Supplementary Information

wALADin benzimidazoles differentially modulate the function of porphobilinogen synthase orthologs

Christian S. Lentz[†], Victoria S. Halls[‡], Jeffrey Hannam[‡], Silke Strassel[†], Sarah H. Lawrence, *Eileen K. Jaffe*, *Michael Famulok[‡], Achim Hoerauf[†], Kenneth M. Pfarr[†]**

[†] Institute of Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Sigmund-Freud Str. 25, 53127 Bonn, Germany

[‡] LIMES Institute, Chemical Biology & Medicinal Chemistry Unit, University of Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany

^D Fox Chase Cancer Center, Temple University Health System, 333 Cottman Ave, Philadelphia, PA, 19111 USA.

Contents:

Figure S1: Multiple Sequence Alignment of orthologous PBGS protein sequences - p. 2

Figure S2: Inhibition of *Ps*PBGS and *w*PBGS by wALADin1 – p.4

Figure S3: Phylogeny of PBGS – p. 5

Figure S4: The effect of KCl, pH, and [5-ALA] on wALADin1 activity against PaPBGS - p.7

Figure S5: pH screen of stimulated Vc, Ye and EcPBGS orthologs - p. 9

Figure S6: The effect of K+ on the interaction of PaPBGS and wALADin1 - p. 10

Figure S7: Michaelis-Menten kinetics of PaPBGS - p. 7

Figure S8: Structural representation of Mg²⁺- and K⁺-binding sites in the *Pa*PBGS octamer – p. 13

Supplementary Methods (Thermal Shift Assay) - p. 14

Supplementary References – p.14

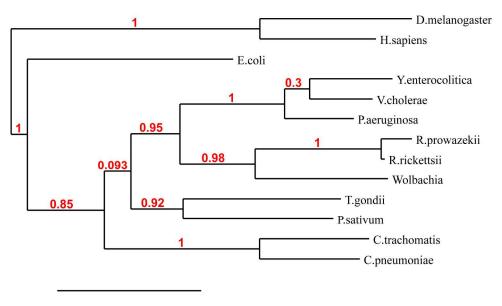
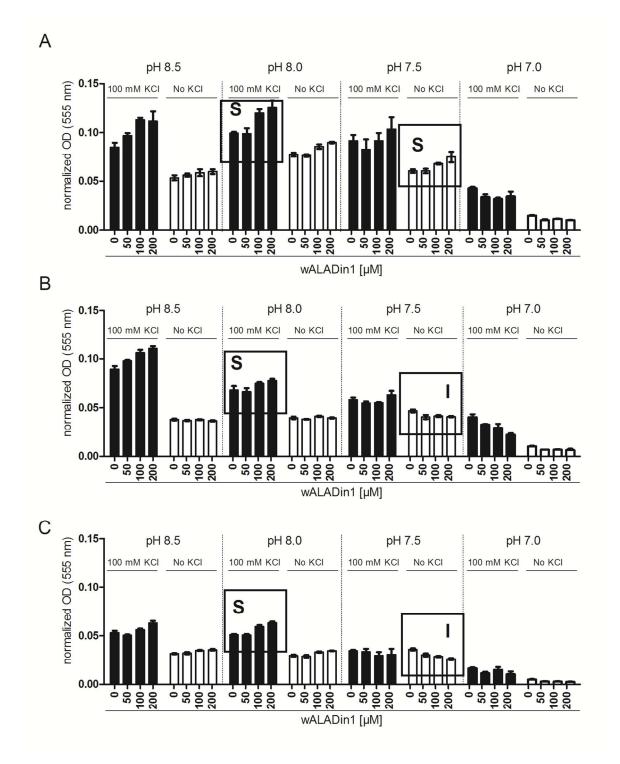
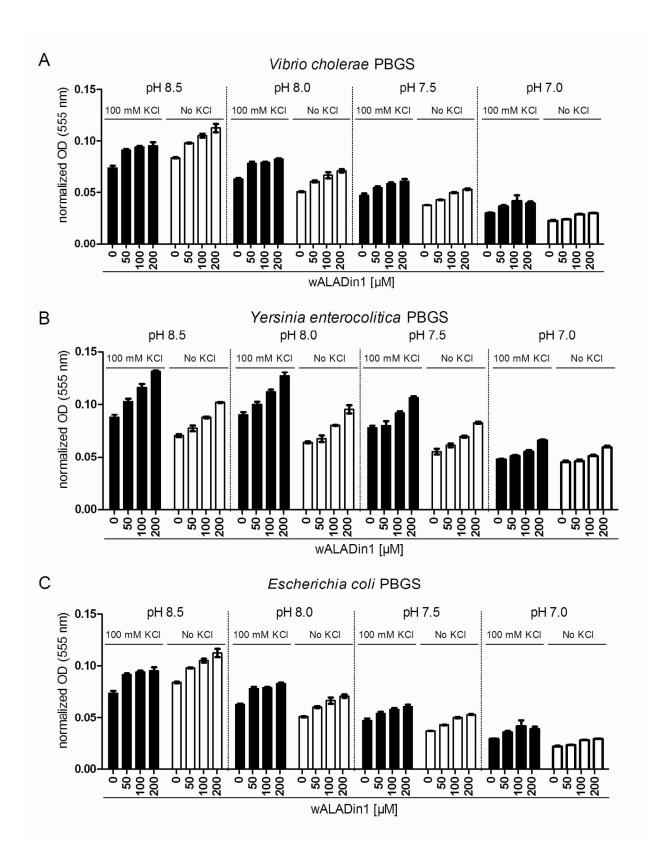

