NMR (282 MHz, CDCl₃): δ -157.62 (dtd, *J* = 24.1, 22.6, 21.9, 18.5 Hz); HRMS (ESI-TOF) calculated for C₂₂H₃₅FO₄Si [M+H]⁺ m/z 411.2361, found 411.2361; $\alpha_D^{21} = +26.7$ (c = 0.49, CHCl₃).

(3S,4R,5R)-5-(benzyloxymethyl)-3-fluoro-3-methyl-4-(triisopropylsilyloxy)-tetrahydrofuran-2-ol

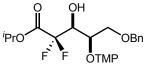


(33b). To a solution of (3S,4R,5R)-5-(benzyloxymethyl)-3-fluoro-3-methyl-4-(triisopropylsilyloxy)-dihydrofuran-2(3H)-one (45.1 mg, 110 µmol, 1.0 equiv.) in toluene (0.6 mL) at -78 °C was slowly added DIBAL-H (439 µL, 440 µmol, 1 M in toluene, 4.0 equiv.). The reaction was stirred at -78 °C for 1 h then quenched by the slow addition of MeOH (44 µL, 1.10 mmol, 10 equiv.) and allowed to warm up to

room temperature. A 0.1 M HCl solution (1 mL) was added and the mixture was stirred vigorously for 10 min. The aqueous layer was extracted with Et₂O (3 x 10 mL) and the combined organic layers were washed with a sat. aq. sol. of NaHCO₃, water and brine, then dried over Na₂SO₄, filtered, and concentrated under vacuum. The crude product was purified by preparative TLC plate using 5:1 hexanes/Et₂O to yield the title compound (38.8 mg, 86% yield as a 1:1 mixture of anomers) as a colorless oil. IR (thin film): 3438, 2923, 2866, 1463, 1380, 1068, 882, 822, 733, 682 cm⁻¹; ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3)$: major anomer: δ 7.41–7.28 (m, 5H, Ar**H**), 5.16 (brdd, J = 9.1, 9.1 Hz, 1H, CH(1)), 4.66–4.47 (m, 2H, CH₂Ar)), 4.37 (t, J = 6.6 Hz, 1H, CH(4)), 4.17 (d, J = 13.0 Hz, 1H, CH(3)), 3.63– $3.57 \text{ (m, 1H, CH}_2(5)_{a}), 3.53 \text{ (ddd, } J = 9.7, 6.9, 1.5 \text{ Hz}, 1\text{H}, \text{CH}_2(5)_{b}), 3.22 \text{ (d, } J = 10.7 \text{ Hz}, 1\text{H}, \text{OH}),$ 1.59 (d, J = 23.3 Hz, 3H, CH₂), 1.16–0.96 (m, 21H, CH₂, CH(CH₂)₂); minor anomer: δ 7.41–7.28 (m, 5H, ArH), 4.94 (brs, 1H, CH(1)), 4.66–4.47 (m, 3H, CH₂Ar, CH(3)), 3.89 (ddd, J = 5.1, 3.5, 3.5 Hz, 1H, CH(4)), 3.63–3.57 (m, 3H, CH₂(5), OH), 1.45 (d, J = 22.9 Hz, 3H, CH₃), 1.16–0.96 (m, 21H, CH(CH₃)₂, CH(CH₃)₂); ¹³C NMR (125 MHz, CDCl₃): major anomer: δ 137.1 (CAr), 128.7 (CHAr), 128.3 (CHAr), 127.9 (CHAr), 102.2 (d, J = 33.7 Hz, C(2)), 102.0 (d, J = 163.3 Hz, CH(1)), 85.9 $(CH(4)), 77.9 (d, J = 31.2 Hz, CH(3)), 73.8 (CH_2Ar), 70.5 (d, J = 4.1 Hz, CH_2(5)), 18.1 (CH(CH_3)_2),$ 18.1 (CH(CH₃)₂), 15.8 (d, J = 23.0 Hz, CH₃), 12.3 (CH(CH₃)₂); minor anomer: δ 138.1 (CAr), 128.4 (CHAr), 128.2 (CHAr), 127.8 (CHAr), 100.5 (d, J = 176.4 Hz, C(2)), 100.0 (d, J = 20.6 Hz, CH(1)), 82.6 (d, J = 7.9 Hz, CH(4)), 75.1 (d, J = 27.6 Hz, CH(3)), 73.5 (CH₂Ar), 69.2 (CH₂(5)), 18.0 $(CH(CH_3)_2)$, 18.0 $(CH(CH_3)_2)$, 17.0 $(d, J = 24.7 \text{ Hz}, CH_3)$, 12.4 $(CH(CH_3)_2)$; ¹⁹F NMR (282 MHz, CDCl₂): α -isomer: δ -153.66 to -154.22 (m), β -isomer: δ -165.58 to -166.01 (m); HRMS (ESI-TOF) calculated for $C_{22}H_{37}FO_4Si [M+Na]^+ m/z 435.2337$, found 435.2344.

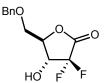

Synthesis of Gemcitabine from Aldehyde 1

(2R, 3R, 4R)-isopropyl


5-(benzyloxy)-2-fluoro-3-hydroxy-2-methyl-4-(2,2,6,6-tetramethylpiperidin-1-yloxy)pentanoate. To a solution of (*R*)-3-(benzyloxy)-2-((2,2,6,6-tetramethylpiperidin-1-yloxy)propanal (83% ee, 1.7 g, 5.32 mmol, 1.0 equiv.) and isopropyl 2-bromo-2,2-difluoroacetate (2.3 g, 10.6 mmol, 2.0 equiv.) in THF (27 mL) was added zinc (696 mg, 10.6 mmol,

2.0 equiv.) and the reaction was stirred at reflux for 2 h. The mixture was then allowed to cool down to room temperature before being quenched by the addition of a sat. aq. sol. of NH4Cl (15 mL). The aqueous layer was extracted with EtOAc (3 x 20 mL) and the combined organic layers were washed with brine, then dried over Na₂SO₄, filtered, and concentrated under vacuum. The crude product was obtained as a 1:2.6 mixture of diastereomers and was purified by flash chromatography using gradient elution 4:1 to 1:1 hexanes/Et₂O to yield the title compound (1.44 g, 3.15 mmol, 59% yield) as a colorless solid and the minor diastereomer (712.9 mg, 1.55 mmol, 29%) as a colorless solid. *anti*-

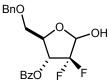
diastereomer: IR (thin film): 3450, 2980, 2933, 2872, 1771, 1755, 1454, 1376, 1362, 1300, 1209, 1183, 1088, 1059, 914, 823, 735, 697 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.37–7.27 (m, 5H, Ar**H**), 5.17 (hept, J = 6.3 Hz, 1H, C**H**(CH₃)₂), 4.70–4.59 (m, 1H, C**H**OHCF₂), 4.55 (s, 2H, C**H**₂Ar), 4.48 (d, J =


7.6 Hz, 1H, OH), 4.22–4.12 (m, 1H, CHOTMP), 4.08 (dd, J = 10.9, 3.0 Hz, 1H, CH₂OBn), 4.04 (dd, J = 10.9, 2.1 Hz, 1H, CH₂OBn), 1.62–1.09 (m, 24H, CH(CH₃)₂, TMP); ¹³C NMR (125 MHz, CDCl₃): δ 163.2 (dd, J = 33.4, 29.7 Hz, CO), 137.3 (CAr), 128.6 (CHAr), 128.0 (CHAr), 127.9 (CHAr), 114.9 (dd, J = 258.9, 254.8 Hz, CF₂), 77.6 (CHOTMP), 73.9 (CH₂Ar), 72.7 (dd, J = 27.4, 22.3 Hz, CHOH), 71.4 (CH(CH₃)₂), 70.9 (d, J = 3.5 Hz, CH₂OBn), 60.6, 60.4 ((CH₃)₂CNC(CH₃)₂), 40.6, 40.5 (CH₂CH₂CH₂), 33.8, 33.7 ((CH₃)_aCNC(CH₃)_a), 21.7, 21.6 ((CH₃)_bCNC(CH₃)_b), 20.7 (CH(CH₃)₂), 17.2 (CH₂CH₂CH₂); ¹⁹F NMR (282 MHz, CDCl₃): δ –113.59 (dd, J = 257.3, 6.4 Hz), –123.10 (dd, J = 256.9, 21.4 Hz). HRMS (ESI-TOF) calculated for C₂₄H₃₇F₂NO₅ [M+H]⁺ m/z 458.2713, found 458.2719; $\alpha_D^{20} = +8.58$ (c = 1.00, CHCl₃). *syn*-diastereomer: IR (thin film): 3558, 2981, 2932, 1771, 1454, 1376, 1363,

1300, 1208, 1182, 1093, 1027, 927, 821, 804, 735, 697 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.47–7.27 (m, 5H, Ar**H**), 6.31 (br s, 1H, O**H**), 5.18 (p, *J* = 6.3 Hz, 1H, C**H**(CH₃)₂), 4.72–4.50 (m, 3H, C**H**OH, C**H**₂Ar), 4.38 (dt, *J* = 6.4, 4.3 Hz, 1H, CHOTMP), 3.82 (dd, *J* = 10.5, 4.0 Hz, 1H, C**H**₂OBn), 3.75 (ddd,

J = 10.9, 4.7, 1.3 Hz, 1H, CH₂OBn), 1.66–1.04 (m, 24H, CH(CH₃)₂, TMP); ¹³C NMR (125 MHz, CDCl₃): δ 163.1 (dd, J = 33.3, 29.8 Hz, CO), 138.5 (CAr), 128.4 (CHAr), 127.6 (CHAr), 127.5 (CHAr), 114.7 (dd, J = 259.1, 253.2 Hz, CF₂), 77.7 (d, J = 2.1 Hz, CHOTMP), 73.4 (CH₂Ar), 72.3 (dd, J = 28.9, 23.2 Hz, CHOH), 71.2 (CH(CH₃)₂), 68.1 (d, J = 3.2 Hz, CH₂OBn), 61.2, 61.0 ((CH₃)₂CNC(CH₃)₂), 40.3, 40.1 (CH₂CH₂CH₂), 33.8, 32.3 ((CH₃)_aCNC(CH₃)_a), 21.7, 21.6 ((CH₃)_bCNC(CH₃)_b), 20.6 (CH(CH₃)₂), 17.1 (CH₂CH₂CH₂); ¹⁹F NMR (282 MHz, CDCl₃): δ –111.02 (dd, J = 257.4, 6.4 Hz), –123.48 (dd, J = 257.5, 17.9 Hz); HRMS (ESI-TOF) calculated for C₂₄H₃₈F₂NO₅ [M+H]⁺ m/z 458.2713, found 458.2707; $\alpha_{D}^{21} = -3.14$ (c = 1.00, CHCl₃).

(4R,5R)-5-(benzyloxymethyl)-3,3-difluoro-4-hydroxy-dihydrofuran-2(3H)-one. To a solution of


(2R, 3R, 4R)-isopropyl 5-(benzyloxy)-2-fluoro-3-hydroxy-2-methyl-4-(2,2,6,6tetramethylpiperidin-1-yloxy)pentanoate (2.16 g, 4.72 mmol, 1 equiv.) in water (15 mL), ethanol (3 mL), EtOAc (3 mL) and glacial acetic acid (9 mL) was added zinc powder (3.1 g, 47.2 mmol, 10 equiv.) and the reaction mixture was sonicated at

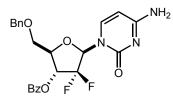
room temperature for 4 h. The reaction was then diluted with EtOAc (20 mL) and poured into a sat. aq. sol. of NaHCO₃ (20 mL). The aqueous layer was extracted with EtOAc (3 x 20 mL) and the combined organic layers were washed with brine then dried over Na2SO4, filtered, and concentrated under vacuum. To the crude product was added acetonitrile (10 mL) and glacial acetic acid (1 mL) and the mixture was stirred under reflux for 2 days. Once the cyclization was complete the volatiles were removed in vacuo to yield the title compound (1.03 g, 3.99 mmol, 85% yield), as a colorless solid. IR (thin film): 3441, 3030, 2871, 1809, 1454, 1364, 1311, 1205, 1105, 1039, 933, 910, 821, 803, 739, 697 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.43–7.28 (m, 5H, ArH), 4.64–4.51 (m, 3H, CH₂Ar, CH(3)), 4.45 (dt, J = 6.7, 3.8 Hz, 1H, CH(4)), 3.81 (ddd, J = 11.5, 3.5, 1.6 Hz, 1H, CH₂(5)), 3.77 (dd, J = 11.3, 3.4)Hz, 1H, CH₂(5)_b), 2.74 (s, 1H, OH); ¹³C NMR (125 MHz, CDCl₃): δ 163.6 (dd, J = 33.9, 30.6 Hz, C(1)), 136.9 (CAr), 128.8 (CHAr), 128.3 (CHAr), 128.0 (CHAr), 112.5 (dd, J = 261.3, 254.1 Hz, $CF_{2}(2)$, 80.6 (d, J = 8.0 Hz, CH(4)), 73.9 ($CH_{2}Ar$), 69.2 (dd, J = 25.8, 17.5 Hz, CH(3)), 66.5 ($CH_{2}(4)$); ¹⁹F NMR (282 MHz, CDCl₃): δ –118.44 (dd, J = 280.2, 10.6 Hz), –124.33 (dd, J = 280.3, 10.9 Hz); HRMS (ESI-TOF) calculated for $C_{12}H_{12}F_2O_4$ [M+H₂O+Na]⁺ m/z 299.0702, found 299.0704.

(2R,3R)-2-(benzyloxymethyl)-4,4-difluoro-5-hydroxy-tetrahydrofuran-3-yl benzoate (34). To a

solution of (4R,5R)-5-(benzyloxymethyl)-3,3-difluoro-4-hydroxy-dihydrofuran-

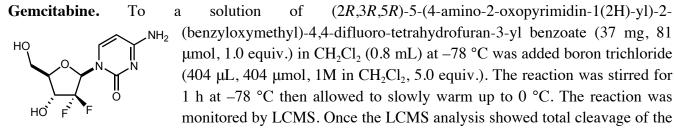
2(3H)-one (456 mg, 1.76 mmol, 1.0 equiv.) and pyridine (0.43 mL, 5.30 mmol, 3.0

equiv.) in CH₂Cl₂ (8.83 mL) at 0 °C was added benzoyl chloride (307 µL, 2.65 mmol, 1.5 equiv.). The reaction was stirred at 0 °C for 1 h then quenched by the addition of water (10 mL) and diluted with CH₂Cl₂ (10 mL). The aqueous layer was extracted with CH_2Cl_2 (3 x 10 mL) and the combined organic layers were washed with brine then dried over Na₂SO₄, filtered, and concentrated under vacuum. The crude product was then used immediately for the next step. To a solution of the crude (2R, 3R, 4S)-2-(benzyloxymethyl)-4-fluoro-5-oxo-tetrahydrofuran-3-yl benzoate in a mixture of THF (1.4 mL) and Et₂O (5.6 mL) at 0 °C was slowly added lithium tri-tertbutoxyaluminum hydride (2.29 mL, 2.29 mmol, 1.2 equiv.). The reaction mixture was stirred for 1 h at 0 °C before being quenched by the slow addition of MeOH (143 μ L, 3.53 mmol, 2.0 equiv.). The mixture was allowed to warm up to room temperature and a solution of 1 M HCl (3 mL) was added. The aqueous layer was extracted with Et₂O (3 x 10 mL) and the combined organic layers were washed with a sat. aq. sol. of NaHCO₃, water and brine then dried over Na₂SO₄, filtered, and concentrated under vacuum. The crude product was purified by flash chromatography using 1:1 hexanes/Et₂O to yield the title compound (486 mg, 1.33 mmol, 76% yield) as a colorless liquid. IR (thin film): 3406, 3032, 2923, 2870, 1730, 1601, 1585, 1496, 1452, 1362, 1264, 1215, 1088, 1068, 1026, 871, 822, 736, 708, 697 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): major anomer δ 8.13–7.98 (m, 2H, CHAr), 7.67–7.58 (m, 1H, CHAr), 7.52–7.45 (m, 2H, CHAr), 7.42–7.27 (m, 5H, CHAr), 5.72 (ddd, J = 10.1, 10.1, 4.9 Hz, 1H, CH(3)), 5.18 (dd, J = 10.7, 6.3 Hz, 1H, CH(1)), 4.75 (d, J = 11.7 Hz, 1H, CH₂Ar), 4.70 (d, J = 10.7 Hz, 1H, 2H₂Ar), 4.70 (d, J = 10. 11.7 Hz, 1H, CH₂Ar), 4.67–4.50 (m, 1H, OH), 4.40–4.34 (m, 1H, CH(4)), 3.84 (dd, J = 10.4, 2.2 Hz,


1H, CH₂(5)_a), 3.81–3.73 (m, 1H, CH₂(5)_b); minor anomer δ 8.13–7.98 (m, 2H, CHAr), 7.67–7.58 (m, 1H, CHAr), 7.52–7.45 (m, 2H, CHAr), 7.42–7.27 (m, 5H, CHAr), 5.48–5.40 (m, 2H, CH(1) and CH(3)), 4.67–4.50 (m, 3H, CH₂Ar, CH(4)), 3.81–3.73 (m, 2H, CH₂(5)), 3.26 (d, *J* = 5.5 Hz, 1H, OH); ¹³C NMR (125 MHz, CDCl₃): major anomer δ 165.3 (CO), 136.2 (CAr), 134.1 (CHAr), 130.2 (CHAr), 128.8 (CHAr), 128.7 (CAr), 128.6 (CHAr), 128.2 (CHAr), 127.8 (CHAr), 124.6–121.5 (m, CF₂(2)), 96.5–96.1 (m, CH(1)), 80.9 (d, *J* = 7.8 Hz, CH(4)), 74.3 (CH₂Ar), 72.2–71.5 (CH(3)), 69.2 (CH₂(5)); minor anomer δ 165.7 (CO), 137.6 (CAr), 134.0 (CHAr), 130.2 (CHAr), 128.9 (CHAr), 128.7 (CHAr), 128.6 (CAr), 128.7 (CAr), 122.5–118.7 (m, CF₂(2)), 96.3 (dd, *J* = 64.5, 30.6 Hz, CH(1)), 80.5–80.3 (m, CH(4)), 73.8 (CH₂Ar), 71.9 (dd, *J* = 16.9, 6.1 Hz, CH(3)), 69.1 (CH₂(5)); ¹⁹F NMR (282 MHz, CDCl₃): major anomer δ –109.76 (ddd, *J* = 250.4, 16.1, 6.7 Hz), –125.17 (dd, *J* = 250.8, 1.7 Hz); minor anomer δ –120.98 (dd, *J* = 241.8, 9.7 Hz), –122.18 (ddd, *J* = 241.8, 10.5, 5.8 Hz), HRMS (ESI-TOF) calculated for C₁₉H₁₈F₂O₅ [M+H]⁺ m/z 365.1195, found 364.1122.

(2*R*,3*R*)-2-(benzyloxymethyl)-4,4-difluoro-5-iodo-tetrahydrofuran-3-ylbenzoate.¹⁹ To a solution of BnO CR,3R)-2-(benzyloxymethyl)-4,4-difluoro-5-hydroxy-tetrahydrofuran-3-yl benzoate(300 mg, 823 µmol, 1.0 equiv.) and Et₃N (230 µL, 1.647 mmol, 2.0 equiv.) in $<math>CH_2Cl_2$ (8.2 mL) at 0 °C was added methanesulfonyl chloride (76 µL, 988 µmol, 1.2 equiv.). The reaction was stirred for 2 h at 0 °C then allowed to warm up to room temperature and stirred 1 h before being quenched by the addition of a sat. aq. sol. of

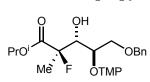
NaHCO₃ and diluted with CH₂Cl₂ (10 mL). The aqueous layer was extracted with CH₂Cl₂ (3 x 10 mL) and the combined organic layers were washed with brine then dried over Na₂SO₄, filtered, and concentrated under vacuum. The crude product was then used immediately for the next step. To a solution of the crude (2R,3R)-2-(benzyloxymethyl)-4,4-difluoro-5-(methylsulfonyloxy)tetrahydrofuran-3-yl benzoate in acetone (5.5 mL) was added sodium iodide (1.23 g, 8.23 mmol, 10 equiv.) and the reaction was stirred under reflux for 2 h. The reaction was then cooled to room temperature and filtered through celite, the filtrate was concentrated in vacuo. The residue was diluted with CH₂Cl₂ (10 mL) and water (10 mL), the aqueous layer was extracted with CH₂Cl₂ (3 x 10 mL) and the combined organic layers were washed with a 5% aq. sol. of NaHSO₃, 1:1 mixture brine:water, brine, then dried over Na₂SO₄, filtered, and concentrated under vacuum. The crude product was purified by flash chromatography using 20:1 hexanes/Et₂O to yield the title compound (337 mg, 711 µmol, 86% yield) as a colorless liquid. IR (thin film): 3032, 2865, 1731, 1601, 1495, 1452, 1320, 1264, 1219, 1178, 1112, 1094, 1053, 863, 737, 696, 679 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 8.20–8.11 (m, 2H, ArH), 7.67–7.60 (m, 1H, ArH), 7.51–7.48 (m, 2H, ArH), 7.39–7.27 (m, 5H, ArH), 6.91 (dd, J = 10.9, 1.3 Hz, 1H, CH(1)), 5.53 (ddd, J = 17.1, 5.1, 1.2 Hz, 1H, CH(3)), 4.66–4.59 (m, 2H, CH₂Ar), 4.50 (dd, J = 4.5, 4.5 Hz, 1H, CH(4)), 3.93–3.81 (m, 2H, CH₂(5)); ¹³C NMR (125 MHz, CDCl₂): δ 165.1 (CO), 137.5 (CAr), 134.1 (CHAr), 130.3 (CHAr), 128.8 (CHAr), 128.6 (CHAr), 128.5 (CAr), 128.0 (CHAr), 127.8 (CHAr), 121.4 (dd, J = 269.7, 254.7 Hz, $CF_2(2)$), 84.3 (CH(4)), 73.9 (CH₂Ar), 71.7 (dd, J = 37.5, 17.7 Hz, CH(3)), 67.5 (CH₂(5)), 67.1 (d, J = 31.0 Hz, CH(1)); ¹⁹F NMR (282 MHz, CDCl₃): δ -100.63 (ddd, J = 235.5, 16.9, 10.9 Hz), -104.01 (d, J = 235.5 Hz); HRMS (ESI-TOF) calculated for $C_{19}H_{17}F_2IO_4$ [M+H]⁺ m/z 475.0212, found 475.0213.


¹⁹ Chien, C.; Chien, P.-S.; Hwang, C.-K.; Stereoselective Synthesis of Beta-Nucleosides. European Patent 2,508,528, Oct 10, 2012.

(2R,3R,5R)-5-(4-amino-2-oxopyrimidin-1(2H)-yl)-2-(benzyloxymethyl)-4,4-difluoro-

tetrahydrofuran-3-yl benzoate. To a suspension of cytosine (0.2 g, 1.8 mmol, 1.0 equiv.), in hexamethyldisilazane (2.0 mL) was added diammonium sulfate (5.95 mg, 45 μ mol, 0.025 equiv.). The reaction was stirred at 150 °C for 2 h after complete dissolution of the reagents, and then allowed to cool down to room temperature. The volatiles were

removed in vacuo. The residue was co-evaporated 3 times with toluene, and dried under high vacuum for 3 h to obtain a colorless gummy solid. To a solution of (2R,3R)-2-(benzyloxymethyl)-4,4-difluoro-5-iodo-tetrahydrofuran-3-yl benzoate (20.7 mg, 44 µmol, 1.0 equiv.), freshly prepared N-(trimethylsilyl)-2-((trimethylsilyl)oxy)pyrimidin-4-amine (112 mg, 436 µmol, 10 equiv.) in DCE (0.6 mL) was added potassium persulfate (5.9 mg, 22 µmol, 0.5 equiv.). The white suspension was stirred at 80 °C for 50 h. Upon completion, the reaction mixture was diluted with EtOAc and a sat. aq. sol. of NaHCO₃ was slowly added. The mixture was stirred for 30 min at room temperature then filtered through a pad of celite. The filtrate was washed with water and brine, then dried over Na₂SO₄, filtered, and concentrated under vacuum. The crude product was obtained as a 4:1 mixture of β : α anomers. It was purified by flash chromatography using 20:1 CH₂Cl₂/MeOH to yield the title compound as a 4:1 mixture of β:α anomers (15.7 mg, 34 μmol, 79% yield). IR (thin film): 3336, 3200, 1735, 1647, 1491, 1453, 1400, 1269, 1205, 1100, 1070, 785, 709 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): β-anomer δ 8.11– 8.06 (m, 2H, ArH), 7.70 (d, J = 7.5 Hz, 1H, CH(6)), 7.66–7.59 (m, 1H, ArH), 7.51–7.43 (m, 2H, ArH), 7.39–7.27 (m, 5H, ArH), 6.53 (t, J = 8.3 Hz, 1H, CH(1')), 5.70 (ddd, J = 12.4, 7.0, 7.0 Hz, 1H, CH(3')), 5.56 (d, *J* = 7.5 Hz, 1H, CH(5)), 4.71–4.53 (m, 2H, CH₂Ar), 4.35 (ddd, *J* = 6.5, 3.1, 3.1 Hz, 1H, CH(4')), 3.92 (dd, J = 11.0, 2.7 Hz, 1H, CH₂(5')_a), 3.82–3.51 (m, 1H, CH₂(5')_b); α -anomer δ 8.03-7.96 (m, 2H, ArH), 7.66-7.59 (m, 2H, CH(6), ArH), 7.51-7.43 (m, 2H, ArH), 7.39-7.27 (m, 5H, ArH), 6.63 (t, J = 7.6 Hz, 1H, CH(1')), 5.81–5.74 (m, 2H, CH(3') and CH(5)), 4.71–4.53 (m, 3H, CH(4'), CH₂Ar), 3.82–3.51 (m, 2H, CH₂(4')); ¹³C NMR (125 MHz, CDCl₃): β -anomer δ 165.7 (CO), 164.9 (CO), 155.4 (C(4)), 141.6 (CH(6)), 137.3 (CAr), 134.1 (CHAr), 130.1 (CHAr), 128.7 (CHAr), 128.6 (CHAr), 128.2 (CAr), 128.0 (CHAr), 127.8 (CHAr), 121.3 (t, J = 262.0 Hz, $CF_2(2')$), 95.2 (CH(5)), 84.6–83.6 (m, CH(1')), 78.6 (CH(4')), 73.7 (CH₂Ar), 70.8–70.0 (m, CH(3')), 67.7 (CH₂(5')); α-anomer δ 165.9 (CO), 164.7 (CO), 155.5 (C(4)), 140.7 (CH(6)), 137.2 (CAr), 134.1 (CHAr), 130.0 (CHAr), 128.7 (CHAr), 128.6 (CHAr), 128.2 (CAr), 128.0 (CHAr), 124.6-119.6 (CF₂(2')), 95.2 (CH(5)), 85.0 (dd, J = 39.8, 21.2 Hz, CH(1')), 81.3 (CH(4')), 73.8 (CH₂Ar), 72.5 (dd, J = 31.6, 17.2 Hz, CH(3')), 69.1 (CH₂(5')); ¹⁹F NMR (282 MHz, CDCl₃): β-anomer δ –115.21 (dt, J = 244.8, 10.1 Hz), -118.00 (d, J = 247.4 Hz); α-anomer δ -110.45 (d, J = 246.9 Hz), -122.51 (d, J = 247.5 Hz); HRMS (ESI-TOF) calculated for $C_{23}H_{21}F_2N_3O_5$ [M+H]⁺ m/z 458.1522, found 458.1530.


Bn protecting group, MeOH (0.7 mL) was added at 0 °C and the reaction was allowed to warm up to

S70

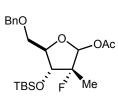
room temperature and stirred for 1 h. Then the reaction was cooled to -40 °C and a solution of freshly condensed ammonia in MeOH at -20 °C was added. The resulting mixture was stirred at 0 °C for 2 h then at room temperature 24 h. Once the LCMS showed total cleavage of the Bz protecting group, the volatiles were removed in vacuo. The crude product was purified by flash chromatography using gradient elution 85:15:1 to 75:25:1 CH₂Cl₂/MeOH/NH₄OH. The purified product was then dissolved in isopropanol, filtered through a 40 µm filter and concentrated to yield the title compound as a 4:1 mixture of β:α anomers (19.5 mg, 74 μmol, 92% yield). IR (thin film): 3131, 3040, 2851, 2290, 1728, 1644, 1603, 1489, 1400, 1288, 1251, 1199, 1122, 1054, 783 cm⁻¹; ¹H NMR (500 MHz, DMSO, 7.5 Hz, 1H, CH(5)), 4.15–4.04 (m, 1H, CH(3')), 3.80–3.75 (m, 2H, CH(4'), CH₂(5')), 3.59 (dd, J =12.7, 3.6 Hz, 1H, CH₂(5')_b); α -anomer δ 7.53 (d, J = 7.6 Hz, 1H, CH(6)), 6.23 (dd, J = 10.3, 6.2 Hz, 1H, CH(1')), 5.82 (d, J = 7.5 Hz, 1H, CH(5)), 4.34–4.25 (m, 1H, CH(3')), 3.80–3.73 (m, 2H, CH(4')), $CH_2(5')_a$ 3.50 (dd, J = 12.4, 4.5 Hz, 1H, $CH_2(5')_b$); ¹³C NMR (125 MHz, DMSO, D₂O): β -anomer δ 166.1 (CO), 155.6 (C(4)), 141.4 (CH(6)), 123.6 (t, J = 257.9 Hz, $CF_2(2')$), 95.3 (CH(5)), 86.0–82.6 (CH(1')), 81.0 (CH(4')), 69.2 (t, J = 22.4 Hz, CH(3')), 59.4 $(CH_2(5'))$; α -anomer δ 166.1 (CO), 155.8 $(C(4)), 142.0 (CH(6)), 123.6 (t, J = 257.9 Hz, CF_2(2')), 95.1 (CH(5)), 84.7-83.5 (m, CH(1')), 80.9$ (CH(4')), 70.2 (t, J = 22.3 Hz, CH(3')), 60.4 $(CH_2(5'))$; ¹⁹F NMR (282 MHz, DMSO, D₂O): β -anomer δ -116.78 (s); α-anomer δ -114.57 (d, J = 233.0 Hz), -123.75 to -125.13 (m); HRMS (ESI-TOF) calculated for $C_0H_{11}F_2N_3O_4$ [M+H]⁺ m/z 264.0790, found 264.0789.

Synthesis of PSI-6130 from Aldehyde 1

(2R,3R,4R)-isopropyl 5-(benzyloxy)-2-fluoro-3-hydroxy-2-methyl-4-(2,2,6,6-tetramethylpiperidin-

1-yloxy)pentanoate (36). The compound was synthesized following the general Mukaiyama aldol procedure with α -OTMP-aldehyde and silylketene acetals using TiCl₂(O'Pr)₂ (2.36 g, 9.94 mmol, 3.0 equiv.), (*R*)-3-(benzyloxy)-2-(2.2,6,6-tetramethylpiperidin-1-yloxy)propanal (83% ee, 1.06 g, 3.31

mmol, 1.0 equiv.), tert-butyl((2-fluoro-1-isopropoxyprop-1-en-1-yl)oxy)dimethylsilane (2.47 g, 9.94 mmol, 3.0 equiv.) and CH₂Cl₂ (17 mL). The title compound was obtained as a 9:1 diastereoisomeric mixture which was separated by flash chromatography using gradient elution 15:1 to 5:1 hexanes/Et₂O to yield the title compound (1.18 g, 79% yield, dr >20:1). IR (thin film): 3464, 2978, 2930, 1751, 1731, 1453, 1375, 1362, 1272, 1182, 1130, 1089, 958, 935, 835, 821, 734, 697 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.36–7.27 (m, 5H, ArH), 5.05 (hept, *J* = 6.3 Hz, 1H, CH(CH₃)₂), 4.56 (d, *J* = 11.6 Hz, 1H, CH₂Ar), 4.51 (d, *J* = 11.5 Hz, 1H, CH₂Ar), 4.35 (d, *J* = 7.7 Hz, 1H, OH), 4.29 (ddd, *J* = 27.9, 7.7, 3.5 Hz, 1H, CHOH), 4.12–4.07 (m, 1H, CHCH₂O), 4.06–4.00 (m, 1H, CHCH₂O), 3.86–3.77 (m, 1H, CH₂CHO), 1.67 (d, *J* = 22.0 Hz, 3H, CH₃), 1.61–1.22 (m, 18H, OTMP), 1.18 (d, *J* = 8.7 Hz, 3H, CH(CH₃)₂), 1.09 (d, *J* = 6.7 Hz, 3H, CH(CH₃)₂); ¹³C NMR (125 MHz, CDCl₃): δ 170.8 (d, *J* = 24.6 Hz, OCO), 137.6 (CAr), 128.5 (CHAr), 127.9 (CHAr), 127.9 (CHAr), 96.1 (d, *J* = 192.4 Hz, CFCH₃), 79.5 (CHOTMP), 75.7 (d, *J* = 20.1 Hz, CHOH), 73.8 (CH₂Ar), 71.4 (d, *J* = 5.0 Hz, CH₂OBn), 69.7 (CH(CH₃)₂), 60.5, 60.1 ((CH₃)₂), 20.4 (d, *J* = 25.0 Hz, CFCH₃), 20.7, 20.7 (CH(CH₃)₂), 17.2

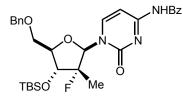

 $(CH_2CH_2CH_2)$; ¹⁹F NMR (282 MHz, CDCl₃): δ –172.18 (dq, J = 29.7, 22.0 Hz); HRMS (ESI-TOF) calculated for C₂₅H₄₀FNO₅ [M+H]⁺ m/z 454.2963, found 454.2965; α_D^{21} = –4.00 (c = 0.34, CHCl₃).

(3R,4R,5R)-5-(benzyloxymethyl)-3-fluoro-4-hydroxy-3-methyl-dihydrofuran-2(3H)-one (37). To a solution of (2R,3R,4R)-isopropyl 5-(benzyloxy)-2-fluoro-3-hydroxy-2-methyl-4-BnQ (2,2,6,6-tetramethylpiperidin-1-yloxy)pentanoate (1.49 g, 3.28 mmol, 1.0 equiv.) in water (20 mL), ethanol (4 mL), EtOAc (4 mL) and glacial acetic acid (7 mL) was F added zinc powder (2.15 g, 32.8 mmol, 10 equiv.) and the reaction mixture was ноÌ Ме sonicated at room temperature for 2 h. The reaction was then diluted with EtOAc (20 mL) and poured into a sat. aq. sol. of NaHCO₃ (20 mL). The aqueous layer was extracted with EtOAc (3 x 20 mL) and the combined organic layers were washed with brine then dried over Na₂SO₄, filtered, and concentrated under vacuum. To the crude product was added toluene (10 mL) and trifluoroacetic acid (1 mL) and the mixture was stirred at room temperature for 1 day. Once the cyclization was completed, the volatiles were removed in vacuo and the crude product was purified by flash chromatography using 5:1 hexanes/EtOAc to yield the title compound (667 mg, 80% yield), as a colorless solid. Recrystallization was carried out as follows: the purified solid was dissolved in a minimum of refluxing EtOAc, then a small quantity of hexanes was added to the solution which was left standing to cool down to room temperature. After crystal growth had stopped (2 days) the remaining solvent was removed and the crystals were rinsed with a cold mixture of hexanes and EtOAc. Chiral HPLC analysis of the crystal showed 99.9% ee. Chiral HPLC analysis of the filtrate gave 70% ee. The recovered product in the filtrate was crystallized and the all process repeated 3 times to afford 514.8 mg of crystals with ee 99% and 156 mg of filtrate (ee 33%). IR (thin film): 3444, 2918, 2866, 1795, 1454, 1385, 1206, 1148, 1106, 1051, 953, 868, 741, 699 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.40–7.28 (m, 5H, ArH), 4.64–4.54 (m, 2H, CH₂Ar), 4.41 (ddd, J = 6.9, 3.7, 2.7 Hz, 1H, CH(4)), 4.20–4.07 (m, 1H, CH(3)), 3.86 (dd, J = 11.5, 2.8 Hz, 1H, $CH_2(5)_a$), 3.76 (dd, J = 11.5, 3.7 Hz, 1H, $CH_2(5)_b$), 2.30 (brd, J = 8.4 Hz, 1H, OH), 1.64 (d, J = 24.1 Hz, 3H, CH₃); ¹³C NMR (125 MHz, CDCl₃): δ 170.1 (d, J = 21.7 Hz, C(1)), 137.3 (CAr), 128.7 (CHAr), 128.2 (CHAr), 127.9 (CHAr), 92.3 (d, J = 179.2 Hz, C(2)), 81.9 (CH(4)), 73.8 (CH₂Ar), 72.6 (d, J = 17.4 Hz, CH(3)), 67.1 (CH₂(5)), 17.7 (d, J = 25.2 Hz, CH₃); ¹⁹F NMR (282 MHz, CDCl₃): δ -171.23 (qd, J = 24.0, 23.6, 18.0 Hz); HRMS (ESI-TOF) calculated for C₁₃H₁₅FO₄ [M+H]⁺ m/z 255.1027, found 255.1023; $\alpha_D^{22} = +82.3$ (c = 0.97, CHCl₃). The configuration and absolute stereochemistry was confirmed by single-crystal X-ray analysis (see appendix).

(3R,4R,5R)-5-(benzyloxymethyl)-4-(tert-butyldimethylsilyloxy)-3-fluoro-3-methyl-dihydrofuran-

BnO **2(3H)-one.** To a solution of (3R,4R,5R)-5-(benzyloxymethyl)-3-fluoro-4-hydroxy-3methyl-dihydrofuran-2(3H)-one (200 mg, 787 µmol, 1.0 equiv.) in CH₂Cl₂ (2.6 mL) at 0 °C was added 2,6-lutidine (183 µL, 1.57 mmol, 2.0 equiv.) and *tert*butyldimethylsilyl trifluoromethanesulfonate (271 mL, 1.18 µmol, 1.5 equiv.). The reaction mixture was stirred for 15 min at 0 °C then warmed to room temperature and allowed to stir for an additional hour. It was then quenched by the addition of a sat. aq. sol. of NaHCO3 (3 mL). The resulting mixture was added to water, the aqueous layer was extracted with Et₂O (3 x 20 mL) and the combined organic layers were washed with brine then dried over Na₂SO₄, filtered, and concentrated under vacuum. The crude product was purified by flash chromatography using 10:1 hexanes/Et₂O to yield the title compound (275.8 mg, 748 μmol, 95 % yield) as a colorless solid. IR (thin film): 2954, 2932, 2893, 2859, 1798, 1473, 1454, 1384, 1362, 1254, 1210, 1157, 1109, 1056, 839, 780, 698 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.41–7.28 (m, 5H, Ar**H**), 4.56 (s, 2H, C**H**₂Ar), 4.42 (dt, J = 7.3, 2.7 Hz, 1H, C**H**(4)), 4.16 (dd, J = 19.4, 7.3 Hz, 1H, C**H**(3)), 3.84 (dd, J = 11.7, 2.2 Hz, 1H, C**H**₂(5)_a), 3.66 (dd, J = 11.7, 3.1 Hz, 1H, C**H**₂(5)_b), 1.56 (d, J = 22.9 Hz, 3H, C**H**₃), 0.90 (s, 9H, C(C**H**₃)₃), 0.12 (s, 3H, SiC**H**₃), 0.06 (s, 3H, SiC**H**₃); ¹³C NMR (125 MHz, CDCl₃): δ 170.9 (d, J = 21.5 Hz, C(1)), 137.3 (CAr), 128.6 (CHAr), 128.1 (CHAr), 128.0 (CHAr), 91.7 (d, J = 185.1 Hz, C(2)), 81.8 (CH(4)), 73.8 (CH₂Ar), 72.4 (d, J = 16.3 Hz, CH(3)), 66.2 (CH₂(5)), 25.7 (C(CH₃)), 18.2 (d, J = 25.5 Hz, CH₃), 18.1 ((**C**(CH₃))), -4.3 (SiCH₃), -4.7 (SiCH₃); ¹⁹F NMR (282 MHz, CDCl₃): δ -171.34 (qd, J = 23.0, 19.1 Hz); HRMS (ESI-TOF) calculated for C₁₉H₂₉FO₄Si [M+Na]⁺ m/z 391.1711, found 391.1704; $\alpha_D^{21} =$ +86.3 (c = 1.05, CHCl₃).

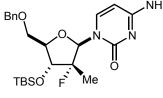
(3R,4R,5R)-5-(benzyloxymethyl)-4-(tert-butyldimethylsilyloxy)-3-fluoro-3-methyl-



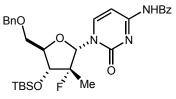
tetrahydrofuran-2-yl acetate. To a solution of (3R,4R,5R)-5-(benzyloxymethyl)-4-(tert-butyldimethylsilyloxy)-3-fluoro-3-methyl-dihydrofuran-2(3H)-one (228 mg, 619 µmol, 1.0 equiv.) in CH₂Cl₂ (4.2 mL) at -78 °C was slowly added DIBAL-H (1.54 mL, 1.55 mmol, 1 M in toluene, 2.5 equiv.). The mixture was allowed to stir at -78 °C for 2 h, then pyridine (188 µL, 2.32 mmol, 3.75 equiv.)

was added followed by DMAP (189 mg, 1.55 mmol, 2.5 equiv.) as a solution in CH₂Cl₂ (0.3 mL) and acetic anhydride (467 μ L, 4.95 mmol, 8.0 equiv.). The resulting solution was allowed to stir for 2 h at – 78 °C before being warmed to 0 °C over several hours. The mixture was stirred at 0 °C for another hour before being quenched by the addition of a sat. aq. sol. of NH_4Cl (5 mL) and allowed to warm up to room temperature. The aqueous layer was extracted with CH₂Cl₂ (3 x 10 mL) and the combined organic layers were washed with brine, then dried over Na₂SO₄, filtered, and concentrated under vacuum. The crude product was purified by flash chromatography using 15:1 hexanes/Et₂O to yield the title compound (234.9 mg, 569 µmol, 92% yield as a 1:1.1 anomeric mixture) as a colorless solid. IR (thin film): 2954, 2930, 2858, 1749, 1473, 1454, 1373, 1252, 1227, 1155, 1089, 1011, 872, 839, 778, 736, 698 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): minor isomer: δ 7.38–7.27 (m, 5H, ArH), 6.04 (s, 1H, CH(1)), 4.62–4.52 (m, 2H, CH₂Ar), 4.11 (dt, J = 7.9, 2.5 Hz, 1H, CH(4)), 3.89 (dd, J = 11.0, 6.8 Hz, 1H, CH(3)), 3.74 (dd, J = 11.4, 2.2 Hz, 1H, CH₂(5)_a), 3.61–3.54 (m, 1H, CH₂(5)_b), 2.13 (s, 3H, $COCH_3$), 1.47 (d, J = 22.0 Hz, 3H, CH_3), 0.90 (s, 9H, $C(CH_3)_3$), 0.08 (s, 3H, $SiCH_3$), 0.02 (s, 3H, SiCH₃); major isomer: δ 7.38–7.27 (m, 5H, ArH), 6.03 (d, J = 4.8 Hz, 1H, CH(1)), 4.62–4.52 (m, 2H, CH_2Ar), 4.24–4.20 (m, 1H, CH(4)), 4.17 (d, J = 8.3 Hz, 1H, CH(3)), 3.70 (dd, J = 11.2, 2.7 Hz, 1H, $CH_{2}(5)_{a}$, 3.61–3.54 (m, 1H, $CH_{2}(5)_{b}$), 1.94 (s, 3H, $COCH_{3}$), 1.40 (d, J = 22.3 Hz, 3H, CH_{3}), 0.88 (s, 9H, C(CH₃)₃), 0.12 (s, 3H, SiCH₃), 0.06 (s, 3H, SiCH₃); ¹³C NMR (125 MHz, CDCl₃): minor isomer: δ 170.2 (OCO), 137.8 (CAr), 128.5 (CHAr), 127.9 (CHAr), 127.7 (CHAr), 98.8 (d, J = 17.2 Hz, CH(1)), 95.0 (d, J = 201.3 Hz, C(2)), 82.3 (d, J = 1.7 Hz, CH(4)), 74.2 (d, J = 16.9 Hz, CH(3)), 73.6 (CH₂Ar), 68.1 (CH₂(5)), 25.7 (C(CH₃)), 21.2 (COCH₃), 21.0 (d, J = 25.8 Hz, CH₃), 18.1 (C(CH₃)), -4.3 (SiCH₃), -4.7 (SiCH₃); major isomer: δ 169.6 (OCO), 138.3 (CAr), 128.4 (CHAr), 127.9 (CHAr), 127.5 (CHAr), 99.4 (d, J = 181.7 Hz, C(2)), 98.5 (d, J = 35.7 Hz, CH(1)), 84.0 (d, J = 1.1 Hz, CH(4)), 73.3 (CH_2Ar) , 73.0 (d, J = 16.3 Hz, CH(3)), 68.3 (CH₂C(5)), 25.7 (C(CH₃)), 21.2 (COCH₃), 18.1 (C(CH₃)), 16.5 (d, J = 24.7 Hz, CH₃), -4.1 (SiCH₃), -4.5 (SiCH₃); ¹⁹F NMR (282 MHz, CDCl₃): δ -173.11 (qdd,

J = 22.3, 22.4, 10.4 Hz), -173.81 (qdd, J = 22.0, 10.8, 5.5 Hz); HRMS (ESI-TOF) calculated for C₂₁H₃₃FO₅Si [M+NH₄]⁺ m/z 430.2420, found 430.2417.