		Allosteric K									
PBGS group	7	Hs	1		MQPQ	SVLH	SGY FH PLLRA	WQTATTTLNA	SNLIYPIFVT	DVPDDIQPIT	48
	Ζ	Dm	1		MERK	LH	SGMHHATLRQ	LQESGCEIAP	HNLMYPVFIV	SNDDDVQPIA	46
		Еc	1		MTDLIQ	RPR	RLRKS PAL RA	MFEET-TLSL	NDLVLPIFVE	EEIDDYKAVE	48
		Vс	1		MSVSIQ	G-QFPGRRLR	RLRKHDFSRR	LVAEN-QLSV	NDLIYPMFIL I	MGKDRREKVD	54
S	Y	Ye	1		MSYAFP	G-TFPGRRMR	RVR RH DFS R	LVAEN-QLTV	NDLIYPVFVM	EGNNHQQAVS	54
		Тg	303	MTPRGPLDNN	NYGEVWLPIQ	ARPR	RNRKNRAVRQ	LVQEN-LVKP	SSLIYPLFVH	DEETSVP-IP	364
	(+Y	Pa	1		MSFTPA	NRAYPYTRLR	RNRRDDFSRR	LVREN-VLTV	DDLILPVFVL	DGVNQRESIP	55
	х	W	1		MMFNFP	NTRLR	RRR SS KWV RN	LTSES-ALSV	NDLIFPLFVH	DREETTELVS	50
	~	Ps	69		SLPIQ	RRPR	RNR RS PALRS	AFQET-TLSP	ANFVYPLFIH	EGEEDTP-IG	115
	z	Hs	49	SLPGVARYGV	KR-LEEMLRP	LVEE GLRC VL	IFGVPSRVPK	DERGSAADSE	ESPAIEAIHL	LRKTF PNLLV	117
	2	Dm	47	SMPGISRFGL	NR-LKEHLEP	LVAKGLSSVL	LFG VV DPDMK	DE QA SNA DS A	KNP VVL AL PK	LREWFPDLLI	115
G.		Еc	49	AMPGVMRIPE	KH-LAREIER	IANAGIRSVM	TFGISHHTDE	TGSDAWRE	DGLVARMSRI	CKQTVPEMIV	115
PBGS group		Vс	55	SMPGVERLSI	DL-MLEEAQY	LANLGVPAIA	LFPVVNQDAK	SL CAAEA YN P	EGLVQRAVRA	LKEHV PQMGV	123
	Y	Yе	55	SMPGVSRMTI	DL-LVKEAEA	IAKLGVPVIS	LFPVIEPGMK	SL HAEEA YN P	NGL VQR TV RA	LKDAV PELGI	123
		Τg	365	SMPGQSRLSM	ED-LLKEVGE	ARSYGIKAFM	LFP KV DDE LK	SVMAEESYNP	DGLLPRAIMA	LKEAFPDVLL	433
	(+ Y	Pa	56	SMPGVERLSI	DQ-LLIEAEE	WVALGIPALA	LFP VT PVE KK	SL DA AEA YN P	EGIAQRATRA	LRERFPELGI	124
	х	W	51	SLPGMKCYSI	DG-LVSIAQE	AEDLGINAVA	IFPVVDSKLK	SE NAEEA YN S	DNLICKAIRA	IKLKVPGIGI	119
		Ps	116	AMPGCYRLGW	RHGLLEEVAK	ARDVGVNSVV	LFPKI PDALK	TP TG DEA YN E	DGLVPRSIRL	LKDKYPDLII	185
	1			<mark>Z</mark>	n _B						
đ	Z	Hs	118	ACDVCLCPYT	SHG <mark>HC</mark> GLLSE	-NGAFRAEES	RORLAEVALA	YAKAGCQVVA	PSDMMDGRVE	AIKEALMAHG	186
									PSDMMDNRVK		183
PBGS group									PSAAMDGQVQ		183
b	v								PSDMMDGRIG		192
SS	Ŷ								PSDMMDGRIG		192
B									PSDMMDGRVS		503
BGS group	(+Y								PSDMMDGRIG		193
	Х								SSDMMDGRVG		189
	0	Ps	186						PSDMMDGRVG		254
	8				lde 5-ALA	Active-si		**		side 5-ALA	
	Ζ				_	-			LRA VD <mark>R</mark> DV RE	-	254
			mo nining	The Design of the State Street Street Street				the period of the product	MRA IQ <mark>R</mark> DVAE	and a second second and second	250
									IR <mark>E</mark> SLL DE AQ		249
	v					-	_		LH <mark>E</mark> VAM DI NE		261
c)	4								LQ <mark>E</mark> IAQ DL QE		261
m,						_			EREAEA DA SE		571
GS group	\+ ĭ								LHE VAA DLAE		2 62
	Х								IC <mark>E</mark> IEMDLNE		258
	2	Ps	255	F.OH-ARINEL	TANYASSFYG	PFREALDSNP	-RFG-DKKTY	QMNPANYREA	LT <mark>E</mark> MRE DE SE	GADILLV <mark>K</mark> PG	276
	1	He	255	MOVIDIVOPV	ג זם זחפשאחא	VVUVACEEAM	TWUCAOACAE	ר א א זיז דיא א	TAF RRA GA DI	TITUVVTDOLI	324
	Ζ					-			KGF RRA GA DC		320
		<u> </u>		GAYLDIVREL					GSI KRAGADL		318
						_			LCF KRA GA DG		330
	Y					_			LCF KRA GA DG		330
									KSF RRA GA DA		640
	(+Y	Pa	2.63	MPYLDIVRRV	KDEF-RAPTE	VYOVSGEYAM	HMGATONGWI	AES-VILESI	TAF KRA GA DG	TLTYFAKOAA	3 30
		W	259	MPYLDIIKMA	SDEF-NFPIF	A YOV SGEY AM	IKAATNNGWL	DYDKVIYESL	VGF KRA GA SA	IFTYAALDVA	327
	Х	Ps	277	LPYLDIIRLL	RDNS-PLPIA	A YOV SGEY SM	IKAGGALKMI	DEEKVMMESL	LCLRRAGADI	ILTYFALQAA	390
	7	Hs	324	QWL KEE <i>LE HH</i>	<u>НН НН</u> З	38					
d	2	Dm	321	DIIGKVK	32	27					
PBGS group		Еc	319	EKKILR	32	24					
Ď		Vс	331	EWLAEDSAKA	AQFLPKK- 3	47					
S	Y	Ye	331	QWLHDDQMQR	34	10					
Ö		Τσ	641	KWMVEDMKGT	OKFTEPCY 6	58					
PE	<+Υ	Pa	331	EQLRRCRLCH	ИНИНН 3	45					
	х	W	328	KNLR <i>LEHHHH</i>	<u>ННННН</u> 3 <u>НН</u> 3	39					
	~	Ps	391	RTLCGEKR	39	98					