N-(1-((2R,3R,4R,5R)-5-(benzyloxymethyl)-4-(tert-butyldimethylsilyloxy)-3-fluoro-3-methyl-

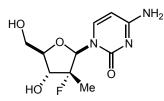
tetrahydrofuran-2-yl)-2-oxo-1,2-dihydropyrimidin-4-yl)benzamide. To a suspension of N-(2-oxo-1,2-dihydropyrimidin-4-yl)benzamide (300 mg, 1.39 mmol), hexamethyldisilazane (3.0 mL) was added diammonium sulfate (4.61 mg, 35 μ mol). The reaction was stirred at 150 °C for 2 h after complete dissolution of the reagents, and then allowed to cool down


to room temperature. The volatiles were removed in vacuo. The residue was co-evaporated 3 times with toluene, and dried under high vacuum for 3 h to obtain a colorless gummy solid.

To a solution of (3R,4R,5R)-5-(benzyloxymethyl)-4-(tert-butyldimethylsilyloxy)-3-fluoro-3-methyltetrahydrofuran-2-yl acetate (100 mg, 242 µmol, 1.0 equiv;) and freshly prepared *N*-(2-((trimethylsilyl)oxy)pyrimidin-4-yl)benzamide (279 mg, 970 µmol, 4.0 equiv.) in chlorobenzene (1.2 mL) at 70 °C was added freshly distilled stannic chloride (56.7 µL, 485 µmol, 2.0 equiv.) and the reaction was stirred at 70 °C for 15 h. Upon completion, the reaction mixture was diluted with EtOAc and a sat. aq. sol. of NaHCO₃ was added slowly. The mixture was stirred for 30 min at room temperature then filtered through a pad of celite. The filtrate was washed with water and brine, then dried over Na₂SO₄, filtered, and concentrated under vacuum. The crude product was purified by flash chromatography using 20:1 CH₂Cl₂/MeOH to yield the title compound β-anomer (84.7 mg, 149 µmol, 62% yield) as a colorless solid and the α-anomer (36.7 mg, 65 µmol, 27% yield). β-anomer: IR (thin

^{NHBz} film): 3067, 2957, 2930, 2859, 1668, 1618, 1482, 1384, 1372, 1313, 1250, 1159, 1095, 1081, 1028, 841, 777, 731 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 8.63 (br s, 1H, NH), 8.54 (d, J = 7.0 Hz, 1H, CH(6)), 7.98–7.34 (m, 10H, ArH), 7.21 (br s, 1H, CH(5)), 6.38 (d, J = 16.8 Hz, 1H, CH(1')), 4.64–4.56 (m, 2H, CH₂(Ar)), 4.17 (d, J = 8.0 Hz, 1H, CH(4')),

4.10–4.04 (m, 1H, CH(3')), 4.03 (d, J = 9.2 Hz, 1H, CH₂(5')_a), 3.76 (d, J = 10.7 Hz, 1H, CH₂(5')_b), 1.32 (d, J = 22.0 Hz, 3H, CH₃), 0.91 (s, 9H, C(CH₃)₃), 0.09 (s, 3H, SiCH₃), 0.08 (s, 3H, SiCH₃); ¹³C NMR (125 MHz, CDCl₃): δ 166.1 (CO), 162.2 (CO), 155.3 (C(4)), 145.3 (CH(6)), 137.0 (CAr), 133.3 (CHAr), 133.0 (CAr), 129.1 (CHAr), 128.9 (CHAr), 128.6 (CHAr), 128.2 (CHAr), 127.5 (CHAr), 100.3 (d, J = 186.4 Hz, C(2')), 96.5 (CH(5)), 89.7 (d, J = 38.7 Hz, CH(1')), 80.8 (d, J = 1.7 Hz, CH(4')), 73.8 (CH₂Ar), 71.4 (d, J = 17.2 Hz, CH(3')), 66.8 (CH₂(5')), 25.6 (C(CH₃)), 18.0 (C(CH₃)), 16.6 (d, J = 25.5 Hz, CH₃), -4.2 (SiCH₃), -4.7 (SiCH₃); ¹⁹F NMR (282 MHz, CDCl₃): δ -164.10 to -164.73 (m); HRMS (ESI-TOF) calculated for C₃₀H₃₈FN₃O₅Si [M+H]⁺ m/z 568.2638, found 568.2627; $\alpha_D^{20} = +101.1$ (c = 0.51, CHCl₃). α-anomer: IR (thin film): 2955, 2930, 2857, 1665, 1621, 1552, 1482,



1383, 1301, 1246, 1187, 1130, 1082, 1063, 1040, 1003, 865, 838, 777 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 8.62 (s, 1H, NH), 7.88 (br s, 3H, ArH, ArH, CH(6)), 7.65–7.57 (m, 2H, ArH, CH(5)), 7.53 (dd, J = 7.7, 7.7 Hz, 2H, ArH), 7.41–7.28 (m, 5H, ArH), 6.41 (d, J = 19.5 Hz, 1H, CH(1')), 4.60 (s, 2H, CH₂Ar), 4.38–4.15 (m, 2H, CH(3'), CH(4')), 3.78

 $(dd, J = 11.2, 1.7 Hz, 1H, CH(5')_a)$, 3.61 $(dd, J = 11.2, 3.1 Hz, 1H, CH(5')_b)$, 1.51 $(d, J = 22.2 Hz, 3H, CH_3)$, 0.89 $(s, 9H, C(CH_3)_3)$, 0.11 $(s, 3H, SiCH_3)$, 0.03 $(s, 3H, SiCH_3)$; ¹³C NMR (125 MHz, CDCl₃): δ

166.2 (CO), 162.5 (CO), 155.6 (C(4)), 146.7 (CH(6)), 137.7 (CAr), 133.4 (CHAr), 133.0 (CAr), 129.2 (CHAr), 128.6 (CHAr), 128.0 (CHAr), 128.0 (CHAr), 127.6 (CHAr), 98.7 (d, J = 193.3 Hz, C(2')), 96.2 (CH(5)), 87.6 (d, J = 14.7 Hz, CH(1')), 82.5 (CH(4')), 74.4 (d, J = 16.4 Hz, CH(3')), 73.8 (CH₂Ar), 68.0 (CH₂(5')), 25.7 (C(CH₃)), 18.1 (C(CH₃)), 18.0 (d, J = 25.8 Hz, CH₃), -4.1 (SiCH₃), -4.5 (SiCH₃); ¹⁹F NMR (282 MHz, CDCl₃): δ -177.56 (qd, J = 21.5, 20.9 Hz); HRMS (ESI-TOF) calculated for C₃₀H₃₈FN₃O₅Si [M+H]⁺ m/z 568.2638, found 568.2636; $\alpha_{\rm D}^{21} = -74.4$ (c = 0.61, CHCl₃).

PSI-6130. To a solution of N-(1-((2R,3R,4R,5R)-5-(benzyloxymethyl)-4-(tert-butyldimethylsilyloxy)-

3-fluoro-3-methyl-tetrahydrofuran-2-yl)-2-oxo-1,2-dihydropyrimidin-4-yl)benzamide (40.9 mg, 72 μ mol, 1.0 equiv.) in CH₂Cl₂ (0.7 mL) at -78 °C was added boron trichloride (360 μ L, 360 μ mol, 1 M in CH₂Cl₂, 5.0 equiv.). The reaction was stirred 1 h at -78 °C then allowed to slowly warm up to 0 °C. The reaction was followed by LCMS. Once the LCMS

analysis showed total cleavage of the Bn protecting group MeOH (0.7 mL) was added at 0 °C and the reaction was allowed to warm up to room temperature and stir for 1 h. HCl (0.3 mL, 1.2 mmol, 4 M in dioxane, 16 equiv.) was added and the reaction was stirred overnight. Once the LCMS showed total cleavage of the TBS protecting group the reaction was cooled at -40 °C and a solution of freshly condensed ammonia in MeOH at -20 °C was added. The resulting mixture was stirred at 0 °C for 2 h then overnight at room temperature. Once the LCMS showed total cleavage of the Bz protecting group the volatiles were removed in vacuo. The crude product was purified by flash chromatography using gradient elution 85:15:1 to 75:25:1 CH₂Cl₂/MeOH/NH₄OH. The purified product was then dissolved in isopropanol, filtered through a 40 µm filter and concentrated to yield the title compound (17.5 mg, 68 µmol, 94% yield). IR (thin film): 3121, 3038, 2805, 1718, 1662, 1613, 1534, 1399, 1285, 1211, 1107, 1088, 1071, 984, 851, 791, 761 cm⁻¹; ¹H NMR (500 MHz, DMSO): δ 7.90 (d, J = 7.5 Hz, 1H, CH(6)), 7.27 (d, J = 25.6 Hz, 2H, NH₂), 6.09 (d, J = 19.6 Hz, 1H, CH(1')), 5.72 (d, J = 7.5 Hz, 1H, CH(5)), $3.85-3.71 \text{ (m, 3H, CH(3'), CH(4'), CH_2(5'))}, 3.62 \text{ (dd, } J = 12.5, 2.2 \text{ Hz, 1H, CH}_2(5')), 1.16 \text{ (d, } J = 12.5, 2.2 \text{ Hz})$ 22.4 Hz, 3H, CH₃); ¹³C NMR (125 MHz, DMSO): δ 165.5 (CO), 155.2 (C(4)), 140.3 (CH(6)), 101.2 (d, J = 180.1 Hz, CF(2')), 94.3 (CH(5)), 88.5 (d, J = 39.1 Hz, CH(1')), 81.3 (CH(4')), 70.4 (d, J = 17.8)Hz, CH(3')), 58.4 (CH(5')), 16.6 (d, J = 25.4 Hz, CH₃); ¹⁹F NMR (282 MHz, DMSO): δ –155.48; HRMS (ESI-TOF) calculated for $C_{10}H_{14}FN_{3}O_{4}$ [M+H]⁺ m/z 260.1041, found 260.1045; $\alpha_{D}^{20} = +103.6$ $(c = 0.97, CHCl_3).$

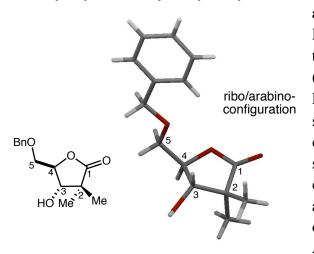
VII. Tables

Table 1: Chemical shifts (ppm) of selected ¹³C-NMR signals of pentolactone derivatives*

Substituent at C(2)	C (1)	C (2)	C (3)	C (4)	C (5)
OTBS (ribo) ¹	174.8	70.0	70.6	83.1	69.6
OTBDPS (ribo) ³	174.4	70.5	70.6	82.9	69.1
OMe (ribo) ¹	172.0	82.1	73.8	78.8	68.2

J. Am. Chem. Soc. Supporting Information

H (B-catalyzed, ribo/arabino) ¹	176.4	38.6	69.9	86.5	69.5
H (Ti-catalyzed, lyxo/xylo) ²	175.3	38.5	68.8	81.1	67.7
Me_2 (ribo/arabino) ^{<i>l</i>, 2}	180.4	43.6	76.0	80.4	68.9
<i>spiro</i> c-butyl (ribo/arabino) ³	180.2	48.2	75.1	82.5	68.9
<i>spiro</i> c-pentyl (ribo/arabino) ³	181.2	53.5	75.6	81.4	68.9
<i>spiro</i> c-hexyl (ribo/arabino) ³	179.4	46.3	76.2	80.7	69.2
Me (arabino, major) l	176.9	43.5	75.6	82.1	68.8
Me (ribo, minor) ^{l}	179.6	39.9	71.9	85.0	69.5
Et (arabino, major) ³	176.6	49.5	73.4	82.4	68.8
Et (ribo, minor) ^{3}	178.9	46.6	70.7	85.3	69.3
iPr (arabino) ³	175.3	53.8	71.0	81.6	69.0
tBu (arabino) ³	174.7	57.3	71.2	81.1	68.9
Bn (arabino) ^{3}	175.8	50.1	72.6	82.7	68.6
Allyl (arabino, major) 3	175.7	48.1	73.0	82.4	68.7
Allyl (ribo, minor) ^{3}	178.1	44.5	71.0	85.1	69.4


^{*}Assigned by HSQC, HMBC and NOESY in CDCl₃. ¹Configuration determined by chemical correlation. ²Configuration determined by X-ray analysis. ³Configuration deduced by analogy with other representatives within the column.

Substituent at $C(2)$	C (1)	C (2)	C (3)	C (4)	C (5)
2-OBn ^{1,5} : α (β)	96.4 (100.4)	78.2 (83.7)	71.8 (71.3)	82.8 (84.5)	70.2 (70.1)
2-OPMB ^{1,7} : α (β)	96.3 (100.4)	77.8 (83.3)	71.7 (71.2)	82.7 (84.3)	70.2 (70.1)
OTBS ¹ : α (β)	97.1 (102.9)	72.6 (78.2)	72.3 (71.7)	81.8 (84.3)	70.3 (70.2)
OTBDPS ¹ : α (β)	97.2 (102.2)	73.3 (78.8)	72.5 (72.0)	82.7 (84.2)	70.3 (70.2)
$OMe^{l}: \alpha(\beta)$	95.5 (100.7)	86.8 (90.1)	75.0 (76.3)	80.9 (84.1)	70.5 (70.6)
H (B-cat) ² : α (β)	99.3 (99.5)	44.2 (41.4)	73.5 (73.6)	85.2 (86.3)	71.3 (70.6)
H (Ti-cat) ³ : α (β)	98.0 (99.2)	43.7 (42.1)	72.8 (73.9)	78.8 (82.0)	68.8 (69.9)
Me_2^2 : α (β)	105.1 (105.0)	46.3 (46.0)	77.8 (80.0)	82.0 (85.2)	70.8 (71.2)
c-butyl ² : α (β)	103.7 (104.7)	52.5 (52.0)	75.5 (79.4)	81.1 (86.2)	70.9 (70.8)
c-pentyl ² : α (β)	103.9 (104.8)	57.8 (58.4)	76.3 (80.1)	81.4 (86.4)	70.9 (70.9)
c-hexyl ² : α (β)	103.6 (101.2)	49.2 (49.7)	78.0 (78.0)	81.2 (86.2)	71.1 (71.2)
Me ⁴ : α (β)	100.0 (104.0)	47.3 (49.1)	77.6 (79.3)	83.6 (84.4)	70.8 (71.1)
$\mathrm{Et}^{4,6}$: α (β)	99.1 (102.7)	45.5 (56.4)	76.8 (77.9)	83.9 (83.8)	71.2 (70.7)
iPr ⁴ : α (β)	99.8 (101.3)	60.0 (61.6)	76.2 (76.4)	85.0 (82.4)	71.2 (70.5)
tBu^4 : α (β)	100.5 (99.7)	61.4 (65.3)	73.2 (74.6)	84.7 (81.5)	71.2 (70.5)
Benzyl ⁴ : α (β)	99.0 (102.2)	54.7 (55.9)	76.1 (77.2)	83.7 (84.6)	71.0 (70.4)
Allyl ^{4,6} : α (β)	99.2 (102.3)	52.5 (54.0)	76.4 (77.5)	83.7 (84.2)	71.0 (70.5)

Table 2: Chemical shifts [ppm] of selected ¹³C-NMR signals of pentose-derivatives*

^{*}Assigned by HSQC, HMBC, and NOESY in CDCl₃. ¹ribo. ²ribo/arabino. ³lyxo/xylo. ⁴arabino. ⁵Configuration determined by chemical correlation. ⁶Configuration determined by X-ray analysis. ⁷Configuration deduced by analogy with other representatives within the column.

VIII. Appendix A: X-ray Crystallographic Analysis

5-Benzyloxy-2-dimethyl-3-hydroxy-D-ribonolactone (5-Benzyloxy-2-dimethyl-3-hydroxy-Darabinolactone) (13b). Crystals were grown by Manuel Peifer from Et₂O. The data was collected and the structure solved and refined by Dr. Zoë R. Turner (postdoctoral fellow in the group of Prof. Paul Chirik at Princeton University). Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is

used for estimating s.u.'s involving l.s. planes. **Refinement**. Refinement of F^2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R-factors based on all data will be even larger.