Figure S1. Multiple Sequence Alignment of orthologous protein sequences of Homo sapiens (Hs, Uniprot ID P13716), Drosophila melanogaster (Dm, Q9VTV9), Escherichia coli (Ec; POACB2), Vibrio cholerae (Vc; C3LPU7)), Pseudomonas aeruginosa (Pa; Q59643), Yersinia enterocolitica (Ye; F4MUJ9), Toxoplasma gondii (Tg; B6KNM2), Wolbachia of Brugia malayi (W: O5GSR3) and Pisum sativum (Ps; P30124) PBGS by ClustalW implemented W in GENtle V 1.9.4 (Magnus Manske, Cologne, 2003) using a BLOSUM matrix and the following scores: Match: 2; Gap external penalty: -1; Gap penalty: -2. The N-terminal sequence chloroplast targeting sequence of PsPBGS (amino acids 1 - 68) and the apicoplast targeting sequence and low complexity region (amino acids 1 - 302) of TgPBGS were excluded from the respective recombinant proteins. C-terminal tags of recombinant proteins are underlined and italicized, if present. Important structural features are highlighted: Binding site for allosteric K^+ (red font, full motif according to PaPBGS), Catalytic Zn_B^{2+} -site (red), the alternative motif of Zn^{2+} independent orthologs (cyan), Zn_A²⁺-site (brown), binding site for A-side 5-ALA (i.e. the 5-ALA giving rise to the Acetyl moiety in porphobilinogen, green), binding site for P-side 5-ALA (i.e. the 5-ALA giving rise to the Propionyl moiety in porphobilinogen, blue), active site lid (green font), the allosteric Mg_C binding site (yellow) or the characteristic arginine residue of non Mg^{2+} responsive orthologs (yellow font on black background). Orthologous PBGS protein sequences were aligned in a multiple sequence alignment with Clustal

Figure S2. Inhibition of *Ps*PBGS and *w*PBGS by wALADin1. A) Substrate-concentration series of *Ps*PBGS in the presence of increasing concentrations of wALADin1. Curves were fit assuming an "Allosteric sigmoidal" model using Prism 5.0 software $(Y=V_{MAX}*X^h/(K' + X^h))$ with K' being related but not identical to K_M, unless h = 1). A reduction in V_{MAX} and an increase in K' are consistent with a mixed competitive/noncompetitive model of inhibition. Hill slopes were as follows: 1.665 (0 µM wALADin1); 1.795 (6.25 µM wALADin1); 2.111 (25 µM wALADin1); 3.020 (100 µM wALADin1). B) Mg²⁺-response curve of *Ps*PBGS with a K_{0.5} of ~ 257 µM at a saturating 5-ALA concentration of 10 mM. High inhibitory Mg²⁺ concentrations (depicted in grey were excluded from non-linear regression analysis. C) wALADin1 reduced the affinity for Mg²⁺ and decreased the maximum activity achieved by stimulation of *Ps*PBGS by Mg²⁺and D) wPBGS. Graphs B - D were fit to a sigmoidal four parameter non-linear regression


model. For wPBGS the decrease in affinity to Mg^{2+} was nearly 10-fold more pronounced than for *Ps*PBGS (18.6–fold vs. 2.2-fold increase of K_{0.5} at 100 µM wALADin1, respectively). *Ps*PBGS was assayed at 300 nM in 100 mM BTP-HCl pH 8.5, 1 mM MgCl₂, 5 mM DTT for 15 min, wPBGS at 500 nM in 100 mM Tris-HCl pH 8.0, 1 mM MgCl₂, 5 mM DTT, if not indicated otherwise. Graphs show means \pm SD of triplicates and are representative of 2 independent experiments.