Crystal data

$C_{14}H_{18}O_4$	F(000) = 536
$M_r = 250.28$	$D_{\rm x} = 1.307 {\rm ~Mg~m^{-3}}$
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 2187 reflections
a = 7.0402 (13) Å	$\theta = 6.6 - 27.5^{\circ}$
b = 8.8190 (16) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 20.478 (4) Å	T = 100 K
V = 1271.5 (4) Å ³	Block, colourless
Z = 4	$0.58 \times 0.27 \times 0.16 \text{ mm}$

Data collection

Bruker APEX-II CCD diffractometer	2905 independent reflections
Radiation source: fine-focus sealed tube	2881 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.011$
phi and ω scans	$\theta_{\text{max}} = 27.6^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$
Absorption correction: multi-scan	$h = -7 \rightarrow 9$
<i>SADABS</i> 2008/2	
$T_{\min} = 0.947, T_{\max} = 0.985$	$k = -11 \rightarrow 11$

6915	measured reflections
------	----------------------

 $l = -26 \rightarrow 23$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map Hydrogen site location: inferred from
Louor squares marine ran	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.026$	H-atom parameters constrained
$wR(F^2) = 0.068$	$w = 1/[\sigma^2(F_o^2) + (0.043P)^2 + 0.2409P]$
	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{\rm max} = 0.001$
2905 reflections	Δ _{max} = 0.24 e Å ⁻³
166 parameters	Δ _{min} = -0.19 e Å ⁻³
0 restraints	Absolute structure: Flack H D (1983), Acta Cryst.
	A39, 876-881., 1197 Friedel pairs
Primary atom site location: structure-	Flack parameter: 0.2 (6)
invariant direct methods	

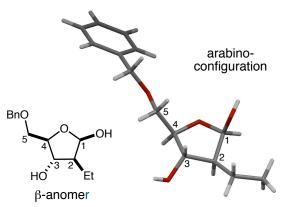
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å $^2)$

Atom	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	
C1	0.25206 (15)	0.64764 (11)	0.66791 (5)	0.01792 (19)	
H1A	0.3504	0.6461	0.6340	0.027*	
H1B	0.2821	0.7263	0.7001	0.027*	
H1C	0.1286	0.6695	0.6479	0.027*	
C2	0.24441 (13)	0.49200 (10)	0.70202 (4)	0.01329 (18)	
C3	0.09899 (13)	0.49039 (11)	0.75842 (4)	0.01360 (18)	
Н3	0.0658	0.3836	0.7703	0.016*	
C4	0.21021 (13)	0.56508 (11)	0.81382 (4)	0.01401 (18)	
H4	0.2015	0.6776	0.8088	0.017*	
C5	0.15042 (14)	0.52354 (11)	0.88220 (5)	0.01566 (19)	
H5A	0.2330	0.5760	0.9142	0.019*	
H5B	0.0179	0.5567	0.8898	0.019*	
C6	0.09906 (15)	0.32324 (11)	0.95438 (4)	0.01579 (18)	
H6A	-0.0393	0.3418	0.9576	0.019*	
H6B	0.1633	0.3865	0.9876	0.019*	
C7	0.14000 (13)	0.15791 (11)	0.96743 (5)	0.01350 (18)	
C8	0.23658 (14)	0.06791 (11)	0.92264 (4)	0.01493 (19)	
H8	0.2724	0.1085	0.8815	0.018*	
C9	0.28088 (15)	-0.08242 (12)	0.93824 (5)	0.01728 (19)	
H9	0.3464	-0.1438	0.9075	0.021*	

C10	0.22972 (15)	-0.14253 (11)	0.99845 (5)	0.0181 (2)
H10	0.2622	-0.2441	1.0092	0.022*
C11	0.13064 (14)	-0.05311 (12)	1.04293 (5)	0.01714 (19)
H11	0.0942	-0.0941	1.0840	0.021*
C12	0.08482 (14)	0.09611 (11)	1.02742 (5)	0.01527 (18)
H12	0.0158	0.1563	1.0577	0.018*
C13	0.21601 (15)	0.36570 (11)	0.65233 (5)	0.0184 (2)
H13A	0.2185	0.2674	0.6746	0.028*
H13B	0.3181	0.3694	0.6198	0.028*
H13C	0.0932	0.3789	0.6305	0.028*
C14	0.42836 (14)	0.47427 (10)	0.73997 (4)	0.01395 (18)
01	-0.06795 (10)	0.57502 (8)	0.74642 (4)	0.01848 (15)
H1	-0.1577	0.5156	0.7377	0.028*
O2	0.58030 (10)	0.43127 (9)	0.71985 (3)	0.01867 (15)
O3	0.40659 (10)	0.51864 (8)	0.80264 (3)	0.01584 (15)
O4	0.16413 (10)	0.36444 (8)	0.89118 (3)	0.01534 (15)

Atomic displacement parameters (Å²)

	· · · · I · · · · · ·	• p========== (,			
Atom	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0189 (4)	0.0172 (4)	0.0177 (4)	-0.0012 (4)	-0.0018 (4)	0.0045 (4)
C2	0.0121 (4)	0.0150 (4)	0.0127 (4)	-0.0004 (4)	-0.0007 (3)	0.0001 (3)
C3	0.0116 (4)	0.0147 (4)	0.0144 (4)	0.0003 (4)	-0.0005 (3)	0.0005 (3)
C4	0.0125 (4)	0.0147 (4)	0.0148 (4)	0.0007 (3)	-0.0006 (3)	-0.0003 (3)
C5	0.0184 (4)	0.0144 (4)	0.0142 (4)	0.0016 (3)	0.0010 (3)	-0.0006 (3)
C6	0.0159 (4)	0.0185 (4)	0.0131 (4)	0.0024 (4)	0.0032 (3)	0.0014 (3)
C7	0.0101 (4)	0.0165 (4)	0.0139 (4)	-0.0008 (3)	-0.0016 (3)	-0.0001 (3)
C8	0.0141 (4)	0.0186 (4)	0.0121 (4)	-0.0012 (4)	0.0004 (3)	0.0001 (3)
C9	0.0170 (4)	0.0183 (4)	0.0165 (4)	0.0012 (4)	0.0011 (4)	-0.0030 (4)
C10	0.0190 (4)	0.0161 (4)	0.0191 (4)	0.0000 (4)	-0.0005 (4)	0.0009 (3)
C11	0.0164 (4)	0.0208 (5)	0.0142 (4)	-0.0023 (4)	0.0004 (3)	0.0021 (4)
C12	0.0120 (4)	0.0201 (4)	0.0137 (4)	-0.0003 (3)	0.0010 (4)	-0.0007 (3)
C13	0.0186 (4)	0.0201 (4)	0.0166 (4)	-0.0025 (4)	-0.0002 (4)	-0.0045 (4)
C14	0.0138 (4)	0.0130 (4)	0.0150 (4)	-0.0021 (3)	-0.0009 (3)	0.0024 (3)
01	0.0115 (3)	0.0200 (3)	0.0239 (3)	0.0021 (3)	-0.0024 (3)	-0.0003 (3)
O2	0.0131 (3)	0.0240 (3)	0.0189 (3)	0.0010 (3)	0.0017 (3)	0.0013 (3)
O3	0.0121 (3)	0.0211 (3)	0.0143 (3)	-0.0006 (3)	-0.0011 (2)	0.0002 (3)
04	0.0196 (3)	0.0142 (3)	0.0122 (3)	0.0008 (3)	0.0021 (3)	0.0006 (2)


Geometric parameters (Å, °)

C1—C2	1.5411 (13)	С6—Н6В	0.9900
C1—H1A	0.9800	С7—С8	1.3905 (13)

C1—H1B	0.9800	C7—C12	1.3990 (13)
C1—H1C	0.9800	C8—C9	1.3989 (14)
C2—C14	1.5183 (13)	C8—H8	0.9500
C2—C13	1.5218 (13)	C9—C10	1.3895 (14)
С2—С3	1.5434 (13)	С9—Н9	0.9500
C3—O1	1.4138 (11)	C10—C11	1.3922 (14)
C3—C4	1.5277 (13)	C10—H10	0.9500
С3—Н3	1.0000	C11—C12	1.3917 (14)
C4—O3	1.4600 (11)	C11—H11	0.9500
C4—C5	1.5074 (13)	C12—H12	0.9500
C4—H4	1.0000	C13—H13A	0.9800
С5—О4	1.4183 (12)	C13—H13B	0.9800
С5—Н5А	0.9900	С13—Н13С	0.9800
С5—Н5В	0.9900	C14—O2	1.2074 (12)
С6—О4	1.4203 (11)	C14—O3	1.3505 (12)
С6—С7	1.5101 (13)	O1—H1	0.8400
C2—C1—H1A	109.5	O4—C6—H6B	109.6
C2—C1—H1B	109.5	С7—С6—Н6В	109.6
H1A—C1—H1B	109.5	H6A—C6—H6B	108.1
C2—C1—H1C	109.5	C8—C7—C12	119.52 (9)
H1A—C1—H1C	109.5	C8—C7—C6	121.86 (9)
H1B—C1—H1C	109.5	C12—C7—C6	118.59 (8)
C14—C2—C13	112.27 (8)	C9—C8—C7	119.95 (9)
C14—C2—C1	107.09 (7)	С9—С8—Н8	120.0
C13—C2—C1	110.69 (8)	С7—С8—Н8	120.0
C14—C2—C3	100.48 (7)	C8—C9—C10	120.43 (9)
C13—C2—C3	113.98 (8)	С8—С9—Н9	119.8
C1—C2—C3	111.75 (8)	С10—С9—Н9	119.8
O1—C3—C4	109.12 (8)	C11—C10—C9	119.63 (9)
O1—C3—C2	114.61 (8)	C11—C10—H10	120.2
C4—C3—C2	102.22 (7)	С9—С10—Н10	120.2
O1—C3—H3	110.2	C12—C11—C10	120.16 (9)
С4—С3—Н3	110.2	C12—C11—H11	119.9
С2—С3—Н3	110.2	C10-C11-H11	119.9
O3—C4—C5	109.99 (7)	C11—C12—C7	120.29 (9)
O3—C4—C3	104.36 (7)	C11—C12—H12	119.9
C5—C4—C3	116.23 (8)	C7—C12—H12	119.9
O3—C4—H4	108.7	C2—C13—H13A	109.5
С5—С4—Н4	108.7	C2—C13—H13B	109.5
С3—С4—Н4	108.7	H13A—C13—H13B	109.5
O4—C5—C4	109.99 (8)	C2—C13—H13C	109.5
O4—C5—H5A	109.7	H13A—C13—H13C	109.5

С4—С5—Н5А	109.7	H13B—C13—H13C	109.5
O4—C5—H5B	109.7	O2—C14—O3	121.05 (9)
С4—С5—Н5В	109.7	O2—C14—C2	127.83 (8)
H5A—C5—H5B	108.2	O3—C14—C2	111.08 (8)
O4—C6—C7	110.29 (8)	C3—O1—H1	109.5
O4—C6—H6A	109.6	C14—O3—C4	109.74 (7)
С7—С6—Н6А	109.6	C5—O4—C6	110.45 (7)

5-Benzyloxy-2-ethyl-1-hydroxy-3-hydroxy-D-arabinose (8c). Crystals were grown by Manuel Peifer

from Et₂O. The data was collected and the structure solved and refined by Dr. Zoë R. Turner (postdoctoral fellow in the group of Prof. Paul Chirik at Princeton University). **Geometry**. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on all data will be even larger.

Crystal data

$C_{14}H_{20}O_4$	F(000) = 544
$M_r = 252.30$	$D_{\rm x} = 1.271 {\rm ~Mg~m^{-3}}$
Monoclinic, C2	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: C 2y	Cell parameters from 2700 reflections
a = 21.972 (4) Å	$\theta = 3.2 - 27.5^{\circ}$
b = 5.2014 (10) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 12.991 (2) Å	T = 100 K
$\beta = 117.393 \ (3)^{\circ}$	Block, colourless
$V = 1318.2 (4) \text{ Å}^3$	$0.38 \times 0.16 \times 0.06 \text{ mm}$
Z = 4	

Data collection

Bruker APEX-II CCD diffractometer

J. Am. Chem. Soc. Supporting Information

Radiation source: fine-focus sealed tube	2701 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.010$
ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
Absorption correction: multi-scan SADABS 2008/2	$h = -27 \rightarrow 28$
$T_{\rm min} = 0.966, \ T_{\rm max} = 0.995$	$k = -6 \rightarrow 6$
3982 measured reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
	map
Least-squares matrix: full	Hydrogen site location: inferred from
	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.027$	H-atom parameters constrained
$wR(F^2) = 0.069$	$w = 1/[\sigma^2(F_o^2) + (0.0367P)^2 + 0.5117P]$
	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} = 0.001$
2760 reflections	Δ _{max} = 0.26 e Å ⁻³
166 parameters	Δ _{min} = -0.14 e Å ⁻³
1 restraint	Absolute structure: Flack H D (1983), Acta Cryst.
	A39, 876-881, 1081 Friedel Pairs
Primary atom site location: structure-invariant	Flack parameter: 0.0 (6)
direct methods	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (${\rm \AA}^2$)

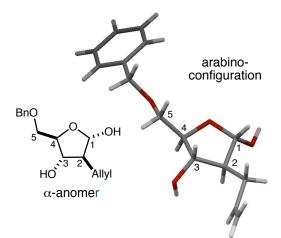
Atom	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.47035 (7)	0.2991 (3)	1.31434 (10)	0.0243 (2)	
H1A	0.4548	0.1282	1.2807	0.036*	
H1B	0.4772	0.3009	1.3944	0.036*	
H1C	0.5137	0.3401	1.3135	0.036*	
C2	0.41625 (6)	0.4993 (2)	1.24303 (9)	0.0194 (2)	
H2A	0.3752	0.4747	1.2549	0.023*	
H2B	0.4346	0.6733	1.2712	0.023*	
C3	0.39519 (5)	0.4821 (2)	1.11397 (9)	0.0155 (2)	
H3	0.3731	0.3108	1.0857	0.019*	
C4	0.34543 (5)	0.6883 (2)	1.03817 (9)	0.0150 (2)	
H4	0.3607	0.8606	1.0754	0.018*	
C5	0.35251 (5)	0.6765 (2)	0.92592 (9)	0.0152 (2)	
H5	0.3150	0.5662	0.8683	0.018*	
C6	0.35009 (6)	0.9351 (2)	0.87216 (9)	0.0181 (2)	
H6A	0.3064	1.0230	0.8543	0.022*	

	0.022*
C7 0.35338 (7) 1.1297 (2) 0.71055 (10)	0.0245 (3)
	0.029*
	0.029*
	0.0184 (2)
	0.0247 (3)
	0.030*
C10 0.38459 (7) 0.8197 (3) 0.47331 (11)	0.0280 (3)
	0.034*
C11 0.34529 (6) 0.9751 (3) 0.37909 (10)	0.0258 (3)
H11 0.3430 0.9411 0.3055	0.031*
C12 0.30951 (6) 1.1794 (3) 0.39280 (10)	0.0282 (3)
H12 0.2830 1.2877 0.3288	0.034*
C13 0.31216 (6) 1.2272 (3) 0.50058 (10)	0.0242 (2)
H13 0.2871 1.3670 0.5094	0.029*
C14 0.45285 (5) 0.5110 (2) 1.08000 (9)	0.0168 (2)
H14 0.4812 0.3510 1.0987	0.020*
O1 0.27716 (4) 0.63873 (17) 1.01940 (7)	0.02073 (18)
H1 0.2556 0.7781 1.0074	0.031*
O2 0.49312 (4) 0.72237 (18) 1.13828 (7)	0.02156 (18)
H2 0.5280 0.7272 1.1276	0.032*
O3 0.41769 (4) 0.55386 (16) 0.95673 (6)	0.01799 (17)
O4 0.35572 (4) 0.89396 (16) 0.76853 (7)	0.01977 (18)

Atomic displacement parameters (Å²)

1101111	e uispiacemen	i par anicier s (1	•)			
Atom	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0270 (6)	0.0229 (6)	0.0217 (5)	0.0007 (5)	0.0101 (5)	0.0035 (4)
C2	0.0227 (5)	0.0196 (6)	0.0199 (5)	-0.0008 (5)	0.0133 (4)	-0.0006 (4)
C3	0.0150 (5)	0.0150 (5)	0.0182 (5)	-0.0015 (4)	0.0091 (4)	-0.0016 (4)
C4	0.0129 (4)	0.0142 (5)	0.0206 (5)	-0.0014 (4)	0.0098 (4)	-0.0008 (4)
C5	0.0119 (4)	0.0156 (5)	0.0187 (4)	0.0002 (4)	0.0075 (4)	-0.0014 (4)
C6	0.0209 (5)	0.0167 (6)	0.0196 (5)	0.0008 (4)	0.0118 (4)	-0.0011 (4)
C7	0.0363 (6)	0.0166 (6)	0.0250 (5)	-0.0002 (5)	0.0177 (5)	0.0005 (4)
C8	0.0178 (5)	0.0174 (6)	0.0206 (5)	-0.0034 (4)	0.0093 (4)	-0.0005 (4)
C9	0.0308 (6)	0.0220 (6)	0.0209 (5)	0.0068 (5)	0.0115 (5)	0.0035 (5)
C10	0.0360 (7)	0.0252 (7)	0.0261 (6)	0.0079 (5)	0.0170 (5)	0.0017 (5)
C11	0.0289 (6)	0.0301 (7)	0.0195 (5)	-0.0014 (5)	0.0120 (5)	-0.0006 (5)
C12	0.0248 (6)	0.0343 (8)	0.0217 (5)	0.0052 (6)	0.0074 (5)	0.0077 (5)
C13	0.0217 (5)	0.0245 (6)	0.0277 (6)	0.0057 (5)	0.0124 (4)	0.0040 (5)
C14	0.0143 (4)	0.0196 (6)	0.0167 (5)	0.0002 (4)	0.0073 (4)	-0.0005 (4)
01	0.0142 (3)	0.0184 (4)	0.0335 (4)	0.0006 (3)	0.0144 (3)	0.0016 (3)

J. Am. Chem. Soc. Supporting Information


O2	0.0151 (4)	0.0276 (5)	0.0230 (4)	-0.0058 (3)	0.0097 (3)	-0.0042 (3)
O3	0.0146 (3)	0.0237 (4)	0.0167 (3)	0.0035 (3)	0.0081 (3)	-0.0002 (3)
04	0.0255 (4)	0.0168 (4)	0.0204 (4)	0.0004 (3)	0.0135 (3)	0.0002 (3)

Geometric parameters (Å, °)

Geometric parameters	(A,)		
C1—C2	1.5304 (17)	С7—С8	1.5108 (16)
C1—H1A	0.9800	С7—Н7А	0.9900
C1—H1B	0.9800	С7—Н7В	0.9900
C1—H1C	0.9800	C8—C9	1.3895 (18)
C2—C3	1.5229 (14)	C8—C13	1.3876 (16)
C2—H2A	0.9900	C9—C10	1.3954 (16)
C2—H2B	0.9900	С9—Н9	0.9500
C3—C14	1.5285 (14)	C10—C11	1.3872 (18)
C3—C4	1.5247 (15)	C10—H10	0.9500
С3—Н3	1.0000	C11—C12	1.381 (2)
C4—O1	1.4280 (12)	C11—H11	0.9500
C4—C5	1.5372 (14)	C12—C13	1.3967 (17)
C4—H4	1.0000	C12—H12	0.9500
C5—O3	1.4460 (12)	С13—Н13	0.9500
С5—С6	1.5054 (16)	C14—O2	1.3960 (14)
С5—Н5	1.0000	C14—O3	1.4396 (12)
C6—O4	1.4236 (12)	C14—H14	1.0000
С6—Н6А	0.9900	01—H1	0.8400
С6—Н6В	0.9900	O2—H2	0.8400
C2—C1—H1A	109.5	H6A—C6—H6B	108.5
C2—C1—H1B	109.5	O4—C7—C8	109.23 (10)
H1A—C1—H1B	109.5	O4—C7—H7A	109.8
C2—C1—H1C	109.5	С8—С7—Н7А	109.8
H1A—C1—H1C	109.5	O4—C7—H7B	109.8
H1B—C1—H1C	109.5	С8—С7—Н7В	109.8
C3—C2—C1	112.61 (9)	H7A—C7—H7B	108.3
С3—С2—Н2А	109.1	C9—C8—C13	119.40 (11)
C1—C2—H2A	109.1	С9—С8—С7	121.55 (11)
C3—C2—H2B	109.1	C13—C8—C7	119.06 (11)
C1—C2—H2B	109.1	C8—C9—C10	120.04 (11)
H2A—C2—H2B	107.8	С8—С9—Н9	120.0
C14—C3—C2	116.09 (9)	С10—С9—Н9	120.0
C14—C3—C4	100.83 (8)	C11—C10—C9	120.38 (12)
C2—C3—C4	115.73 (9)	C11—C10—H10	119.8
С14—С3—Н3	107.9	С9—С10—Н10	119.8
С2—С3—Н3	107.9	C12-C11-C10	119.64 (11)

С4—С3—Н3	107.9	C12—C11—H11	120.2
O1—C4—C3	111.60 (9)	C10—C11—H11	120.2
O1—C4—C5	112.81 (8)	C11—C12—C13	120.16 (11)
C3—C4—C5	103.24 (8)	C11—C12—H12	119.9
O1—C4—H4	109.7	C13—C12—H12	119.9
С3—С4—Н4	109.7	C8—C13—C12	120.38 (12)
С5—С4—Н4	109.7	C8—C13—H13	119.8
O3—C5—C6	109.97 (8)	C12—C13—H13	119.8
O3—C5—C4	105.95 (8)	O2—C14—O3	111.28 (9)
C6—C5—C4	114.02 (9)	O2—C14—C3	108.87 (9)
O3—C5—H5	108.9	O3—C14—C3	104.16 (8)
С6—С5—Н5	108.9	O2—C14—H14	110.8
C4—C5—H5	108.9	O3—C14—H14	110.8
O4—C6—C5	107.73 (9)	C3—C14—H14	110.8
O4—C6—H6A	110.2	C4—O1—H1	109.5
С5—С6—Н6А	110.2	C14—O2—H2	109.5
O4—C6—H6B	110.2	C14—O3—C5	109.42 (8)
С5—С6—Н6В	110.2	C6—O4—C7	111.85 (9)

2-Allyl-5-benzyloxy-1-hydroxy-3-hydroxy-D-arabinose

(11c). Crystals were grown by Manuel Peifer from Et_2O /hexanes. The data was collected and the structure solved and refined by Dr. Zoë R. Turner (postdoctoral fellow in the group of Prof. Paul Chirik at Princeton University). Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s

is used for estimating s.u.'s involving l.s. planes. **Refinement**. Refinement of F^2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on all data will be even larger.