Figure S3. Phylogeny of PBGS. The tree was created using alignment, curation, phylogeny and tree rendering programs integrated into the website www.phylogeny.fr.^{1, 2} Input sequences were: *V. cholerae* (UniProtKB C3LPU7), *Y. enterocolitica* (F4MUJ9), *E. coli* (P0ACB2), *D. melanogaster* (Q9VTV9), *P. sativum* (P30124), *T. gondii* (B6KNM2), *H. sapiens* (P13716), *Wolbachia* of *B. malayi* (Q5GSR3). In addition, PBGS sequences from the obligate intracellular bacteria *Rickettsia rickettsii* (B0BY42), *R. prowazekii* (Q9ZD11), *Chlamydia pneumoniae* (Q9Z7G1) and *C. trachomatis* (O84638) were entered. The initial multiple sequence alignment was done using MUSCLE ³ (v. 3.7) using default settings. Gblock⁴ (v091.b) was used to remove

ambiguous regions (Settings: Minimum sequences for flank position: 85%; Maximum contiguous nonconserved positions: 8; Minimum block length: 10; Gaps in final blocks: no). The phylogenetic tree was created using a maximum likelihood method implemented in PhyML^{5, 6} (*v3.0 aRLT*) (Settings: Model: WAG; Statistical test: alrt; Number of categories: 4; Gamma: estimated; Invariable sites: estimated; Remove gaps: enabled). The graphical representation of the tree was done with TreeDyn⁷ (*v198.3*). The red numbers indicate branch support values, the branch length scale is shown in black.

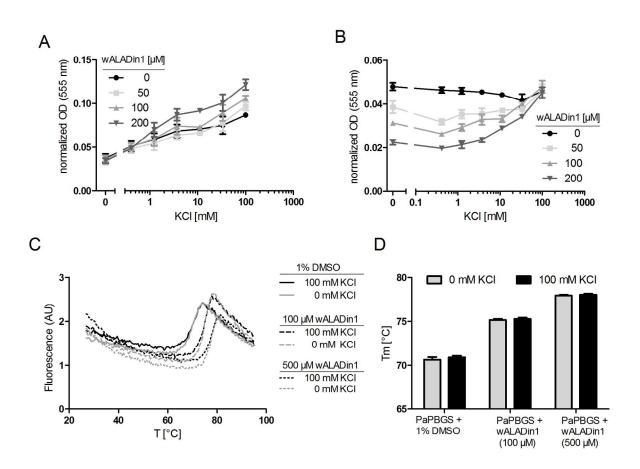


Figure S4. The effect of KCl, pH, and [5-ALA] on wALADin1 activity against *Pseudomonas aeruginosa* PBGS. A) Saturating 5-ALA concentration: 5 mM. B) Near-saturating 5-ALA concentration: 1 mM. C) Non-saturating 5-ALA concentration: 200 µM. Closed bars: 100 mM KCl; open bars: no KCl. Boxes with "S" mark conditions under which the stimulatory effect of

wALADin1 on *Pa*PBGS was most pronounced, boxes with "I" mark conditions with strong inhibitory effects.

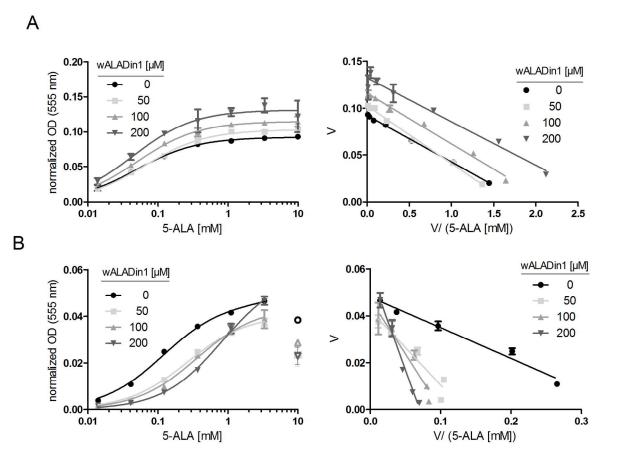


Figure S5. pH screen of stimulated *Vc*, *Ye* and *Ec*PBGS orthologs: A) *Vibrio cholerae* PBGS (125 nM); B) *Yersinia enterocolitica* PBGS (150 nM); C) *Escherichia coli* PBGS (200 nM). wALADin1 acted in a stimulatory fashion under all conditions tested. For all orthologs enzymatic assays were carried out in 100 mM BTP-HCl, 1 mM MgCl₂, 5 mM DTT and 200 μ M 5-ALA for 10 min. *Ec*PBGS contained 10 μ M ZnCl₂. Graphs show means ± SD of triplicates.

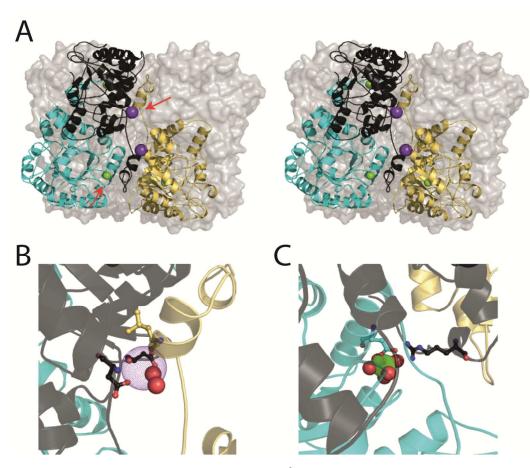


Figure S6. The effect of K⁺ on the interaction of *Pa*PBGS and wALADin1. (A), (B) Effect of K⁺ dilution series on *Pa*PBGS activity under the influence of wALADin1. A) While in the absence of K⁺ no stimulatory activity of wALADin1 is observed, at high [KCl] wALADin1 stimulated PaPBGS activity (standard stimulatory conditions: 100 mM Tris-HCl pH 8.0, 5 mM 5-ALA, 1 mM MgCl₂), B) In contrast, under "standard inhibitory" conditions (100 mM Tris-HCl pH 7.5, 0.2 mM 5-ALA, 1 mM MgCl₂) high [KCl] counteracted the inhibitory effect of wALADin1. (A)

and (B) show means \pm SD of triplicates and are representative of two experiments. (C), (D) Protein thermal shift assay of *Pa*PBGS. A) Melting curve of *Pa*PBGS monitored as an increase in Sypro[®] Orange fluorescence bound to denatured protein. (B) Melting temperature (T_m) of *Pa*PBGS under the different conditions. KCl had no influence on the melting temperature in the presence or absence of wALADin1. 5 μ M *Pa*PBGS was incubated in 100 mM Tris-HCl pH 8.0, 10 mM MgCl2, and 8X Sypro[®] Orange in the presence or absence of 100 mM KCl with 1% DMSO, and 100 μ M or 500 μ M wALADin1. The graphs are representative of two experiments.

Figure S7. Michaelis-Menten kinetics of *Pa*PBGS. A) Stimulatory (100 mM Tris-HCl pH 8.0, 5 mM 5-ALA, 1 mM MgCl₂, 100 mM KCl, if not indicated otherwise). B) Inhibitory conditions (100 mM Tris-HCl pH 7.5, 0.2 mM 5-ALA, 1 mM MgCl₂, no KCl). Graphs include 5-ALA dilution series showing curves fit by non-linear regression assuming conventional Michaelis-Menten kinetics (left) and linearized Eadie-Hofstee representation of this data (right). A) Under "standard stimulatory" conditions V_{MAX} increased with increasing concentrations of wALADin1, while $K_{\rm M}$ was not affected. B) Under "standard inhibitory" conditions a non-canonical progression of the 5-ALA response curve and the linearized Eadie-Hofstee representation was observed. $K_{\rm M}$ was increased in a concentration-dependent manner while $V_{\rm MAX}$ was decreased at 50 and 100 μ M wALADin1, but increased at higher concentrations of wALADin1. [5-ALA] > 10 mM resulted in apparent enzyme inhibition by the substrate, thus the corresponding data points were excluded from the regression analysis. All graphs show means \pm SD of triplicates and are representative of two experiments.