Crystal data

$M_r = 264.31$	$D_{\rm x} = 1.250 {\rm ~Mg~m^{-3}}$
Orthorhombic, $P2_12_12_1$	Cu K α radiation, $\lambda = 1.54178$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 3534 reflections
a = 4.7285 (2) Å	$\theta = 4.2 - 65.6^{\circ}$
b = 10.6501 (4) Å	$\mu = 0.73 \text{ mm}^{-1}$
c = 27.8949 (12) Å	T = 100 K
$V = 1404.76 (10) \text{ Å}^3$	Plate, colourless
Z = 4	$0.45 \times 0.13 \times 0.05 \text{ mm}$

Data collection

Bruker APEX-II CCD diffractometer	2101 independent reflections
Radiation source: fine-focus sealed tube	2050 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.026$
phi and ω scans	$\theta_{\text{max}} = 66.1^{\circ}, \ \theta_{\text{min}} = 4.4^{\circ}$
Absorption correction: multi-scan	$h = -3 \rightarrow 5$
<i>SADABS</i> 2008/2	
$T_{\min} = 0.733, T_{\max} = 0.967$	$k = -10 \rightarrow 12$
3640 measured reflections	<i>l</i> = −30→31

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.033$	H-atom parameters constrained
$wR(F^2) = 0.085$	$w = 1/[\sigma^2(F_o^2) + (0.0467P)^2 + 0.1514P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{\rm max} < 0.001$
2101 reflections	Δ _{max} = 0.14 e Å ⁻³
174 parameters	Δ \rightarrow min = -0.21 e Å ⁻³
0 restraints	Absolute structure: Flack H D (1983), Acta Cryst.
	A39, 876-881, 1526 Friedel pairs/
Primary atom site location: structure-	Flack parameter: -0.05 (19)
invariant direct methods	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (${\rm \AA}^2$)

Atom	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.8163 (5)	1.2263 (2)	0.62921 (7)	0.0396 (5)
H1A	0.9648	1.1719	0.6390	0.048*

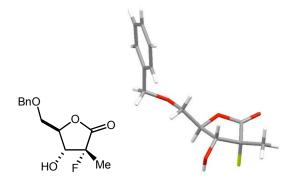
H1B	0.8277	1.3137	0.6358	0.048*
C2	0.5953 (4)	1.18062 (16)	0.60663 (6)	0.0275 (4)
H2A	0.4513	1.2380	0.5974	0.033*
C3	0.5528 (4)	1.04485 (15)	0.59424 (6)	0.0251 (4)
H3A	0.4263	1.0063	0.6184	0.030*
H3B	0.7373	1.0012	0.5960	0.030*
C4	0.4266 (3)	1.02461 (14)	0.54460 (6)	0.0207 (3)
H4	0.2465	1.0736	0.5428	0.025*
C5	0.6093 (4)	1.06284 (13)	0.50188 (6)	0.0198 (3)
H5	0.8061	1.0309	0.5067	0.024*
C6	0.4704 (3)	0.99111 (14)	0.46098 (6)	0.0201 (3)
H6	0.2963	1.0365	0.4503	0.024*
C7	0.6587 (4)	0.96764 (14)	0.41864 (6)	0.0233 (4)
H7A	0.7384	1.0478	0.4068	0.028*
H7B	0.8170	0.9118	0.4279	0.028*
C8	0.6574 (4)	0.87862 (18)	0.34091 (6)	0.0332 (4)
H8A	0.8212	0.8260	0.3502	0.040*
H8B	0.7287	0.9557	0.3252	0.040*
C9	0.4671 (4)	0.80767 (16)	0.30746 (6)	0.0274 (4)
C10	0.3866 (4)	0.68577 (18)	0.31884 (7)	0.0340 (4)
H10	0.4584	0.6472	0.3470	0.041*
C11	0.2038 (5)	0.62037 (18)	0.28962 (7)	0.0396 (5)
H11	0.1488	0.5374	0.2980	0.048*
C12	0.0993 (5)	0.67493 (19)	0.24805 (7)	0.0388 (5)
H12	-0.0262	0.6296	0.2279	0.047*
C13	0.1798 (5)	0.79567 (19)	0.23636 (7)	0.0385 (5)
H13	0.1100	0.8337	0.2079	0.046*
C14	0.3622 (4)	0.86157 (16)	0.26602 (6)	0.0327 (4)
H14	0.4158	0.9448	0.2578	0.039*
C15	0.3565 (4)	0.88745 (14)	0.53347 (6)	0.0213 (3)
H15	0.4896	0.8306	0.5510	0.026*
01	0.6184 (3)	1.19407 (9)	0.49246 (4)	0.0233 (3)
H1	0.4564	1.2249	0.4963	0.035*
O2	0.0789 (2)	0.86201 (10)	0.54705 (4)	0.0243 (3)
H2	0.0442	0.7855	0.5427	0.037*
O3	0.3926 (3)	0.87277 (9)	0.48227 (4)	0.0237 (3)
O4	0.4935 (3)	0.91028 (10)	0.38229 (4)	0.0263 (3)

Atomic displacement parameters (Å²)

Atom	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0406 (11)	0.0461 (11)	0.0321 (11)	-0.0147 (9)	0.0048 (8)	-0.0067 (8)

J. Am. Chem. Soc. Supporting Information

C2	0.0265 (9)	0.0312 (9)	0.0248 (9)	-0.0033 (7)	0.0040 (7)	-0.0036 (7)
C3	0.0236 (9)	0.0262 (8)	0.0255 (9)	0.0012 (7)	-0.0004 (7)	0.0002 (6)
C4	0.0183 (8)	0.0181 (8)	0.0257 (9)	-0.0001 (6)	-0.0007 (6)	-0.0003 (6)
C5	0.0181 (8)	0.0145 (7)	0.0268 (9)	0.0008 (6)	-0.0015 (7)	0.0008 (6)
C6	0.0182 (8)	0.0164 (7)	0.0257 (9)	-0.0003 (6)	-0.0004 (6)	0.0006 (6)
C7	0.0193 (8)	0.0219 (8)	0.0288 (9)	-0.0029 (7)	0.0016 (7)	-0.0011 (6)
C8	0.0288 (10)	0.0412 (10)	0.0297 (10)	-0.0044 (9)	0.0068 (7)	-0.0065 (8)
C9	0.0257 (9)	0.0312 (9)	0.0252 (9)	-0.0008 (7)	0.0085 (7)	-0.0052 (7)
C10	0.0391 (11)	0.0332 (9)	0.0299 (10)	-0.0009 (8)	0.0039 (8)	0.0026 (7)
C11	0.0461 (12)	0.0310 (10)	0.0418 (11)	-0.0073 (9)	0.0058 (9)	-0.0053 (8)
C12	0.0351 (11)	0.0464 (11)	0.0349 (11)	-0.0038 (9)	0.0014 (9)	-0.0156 (8)
C13	0.0407 (12)	0.0468 (11)	0.0279 (10)	0.0090 (9)	-0.0028 (8)	-0.0033 (8)
C14	0.0385 (11)	0.0280 (8)	0.0314 (10)	0.0018 (8)	0.0064 (8)	0.0004 (7)
C15	0.0188 (8)	0.0200 (7)	0.0250 (8)	0.0019 (7)	0.0016 (6)	-0.0009 (6)
01	0.0232 (6)	0.0148 (5)	0.0317 (6)	-0.0004 (4)	0.0000 (5)	0.0007 (4)
02	0.0204 (6)	0.0183 (5)	0.0344 (7)	-0.0028 (4)	0.0040 (5)	-0.0014 (5)
03	0.0292 (6)	0.0164 (5)	0.0255 (6)	-0.0035 (5)	0.0021 (5)	-0.0010 (4)
O4	0.0238 (6)	0.0303 (6)	0.0247 (6)	-0.0039 (5)	0.0033 (5)	-0.0057 (5)


Geometric parameters (Å, °)

1.313 (3)	C8—O4	1.431 (2)
0.9500	C8—C9	1.500 (2)
0.9500	C8—H8A	0.9900
1.500 (2)	C8—H8B	0.9900
0.9500	C9—C14	1.383 (3)
1.523 (2)	C9—C10	1.390 (3)
0.9900	C10—C11	1.377 (3)
0.9900	C10—H10	0.9500
1.527 (2)	C11—C12	1.388 (3)
1.530 (2)	C11—H11	0.9500
1.0000	C12—C13	1.380 (3)
1.4228 (17)	C12—H12	0.9500
1.522 (2)	C13—C14	1.386 (3)
1.0000	С13—Н13	0.9500
1.4410 (19)	C14—H14	0.9500
1.500 (2)	C15—O2	1.393 (2)
1.0000	C15—O3	1.447 (2)
1.418 (2)	C15—H15	1.0000
0.9900	O1—H1	0.8400
0.9900	O2—H2	0.8400
120.0	H7A—C7—H7B	108.4
	0.9500 0.9500 1.500 (2) 0.9500 1.523 (2) 0.9900 0.9900 1.527 (2) 1.530 (2) 1.0000 1.4228 (17) 1.522 (2) 1.0000 1.4410 (19) 1.500 (2) 1.0000 1.418 (2) 0.9900 0.9900	$\begin{array}{llllllllllllllllllllllllllllllllllll$

C2—C1—H1B	120.0	O4—C8—C9	107.20 (14)
H1A—C1—H1B	120.0	O4—C8—H8A	110.3
C1—C2—C3	125.03 (18)	С9—С8—Н8А	110.3
C1—C2—H2A	117.5	O4—C8—H8B	110.3
C3—C2—H2A	117.5	С9—С8—Н8В	110.3
C2—C3—C4	113.48 (14)	H8A—C8—H8B	108.5
С2—С3—Н3А	108.9	C14—C9—C10	118.72 (17)
С4—С3—Н3А	108.9	C14—C9—C8	121.74 (16)
С2—С3—Н3В	108.9	C10—C9—C8	119.52 (17)
С4—С3—Н3В	108.9	C11—C10—C9	120.61 (19)
НЗА—СЗ—НЗВ	107.7	C11—C10—H10	119.7
C3—C4—C5	116.74 (13)	C9—C10—H10	119.7
C3—C4—C15	113.87 (13)	C10—C11—C12	120.40 (19)
C5—C4—C15	102.62 (12)	C10—C11—H11	119.8
C3—C4—H4	107.7	C12—C11—H11	119.8
C5—C4—H4	107.7	C13—C12—C11	119.31 (19)
C15—C4—H4	107.7	C13—C12—H12	120.3
O1—C5—C6	111.57 (12)	C11—C12—H12	120.3
01	115.02 (13)	C12—C13—C14	120.14 (18)
C6—C5—C4	101.94 (12)	C12—C13—H13	119.9
01—C5—H5	109.3	C14—C13—H13	119.9
С6—С5—Н5	109.3	C9—C14—C13	120.81 (17)
C4—C5—H5	109.3	C9—C14—H14	119.6
O3—C6—C7	109.29 (12)	C13—C14—H14	119.6
O3-C6-C5	103.91 (12)	02-C15-O3	111.00 (13)
C7—C6—C5	114.69 (14)	02—C15—C4	109.55 (13)
C7-C6-H6	109.6	02	109.35 (13)
С5—С6—Н6	109.6	03—C15—C4 02—C15—H15	110.13 (12)
C5—C6—H6	109.6	O3—C15—H15	110.0
O4—C7—C6	107.93 (13)	C4—C15—H15	110.0
O4—C7—H7A	110.1	C5—01—H1	109.5
C6—C7—H7A	110.1	C15—O2—H2	109.5
O4—C7—H7B	110.1	C6-03-C15	110.02 (11)
С6—С7—Н7В	110.1	C7—O4—C8	112.33 (13)
C1—C2—C3—C4	-139.52 (19)	C9-C10-C11-C12	0.6 (3)
C2—C3—C4—C5	66.07 (19)	C10-C11-C12-C13	-0.2 (3)
C2—C3—C4—C15	-174.56 (14)	C11—C12—C13—C14	-0.2(3)
C3—C4—C5—O1	-77.64 (17)	C10—C9—C14—C13	0.1 (3)
C15—C4—C5—O1	157.11 (13)	C8—C9—C14—C13	-178.01 (17)
C3—C4—C5—C6	161.47 (13)	C12—C13—C14—C9	0.3 (3)
C15—C4—C5—C6	36.22 (15)	C3—C4—C15—O2	90.94 (16)
01	-161.20 (12)	C5-C4-C15-O2	-141.95 (13)

C4—C5—C6—O3 O1—C5—C6—C7	-37.95 (15) 79.56 (17)	C3—C4—C15—O3 C5—C4—C15—O3	-149.14 (13) -22.03 (16)
C4—C5—C6—C7	-157.18 (13)	C7—C6—O3—C15	148.00 (13)
O3—C6—C7—O4	68.81 (16)	C5—C6—O3—C15	25.15 (16)
C5—C6—C7—O4	-175.01 (12)	O2—C15—O3—C6	117.15 (13)
O4—C8—C9—C14	106.20 (18)	C4—C15—O3—C6	-1.82 (17)
O4—C8—C9—C10	-71.9 (2)	C6—C7—O4—C8	-177.32 (13)
C14—C9—C10—C11	-0.6 (3)	C9—C8—O4—C7	174.44 (14)
C8—C9—C10—C11	177.58 (18)		

(3R,4R,5R)-5-(benzyloxymethyl)-3-fluoro-4-hydroxy-3-methyl-dihydrofuran-2(3H)-one (37).

Crystals were grown by Raphaëlle Berger. The data was collected and the structure solved and refined by Phil Jeffrey of the Molecular Biology Department at Princeton University. An irregular plate-like specimen of $C_{13}H_{15}FO_4$ was used for the X-ray crystallographic analysis. The X-ray intensity data were measured.

Data collection details for pdjrb1

Axis	dx/ mm	20/°	ω/°	φ/°	χ/°	width/	Frames	Time/ s	Wavelength/ Å	Voltage/ kV	Current/ mA	Temperature/ K
Omega	39.854	100.00	-84.00	342.00	54.50	0.50	377	5.00	1.54184	45	0.7	100.04
Phi	39.854	-46.00	-218.00	-280.76	54.50	0.50	469	5.00	1.54184	45	0.7	100.04
Omega	39.854	98.00	-86.00	78.00	54.50	0.50	377	5.00	1.54184	45	0.7	100.04
Omega	39.854	98.00	-82.30	-150.00	54.50	0.50	202	5.00	1.54184	45	0.7	100.04
Omega	39.854	98.00	-86.00	-54.00	54.50	0.50	377	5.00	1.54184	45	0.7	100.04
Omega	39.854	88.00	-95.98	-190.00	54.50	0.50	374	5.00	1.54184	45	0.7	100.04
Phi	39.854	-34.00	-164.00	-356.41	54.50	0.50	723	5.00	1.54184	45	0.7	100.04

A total of 2899 frames were collected. The total exposure time was 4.03 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using an orthorhombic unit cell yielded a total of 7441 reflections to a maximum θ angle of 66.06° (0.84 Å resolution), of which 2085 were independent (average redundancy 3.569, completeness = 98.7%, R_{int} = 2.00%, R_{sig} = 1.63%) and 2069 (99.23%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 6.108(7) Å, <u>b</u> = 7.994(8) Å, <u>c</u> = 25.10(3) Å, volume = 1226.(2) Å³, are based upon the refinement of the XYZ-centroids of 6554 reflections above 20 $\sigma(I)$ with 7.071° < 2 θ < 132.8°. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.853. The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group $P2_1 2_1 2_1$, with Z= 4 for the formula unit, $C_{13}H_{15}FO_4$. The final anisotropic full-matrix least-squares refinement on F² with 166 variables

J. Am. Chem. Soc. Supporting Information

converged at R1 = 2.06%, for the observed data and wR2 = 5.38% for all data. The goodness-of-fit was 1.096. The largest peak in the final difference electron density synthesis was 0.184 e⁻/Å³ and the largest hole was $-0.124 \text{ e}^{-}/Å^{3}$ with an RMS deviation of 0.028 e⁻/Å³. On the basis of the final model, the calculated density was 1.378 g/cm³ and F(000), 536 e⁻.

Identification code	pdjrb1
Chemical formula	$C_{13}H_{15}FO_4$
Formula weight	254.25
Temperature	273(2) K
Wavelength	1.54178 Å
Crystal system	orthorhombic
Space group	$P 2_1 2_1 2_1$
Unit cell dimensions	$a = 6.108(7) \text{ Å} \qquad \alpha = 90^{\circ}$
	$b = 7.994(8) \text{ Å} \qquad \beta = 90^{\circ}$
	$c = 25.10(3) \text{ Å} \qquad \gamma = 90^{\circ}$
Volume	1226.(2) $Å^3$
Z	4
Density (calculated)	1.378 Mg/cm ³
Absorption coefficient	0.944 mm ⁻¹
F(000)	536

Sample and crystal data for pdjrb1

Data collection and structure refinement for pdjrb1

Theta range for data collection	3.52 to 66.06°
Index ranges	-7<=h<=7, -9<=k<=9, -29<=l<=28
Reflections collected	7441
Independent reflections	2085 [R(int) = 0.0200]
Coverage of independent reflections	98.7%
Absorption correction	multi-scan
Structure solution technique	direct methods
Structure solution program	SHELXS-97 (Sheldrick, 2008)
Refinement method	Full-matrix least-squares on F ²
Refinement program	SHELXL-97 (Sheldrick, 2008)
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$
Data / restraints / parameters	2085 / 0 / 166
Goodness-of-fit on F ²	1.096
$\Delta/\sigma_{\rm max}$	0.001

Final R indices	2069 data; I>2σ(I)	R1 = 0.0206, wR2 = 0.0536
	all data	R1 = 0.0208, wR2 = 0.0538
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.025) where P=(F_o^2 +2 F_c^2)/2	
Absolute structure parameter	0.1(1)	
Extinction coefficient	0.0021(3)	
Largest diff. peak and hole	0.184 and -0.124 eÅ	-3
R.M.S. deviation from mean	0.028 eÅ ⁻³	

Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for pdjrb1.

- (1)		8	- IJ	
	x/a	y/b	z/c	U(eq)
F1	0.75867(12)	0.28729(9)	0.13698(3)	0.02590(19)
01	0.99322(13)	0.11717(10)	0.33133(3)	0.01893(19)
O2	0.80544(13)	0.04619(10)	0.22773(3)	0.01808(18)
O3	0.65689(13)	0.48744(9)	0.22506(3)	0.01851(19)
O4	0.62187(14)	0.92096(10)	0.16122(3)	0.0221(2)
C1	0.5996(2)	0.99090(17)	0.50727(5)	0.0267(3)
C2	0.5385(2)	0.12151(17)	0.47379(5)	0.0234(3)
C3	0.6807(2)	0.17703(15)	0.43428(4)	0.0201(3)
C4	0.8848(2)	0.09981(14)	0.42676(4)	0.0180(2)
C5	0.04591(19)	0.16269(16)	0.38556(4)	0.0192(3)
C6	0.8117(2)	0.20789(15)	0.30999(4)	0.0175(2)
C7	0.82493(19)	0.21558(14)	0.25008(5)	0.0165(2)
C8	0.62975(19)	0.31249(14)	0.22617(5)	0.0159(2)
C9	0.5966(2)	0.22587(15)	0.17247(5)	0.0182(3)
C10	0.3749(2)	0.23934(16)	0.14655(5)	0.0272(3)
C11	0.66899(19)	0.04631(15)	0.18493(4)	0.0173(2)
C12	0.8023(2)	0.91356(16)	0.50055(5)	0.0267(3)
C13	0.9426(2)	0.96709(16)	0.46018(5)	0.0212(3)

U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Bond lengths (Å) for pdjrb1.

F1-C9	1.4194(17)	O1–C6	1.4290(17)
O1–C5	1.4455(19)	O2-C11	1.3597(17)
O2–C7	1.4707(19)	O3–C8	1.409(2)
O3–H3	0.82	O4–C11	1.2005(17)
C1–C2	1.391(2)	C1-C12	1.394(2)
C1-H1	0.93	C2–C3	1.391(2)
C2-H2	0.93	C3–C4	1.404(2)
С3–НЗА	0.93	C4–C13	1.398(2)

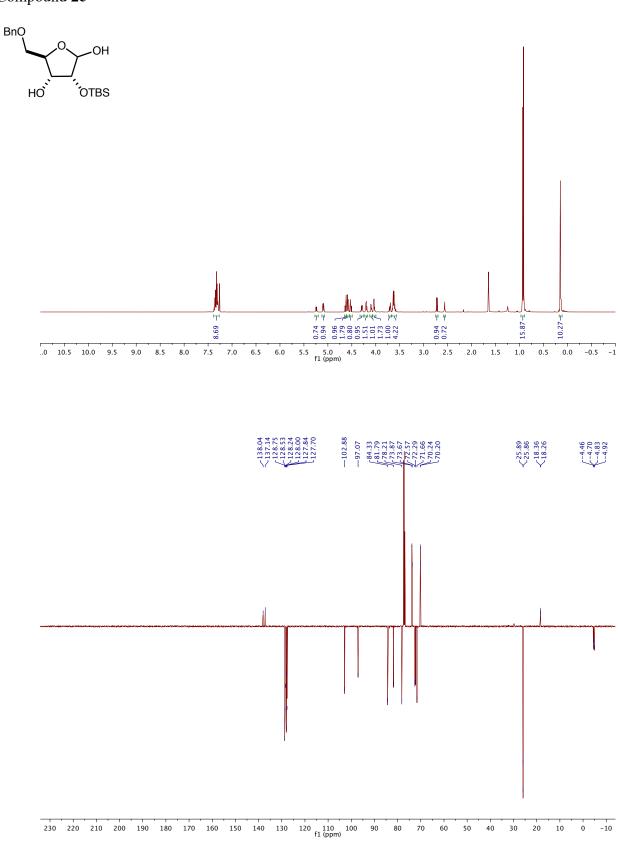
C4–C5	1.513(2)	С5-Н5А	0.97
C5–H5B	0.97	C6–C7	1.507(2)
C6–H6A	0.97	C6–H6B	0.97
C7–C8	1.5433(19)	С7-Н7	0.98
C8–C9	1.529(2)	C8–H8	0.98
C9–C10	1.506(2)	C9–C11	1.534(2)
C10-H10A	0.96	C10-H10B	0.96
C10-H10C	0.96	C12–C13	1.394(2)
C12-H12	0.93	C13-H13	0.93

Bond angles (°) for pdjrb1.