Figure S8. Structural representation of Mg²⁺- and K⁺-binding sites in the *Pa*PBGS octamer. (**A**) A stereoview of the *P. aeruginosa* PBGS octamer (PDBid 1GZG) is shown with subunits A, C and D as yellow, cyan and black cartoons and the remaining subunits as grey surfaces. The allosteric magnesium ions of subunits A, C and D are shown as green spheres; the allosteric potassium ions of subunit D are shown as purple spheres. Red arrows indicate the specific potassium and magnesium ions detailed in panels B and C, each of which rotate the molecule slightly to improve visualization. (**B**) The featured potassium ion (purple dots) of subunit D interacts with Asp37 and Asp319 of subunit D, Leu27 of subunit A (residues shown as ball-and-sticks with the carbons colored as in panel A and other atoms in CPK), and two water molecules (shown as red spheres). (**C**) The magnesium ion of subunit C (green dots) interacts with Glu245 of subunit C, five water molecules, with a second coordination sphere interaction to Arg19 of subunit A (shown as described for panels A and B).

Supplementary Methods

Thermal Shift Assay The environmentally-sensitive fluorescent dye Sypro[®] Orange (Sigma Aldrich, Munich, Germany) was used to monitor the melting curve of the *Pa*PBGS protein as in previous studies.⁸⁻¹⁰ The 10 μ L reaction mixture contained 5 μ M *Pa*PBGS subunit in 100 mM Tris-HCl pH 8.0, 1 mM MgCl₂ with or without 100 mM KCl and different concentrations of wALADin1 or DMSO. The protein was denatured in 0.5 °C increments every 30 s from 27 °C to 95 °C and fluorescence (excitation at 470 nm; detection at 510nm) was measured with a RotorGene RG-3000 (Corbett Life Sciences, Qiagen, Hilden, Germany). Melting temperatures (T_m) were determined by first derivative analysis of primary fluorescence data using RotorGene 6 software.

Supplementary References

1. Dereeper, A.; Audic, S.; Claverie J.M., Blanc G. BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evol. Biol. **2010**, *10*, 8.

2. Dereeper, A.; Guignon, V.; Blanc, G.; Audic, S.; Buffet, S.; Chevenet, F.; Dufayard, J.F.; Guindon, S., Lefort, V.; Lescot, M.; Claverie, J.M.; Gascuel O. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. **2008**, *36* (Web Server issue),W465-469.

3. Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. **2004**, *32*, 1792-1797.

4. Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. **2000**, *17*, 540-552.

5. Guindon, S.; Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. **2003**, *52*, 696-704.

6. Anisimova, M.; Gascuel, O. Approximate likelihood ratio test for branchs: A fast, accurate and powerful alternative. Syst. Biol. **2006**, *55*, 539-52.

7. Chevenet, F.; Brun, C.; Banuls, AL.; Jacq, B.; Chisten, R. TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics. **2006**, *7*, 439.

8. Lentz, C. S.; Halls, V.; Hannam, J. S.; Niebel, B.; Strubing, U.; Mayer, G.; Hoerauf, A.; Famulok, M.; Pfarr, K. M. A selective inhibitor of heme biosynthesis in endosymbiotic bacteria elicits antifilarial activity in vitro. Chem. Biol. **2013**, *20*, 177-187.

9. Pantoliano, M. W.; Petrella, E. C.; Kwasnoski, J. D.; Lobanov, V. S.; Myslik, J.; Graf, E.; Carver, T.; Asel, E.; Springer, B. A.; Lane, P.; Salemme, F. R. High-density miniaturized thermal shift assays as a general strategy for drug discovery. J. Biomol. Screen. **2001**, *6*, 429-440.

Senisterra, G.; Chau, I.; Vedadi, M. Thermal denaturation assays in chemical biology.
Assay. Drug. Dev. Technol. 2012, 10, 128-136.