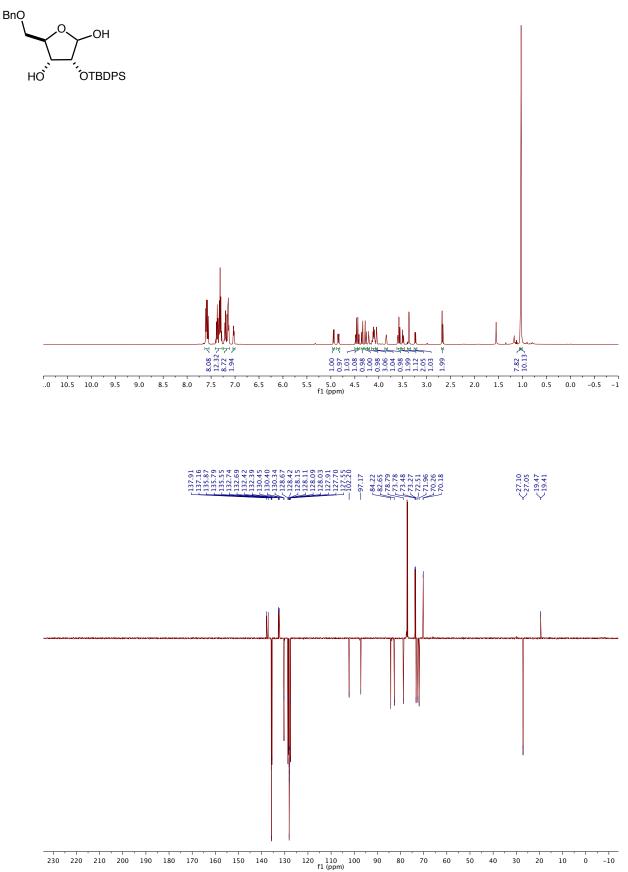
C601C5	113.45(9)	C11–O2–C7	110.51(9)
C8–O3–H3	109.5	C2-C1-C12	119.88(12)
C2C1H1	120.1	C12C1H1	120.1
C3–C2–C1	120.16(13)	С3-С2-Н2	119.9
C1-C2-H2	119.9	C2-C3-C4	120.67(12)
С2-С3-НЗА	119.7	С4С3НЗА	119.7
C13-C4-C3	118.50(11)	C13-C4-C5	119.88(12)
C3–C4–C5	121.54(12)	O1–C5–C4	114.54(11)
O1–C5–H5A	108.6	C4–C5–H5A	108.6
O1–C5–H5B	108.6	C4–C5–H5B	108.6
H5A-C5-H5B	107.6	O1–C6–C7	110.66(10)
O1–C6–H6A	109.5	С7–С6–Н6А	109.5
O1–C6–H6B	109.5	C7–C6–H6B	109.5
H6A-C6-H6B	108.1	O2–C7–C6	109.80(10)
O2–C7–C8	104.55(10)	C6–C7–C8	111.54(10)
O2–C7–H7	110.3	С6-С7-Н7	110.3
C8–C7–H7	110.3	O3-C8-C9	116.61(10)
O3–C8–C7	114.53(10)	C9–C8–C7	102.59(10)
O3–C8–H8	107.5	С9–С8–Н8	107.5
С7–С8–Н8	107.5	F1-C9-C10	109.34(12)
F1-C9-C8	107.72(11)	C10–C9–C8	117.87(11)
F1C9C11	104.52(10)	C10-C9-C11	114.46(10)
C8–C9–C11	101.88(10)	C9-C10-H10A	109.5
C9-C10-H10B	109.5	H10A-C10-H10B	109.5
C9-C10-H10C	109.5	H10A-C10-H10C	109.5
H10B-C10-H10C	109.5	O4-C11-O2	122.55(11)
O4–C11–C9	127.65(11)	O2-C11-C9	109.78(9)
C1C12C13	119.82(13)	C1C12H12	120.1
C13-C12-H12	120.1	C12-C13-C4	120.95(13)
C12-C13-H13	119.5	C4C13H13	119.5

	sou opro monno					
	U_{11}	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
F1	0.0340(4)	0.0258(4)	0.0180(3)	0.0013(3)	0.0061(3)	-0.0065(3)
O1	0.0178(4)	0.0237(4)	0.0153(4)	-0.0013(3)	-0.0014(3)	0.0043(3)
O2	0.0195(4)	0.0161(4)	0.0187(4)	-0.0016(3)	-0.0013(3)	0.0025(3)
O3	0.0197(4)	0.0138(4)	0.0220(4)	0.0006(3)	0.0035(3)	-0.0007(3)
O4	0.0234(4)	0.0195(4)	0.0235(4)	-0.0051(4)	0.0021(3)	-0.0014(4)
C1	0.0276(7)	0.0302(7)	0.0222(6)	-0.0037(5)	0.0065(5)	-0.0095(6)
C2	0.0176(6)	0.0321(7)	0.0205(6)	-0.0104(5)	-0.0003(5)	-0.0012(5)
C3	0.0202(6)	0.0236(6)	0.0166(6)	-0.0045(5)	-0.0029(5)	0.0014(5)
C4	0.0188(6)	0.0199(6)	0.0152(5)	-0.0056(5)	-0.0028(4)	-0.0025(5)
C5	0.0170(5)	0.0243(6)	0.0163(6)	-0.0011(5)	-0.0029(5)	-0.0005(5)
C6	0.0168(5)	0.0187(5)	0.0169(6)	0.0011(4)	-0.0007(5)	0.0022(5)
C7	0.0166(6)	0.0150(5)	0.0181(6)	-0.0018(4)	0.0011(5)	0.0010(5)
C8	0.0158(5)	0.0148(5)	0.0171(5)	0.0013(4)	0.0008(5)	-0.0002(5)
С9	0.0194(6)	0.0192(6)	0.0162(6)	0.0023(5)	0.0014(5)	-0.0014(5)
C10	0.0286(7)	0.0243(6)	0.0286(7)	-0.0021(5)	-0.0101(6)	0.0039(5)
C11	0.0147(5)	0.0211(6)	0.0159(5)	-0.0006(5)	0.0038(4)	-0.0008(5)
C12	0.0341(8)	0.0226(6)	0.0236(6)	0.0023(5)	0.0004(5)	-0.0031(6)
C13	0.0212(6)	0.0206(6)	0.0217(6)	-0.0027(5)	-0.0013(5)	0.0008(5)

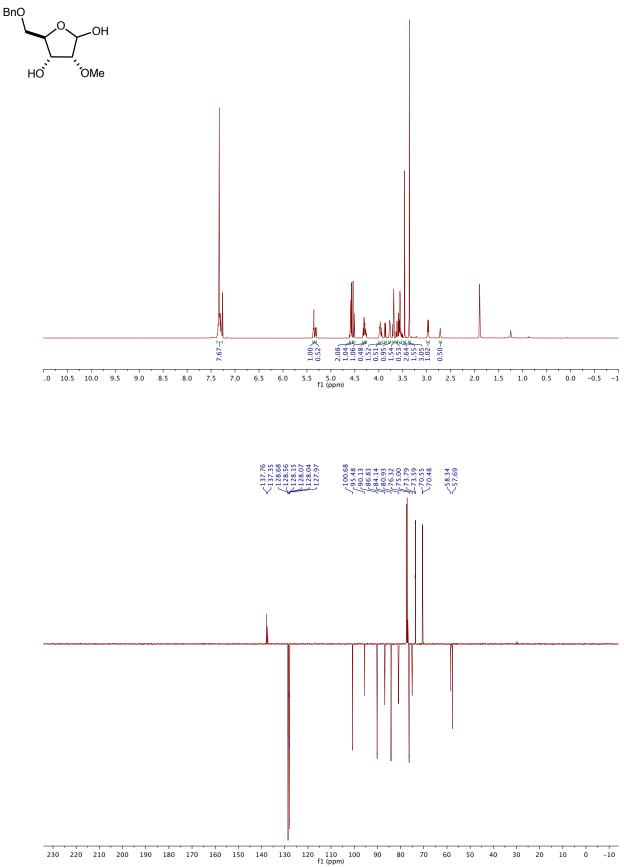
Anisotropic atomic displacement parameters (\AA^2) for pdjrb1

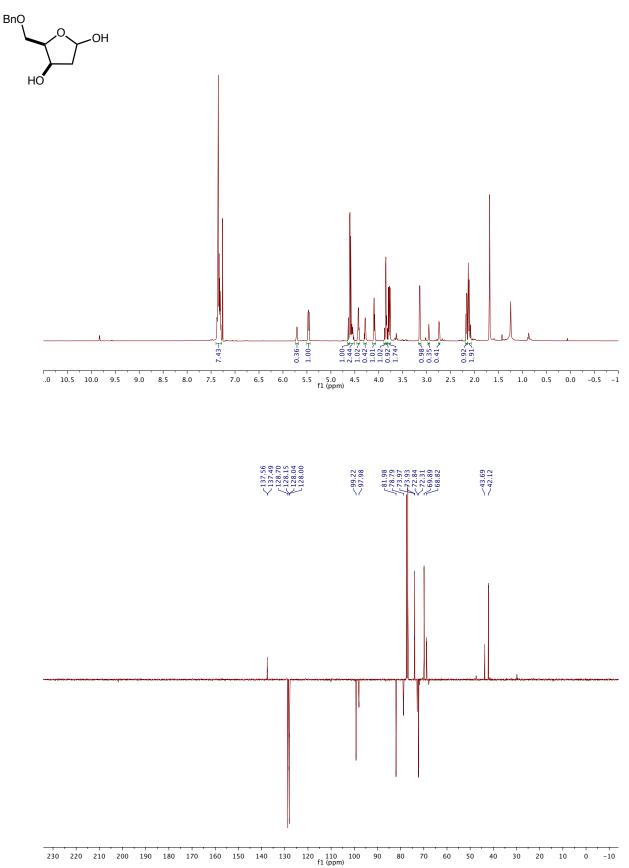

The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$

Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for pdjrb1.

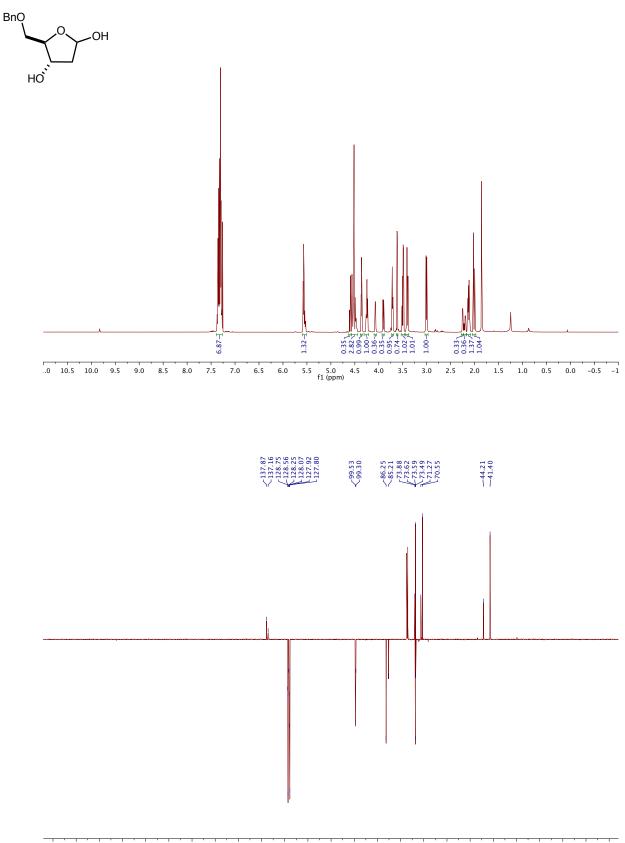

x/ay/bz/cU(e)H30.76180.51120.20610.02061H10.5055-0.04470.53410.02061H20.40220.17180.47780.02061H3A0.64020.26620.41260.02061H5A1.05330.28370.38790.02061H5B1.18990.11910.39410.02061H6A0.81110.32050.32440.02061H6B0.67620.15380.32050.02061H70.96340.26680.23900.02061	
H10.5055-0.04470.53410.01H20.40220.17180.47780.01H3A0.64020.26620.41260.01H5A1.05330.28370.38790.01H5B1.18990.11910.39410.01H6A0.81110.32050.32440.01H6B0.67620.15380.32050.01H70.96340.26680.23900.01	q)
H20.40220.17180.47780.07H3A0.64020.26620.41260.07H5A1.05330.28370.38790.07H5B1.18990.11910.39410.07H6A0.81110.32050.32440.07H6B0.67620.15380.32050.07H70.96340.26680.23900.07	28
H3A0.64020.26620.41260.01H5A1.05330.28370.38790.01H5B1.18990.11910.39410.01H6A0.81110.32050.32440.01H6B0.67620.15380.32050.01H70.96340.26680.23900.01	32
H5A1.05330.28370.38790.01H5B1.18990.11910.39410.01H6A0.81110.32050.32440.01H6B0.67620.15380.32050.01H70.96340.26680.23900.01	28
H5B1.18990.11910.39410.01H6A0.81110.32050.32440.01H6B0.67620.15380.32050.01H70.96340.26680.23900.01	24
H6A0.81110.32050.32440.02H6B0.67620.15380.32050.02H70.96340.26680.23900.02	23
H6B0.67620.15380.32050.01H70.96340.26680.23900.01	23
H7 0.9634 0.2668 0.2390 0.0	21
	21
	2
H8 0.5011 0.2883 0.2482 0.0	9
H10A 0.3423 0.3548 0.1396 0.04	1
H10B 0.2657 0.1936 0.1699 0.04	1
H10C 0.3753 0.1782 0.1136 0.04	1
H12 0.8439 -0.1735 0.5229 0.0	32
H13 1.0764 -0.0863 0.4554 0.02	25

IX. Appendix B: ¹H and ¹³C NMR Spectra

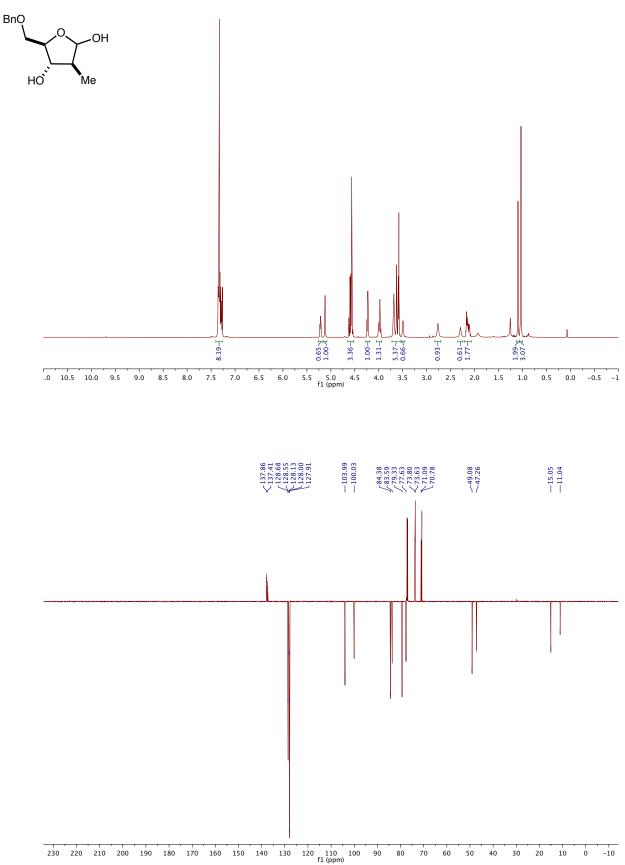

Compound 2c


Compound 3c

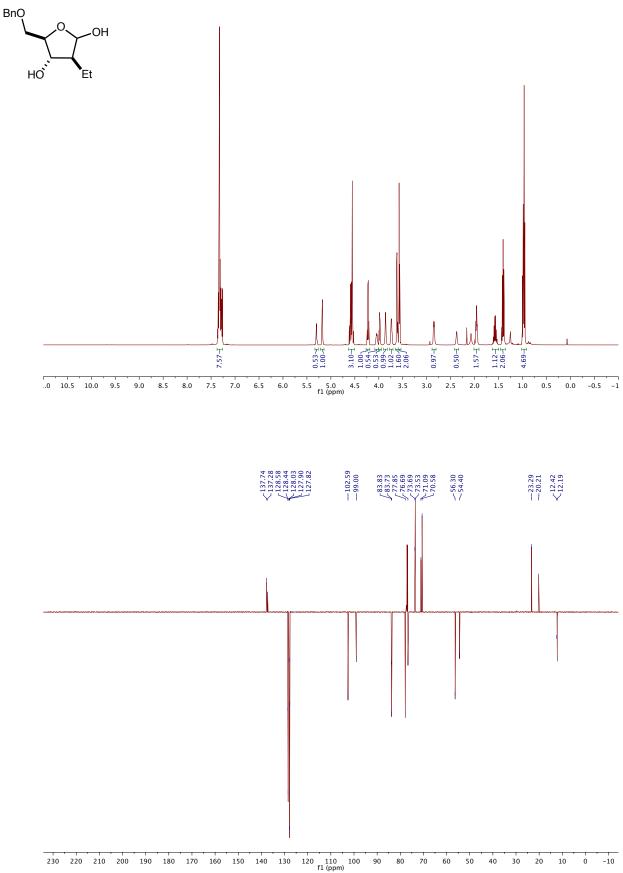
Compound 4c



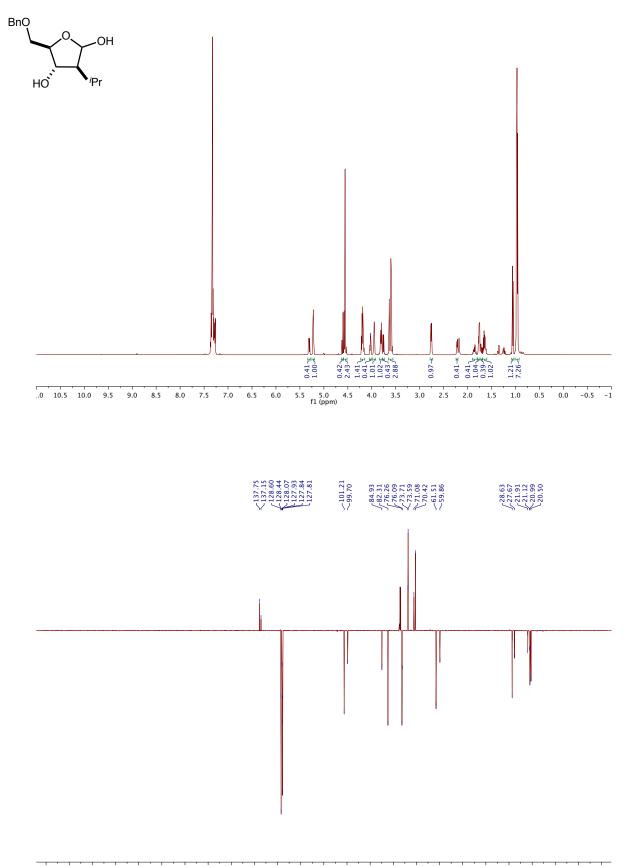
Compound **5**c

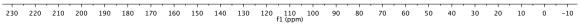

ii (ppiii)

Compound **6c**

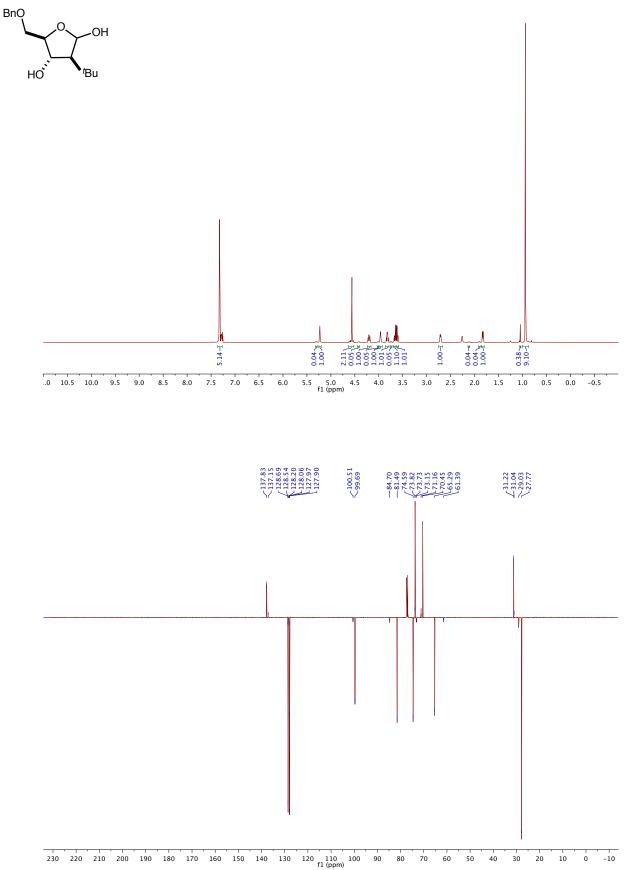

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1(ppm)

Compound 7c

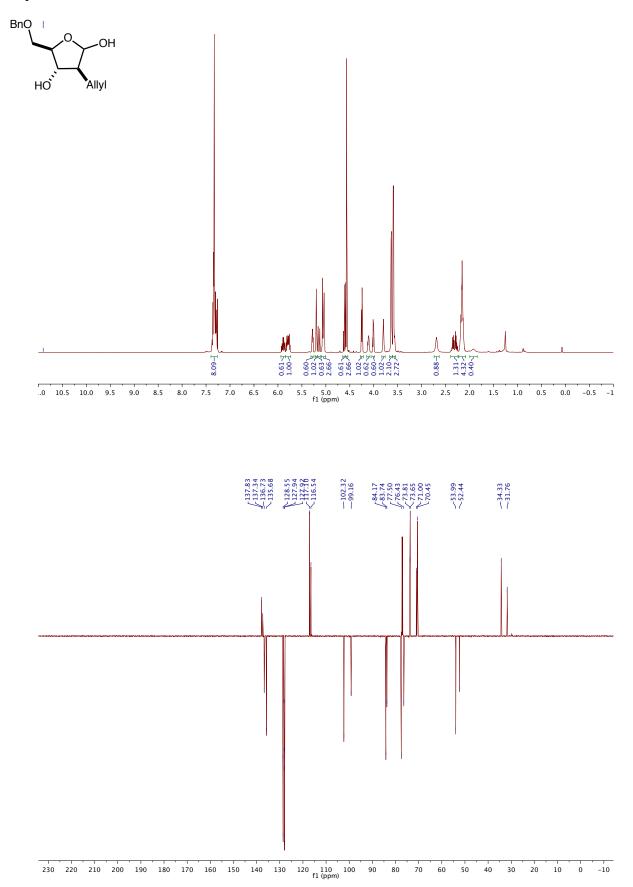


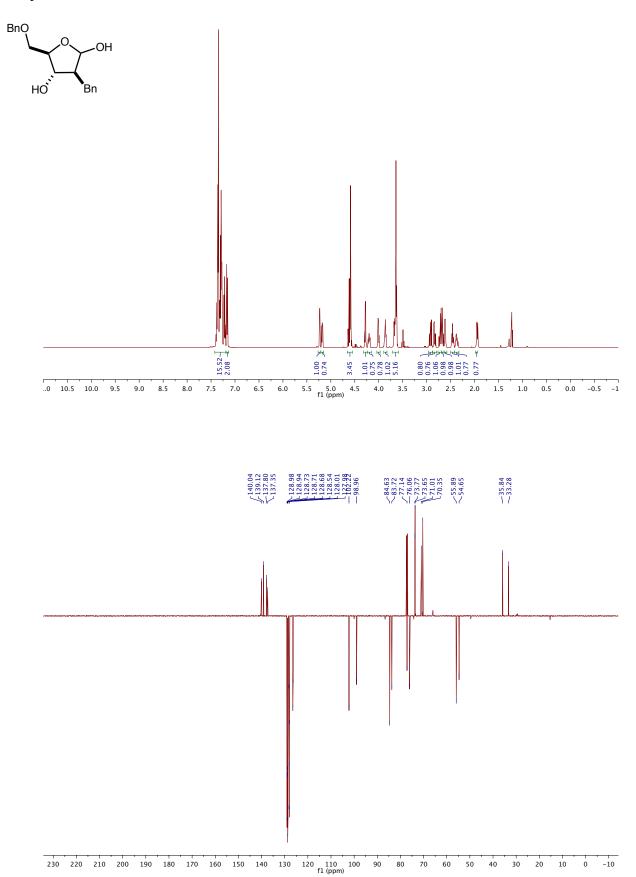

(ppm)

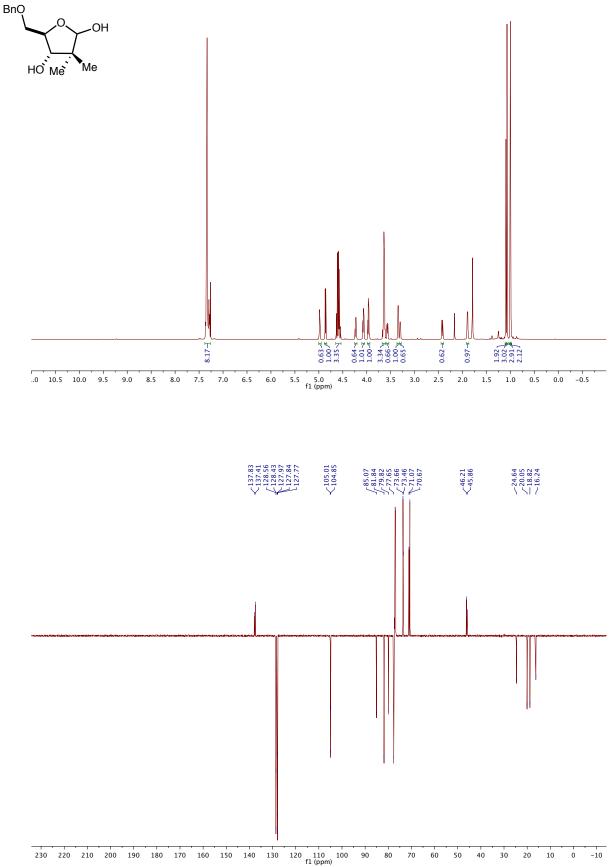
Compound 8c



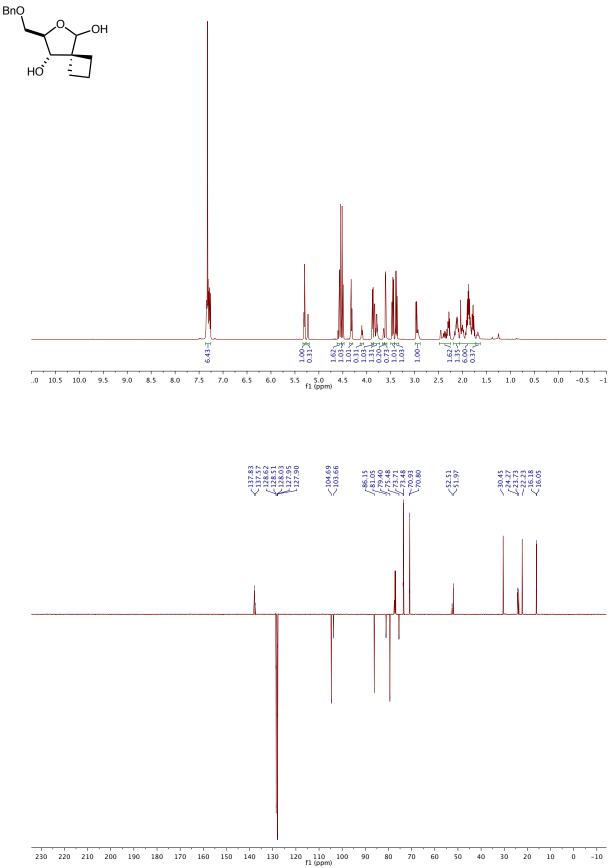
Compound 9c



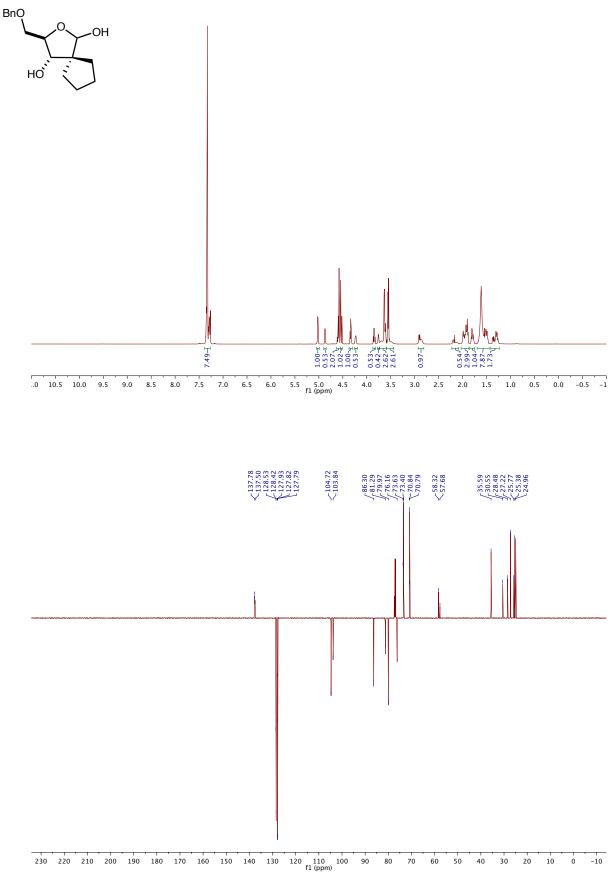

Compound 10c


Compound 11c

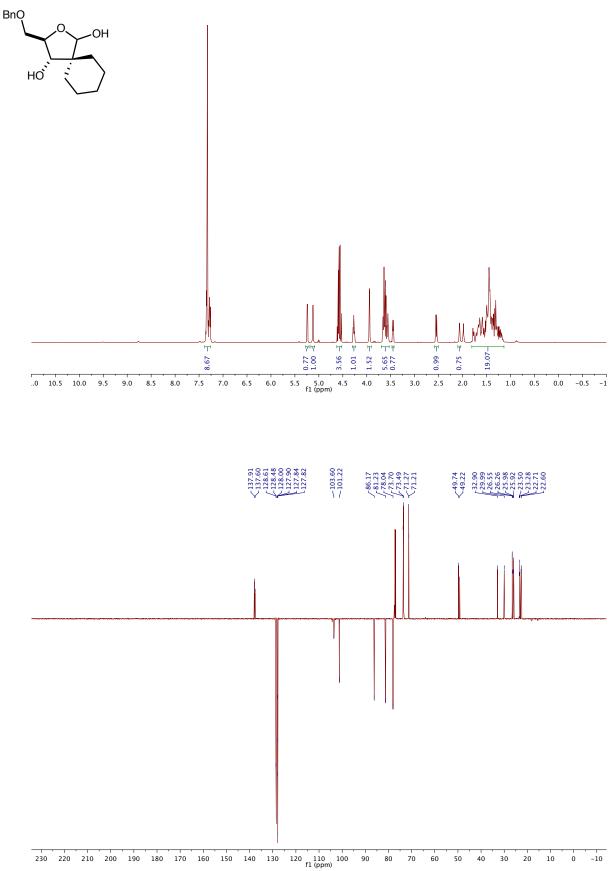
Compound 12c

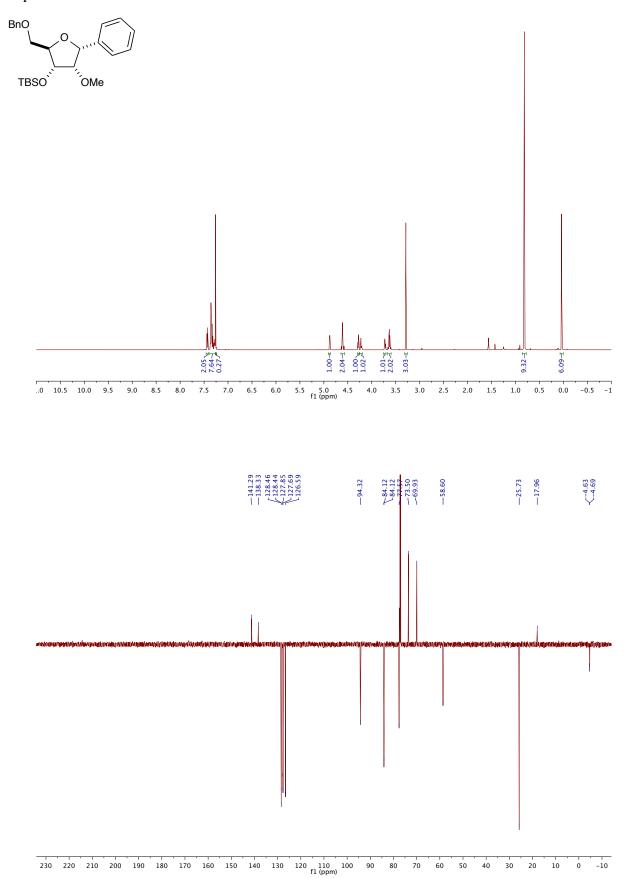


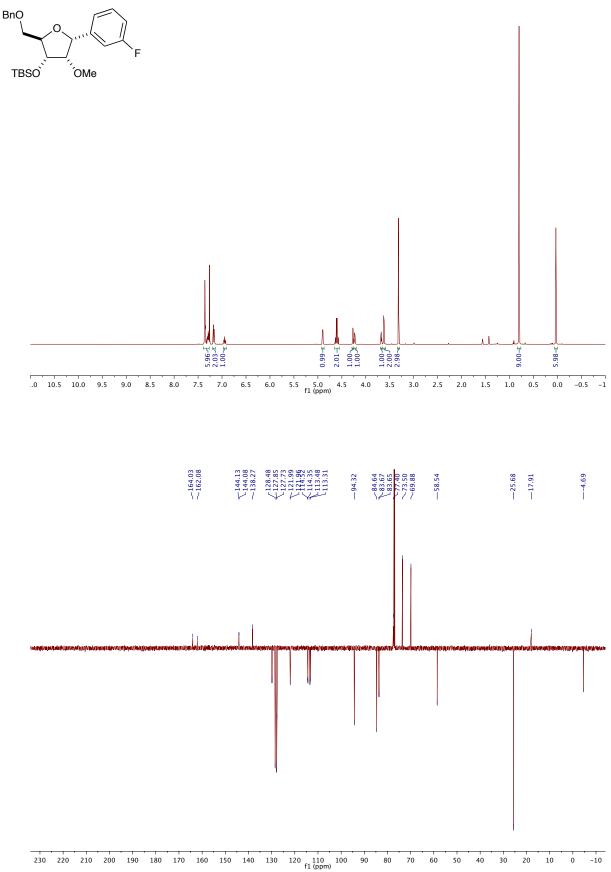
Compound 13c

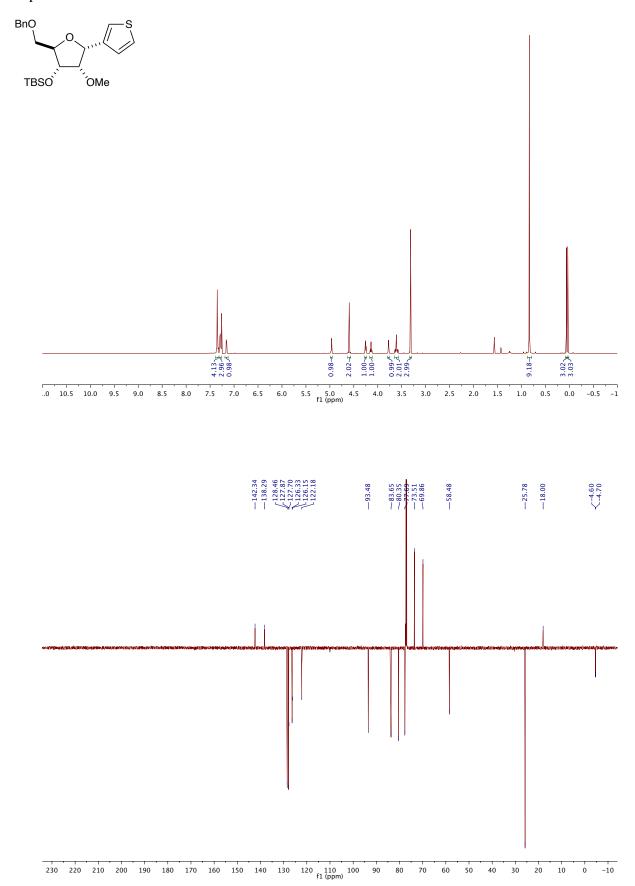


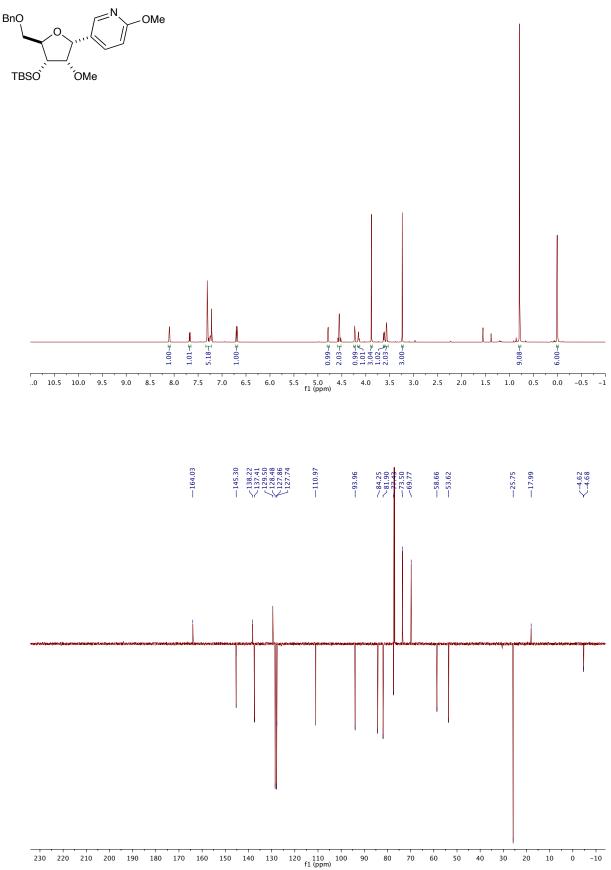
r1 (ppm)


Compound 14c

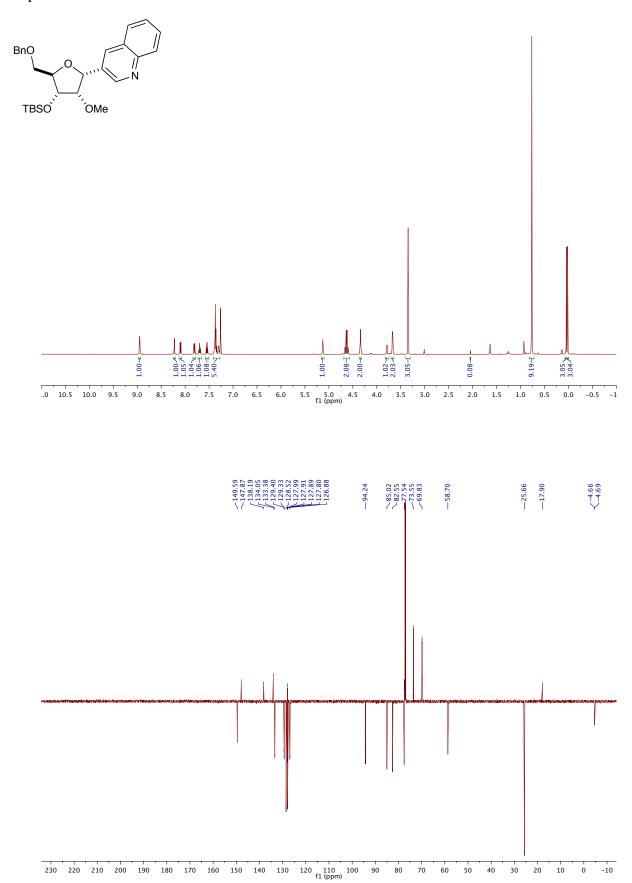

Compound 15c


Compound 16c

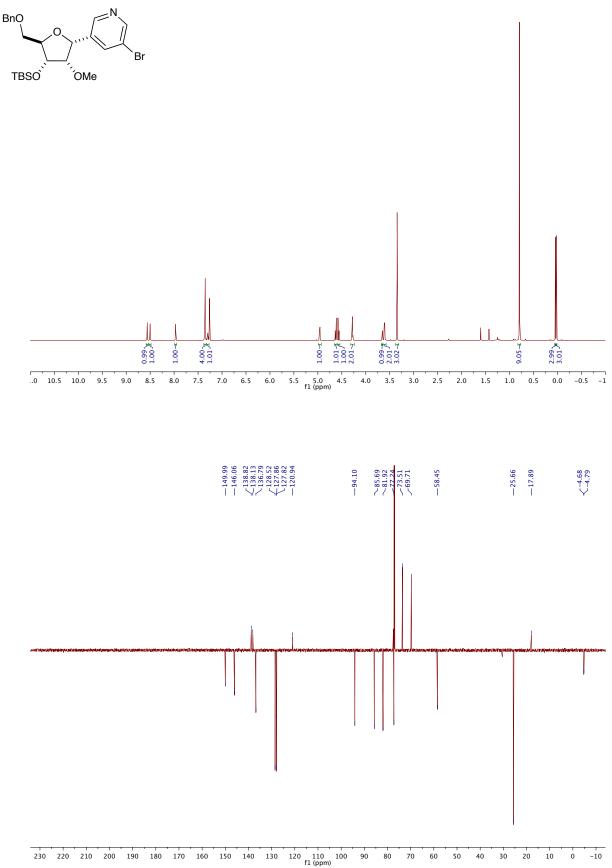

Compound 24α


Compound 25α

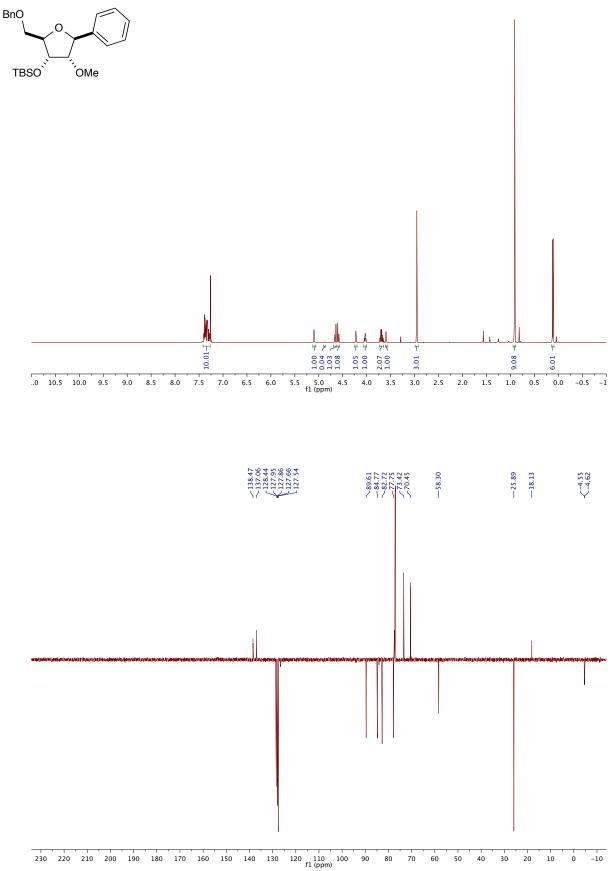
Compound 26α

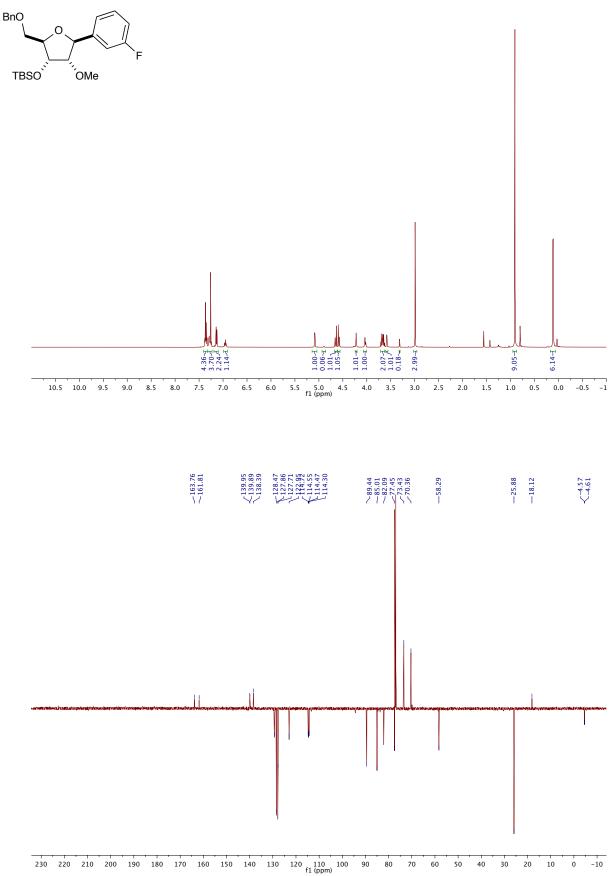


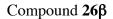
Compound 27α

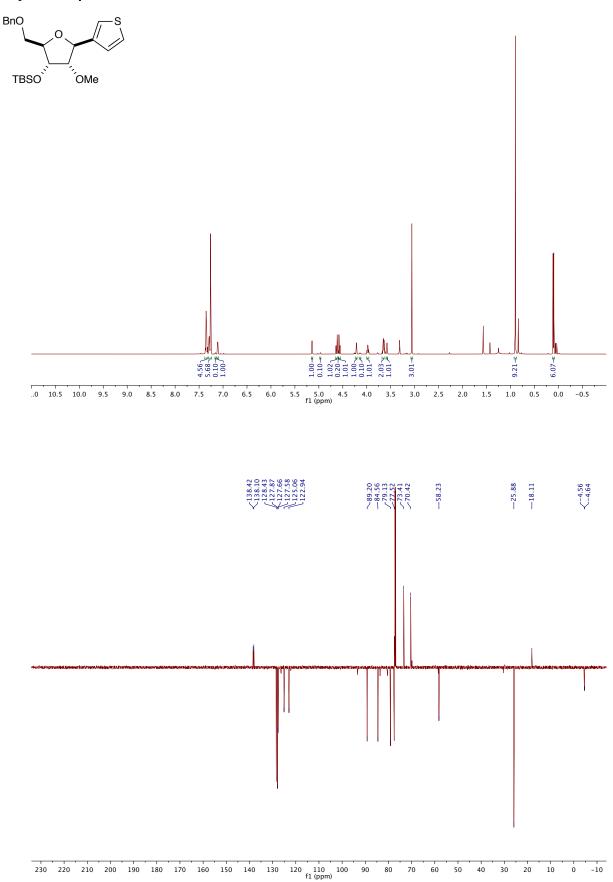


(hhu)

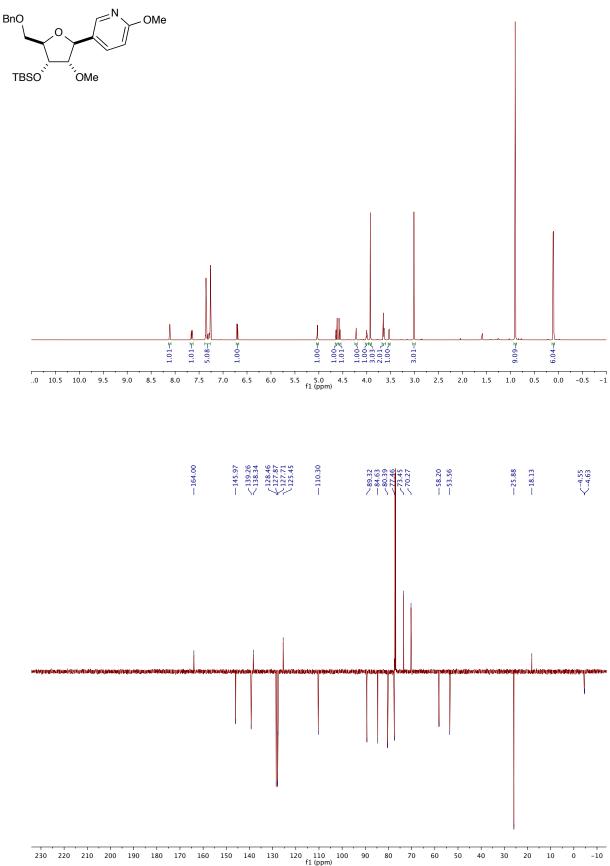

Compound 28α


Compound 29α

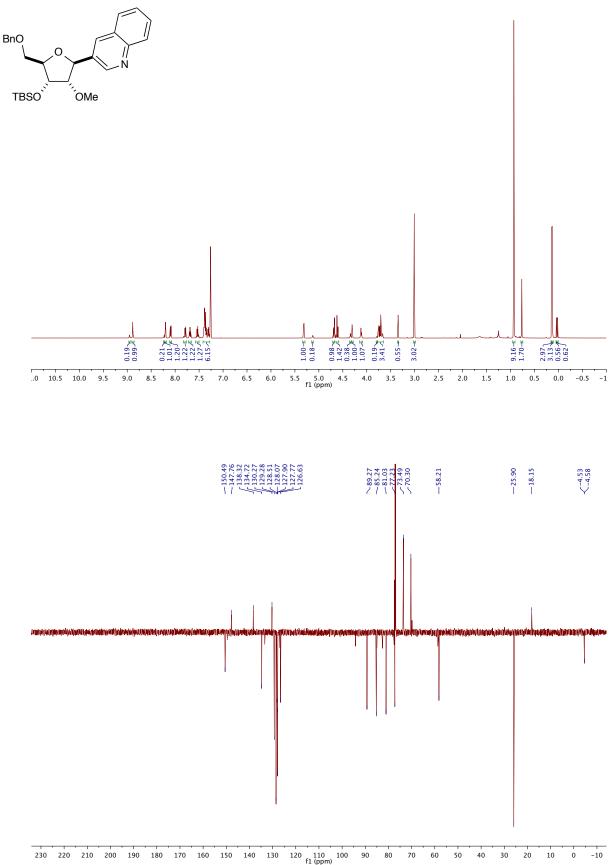

Compound 24β



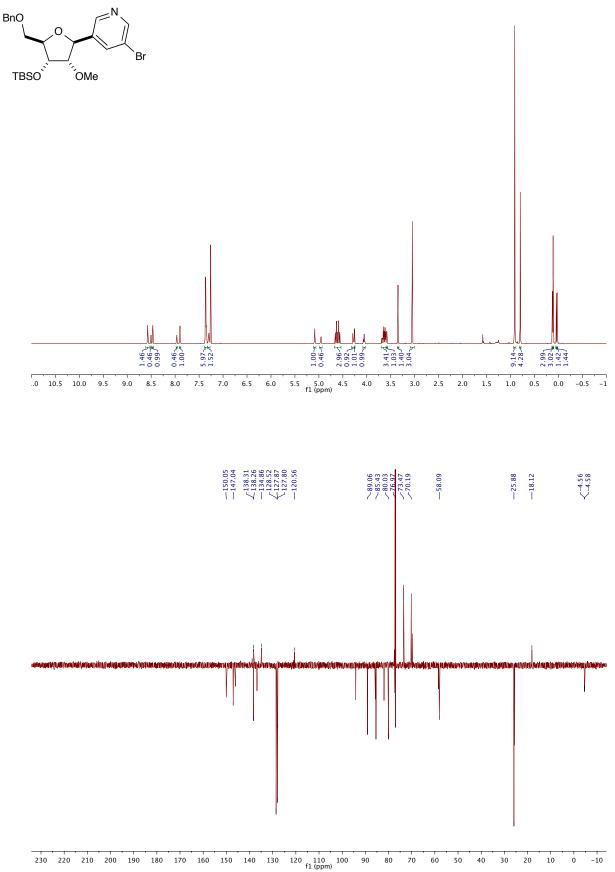
Compound 25β



ιτ (ppm)

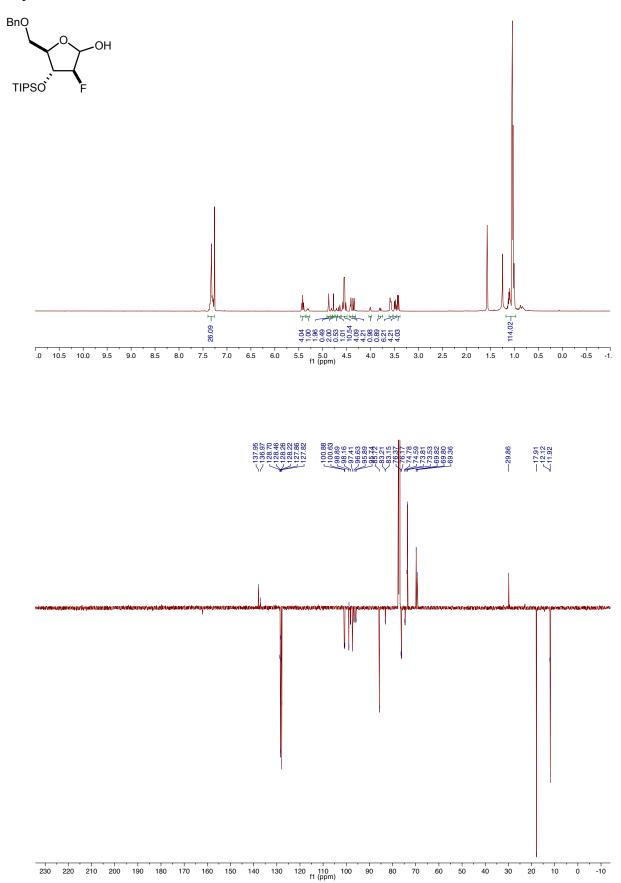


Compound 27β

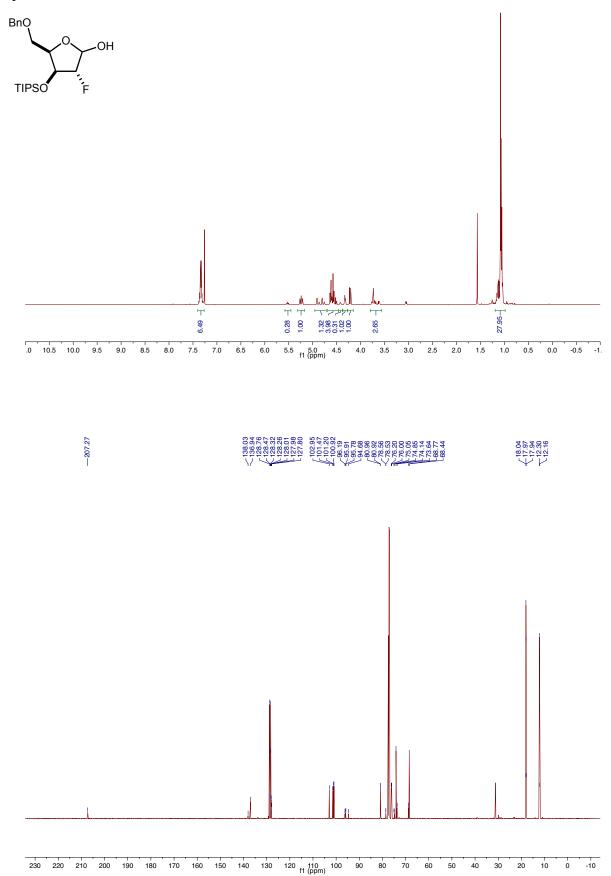


- (Phin)

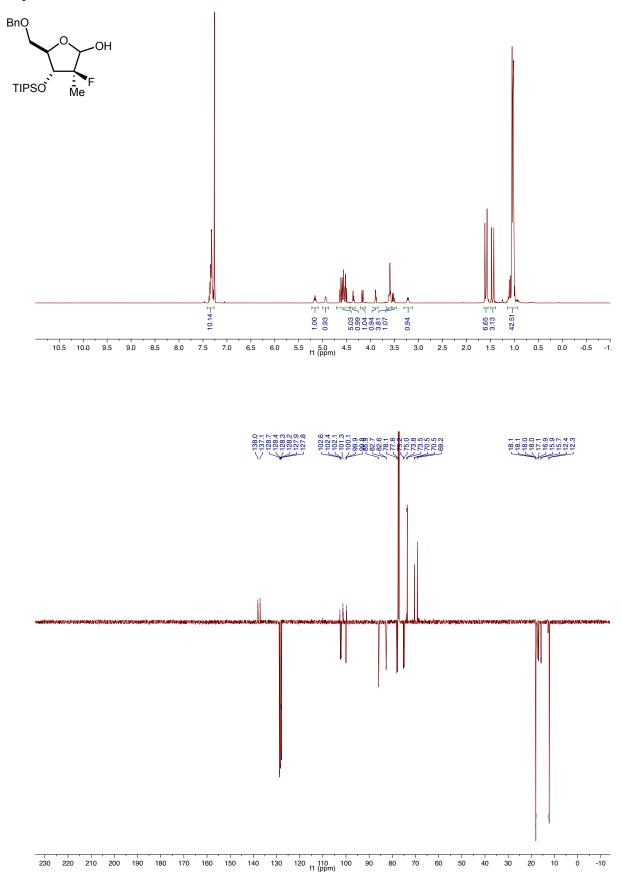
Compound 28β

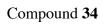


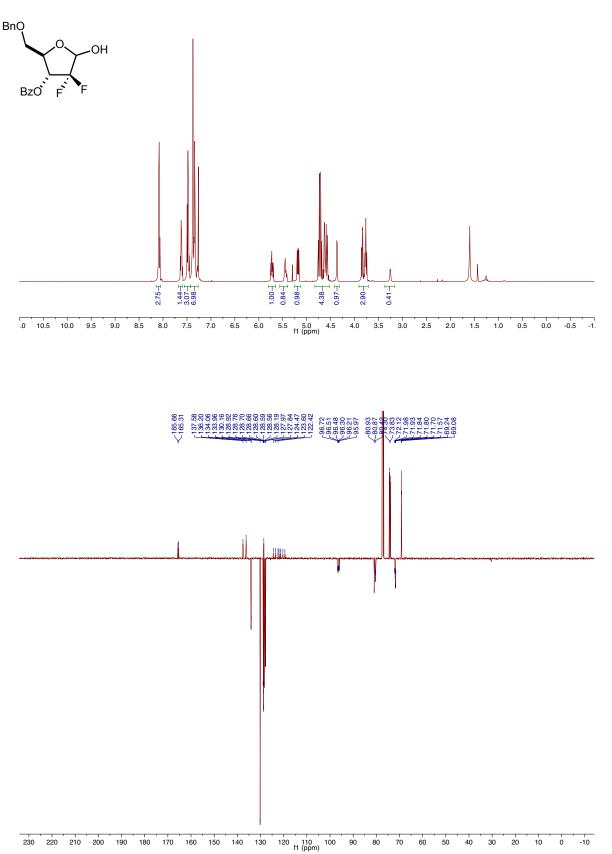
Compound 29β


r (ppin)

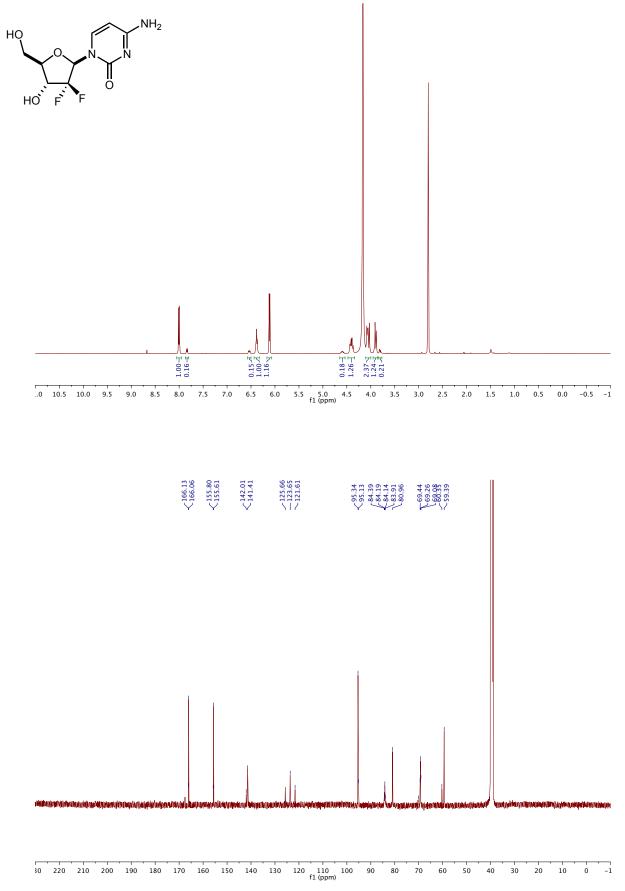
Compound 31b

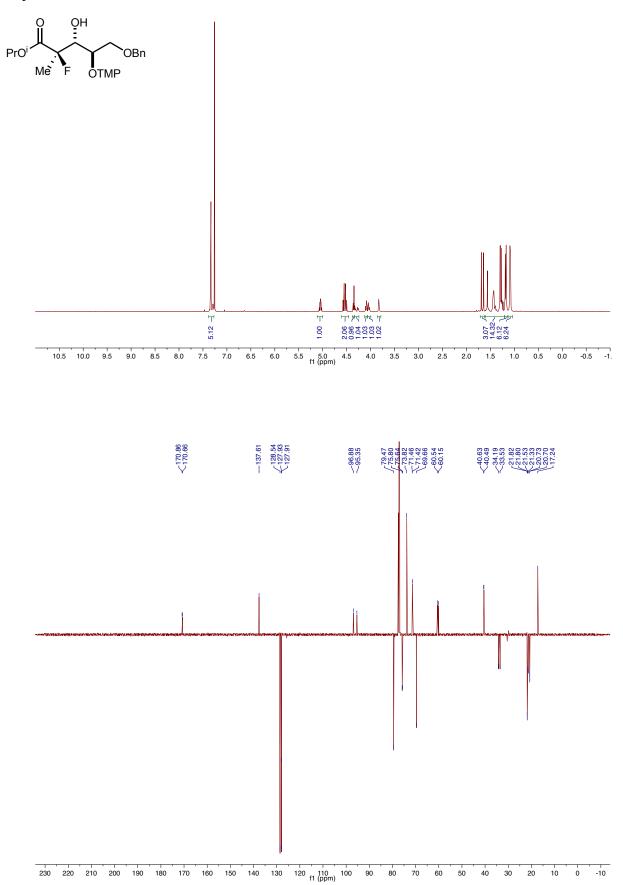

u.E...)

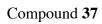

Compound 32b

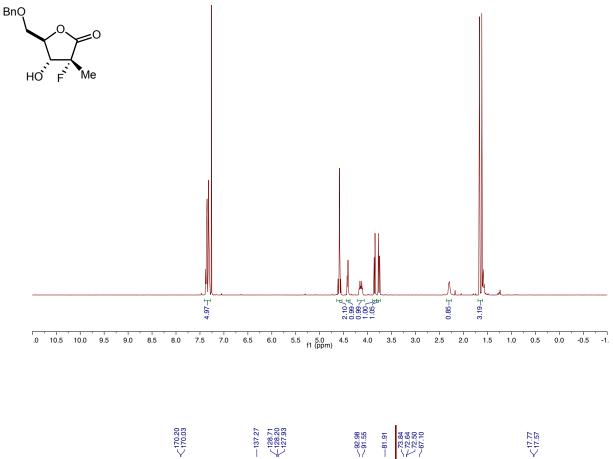


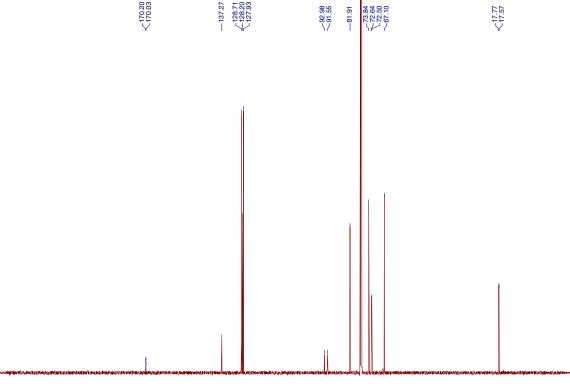
n (ppn)

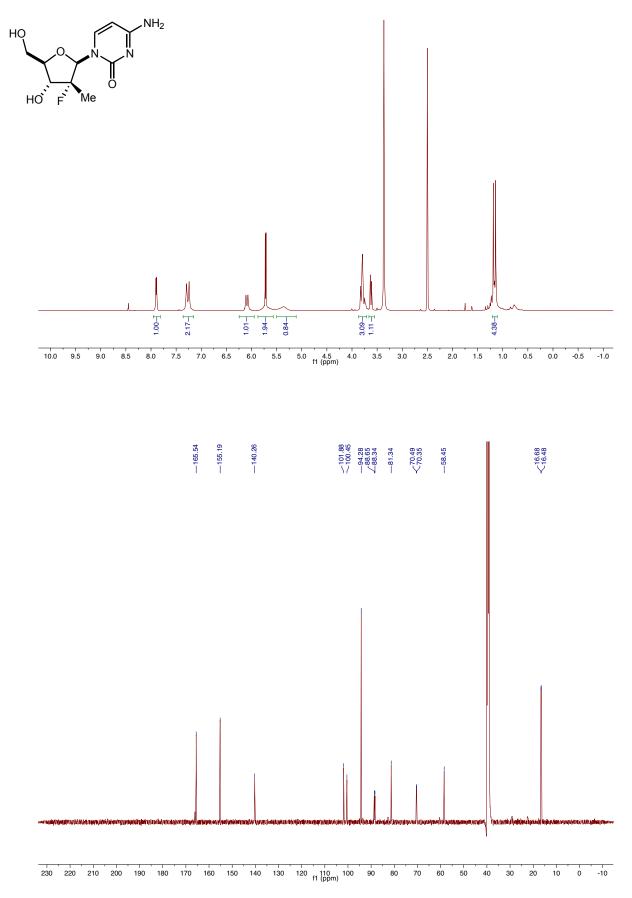

Compound 33b




Gemcitabine




Compound 36


w.e.../

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

