Supporting Information

Harnessing of Spatially Confined Perovskite Nanocrystals using Polysaccharide-based Block Copolymer Systems

Chih-Chien Hung,^{1,2} Yan-Cheng Lin,^{1,2} Tsung-Han Chuang,² Yun-Chi Chiang,² Yu-Cheng Chiu^{1,3} Muhammad Mumtaz,⁴ Redouane Borsali,^{4,*} and Wen-Chang Chen^{1,2,*}

¹Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan.

² Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan

³ Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.

⁴Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France

E-mail for corresponding authors: chenwc@ntu.edu.tw ; borsali@cermav.cnrs.fr

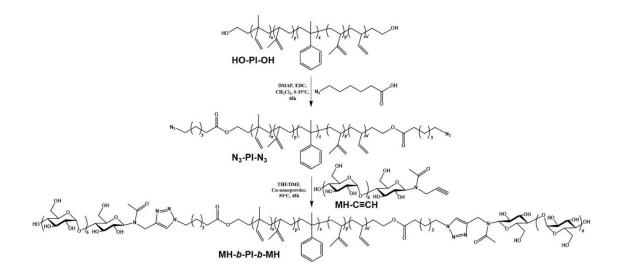
MATERIALS AND METHODS

Synthesis and characterization of the MH-b-PI-b-MH triblock Copolymer

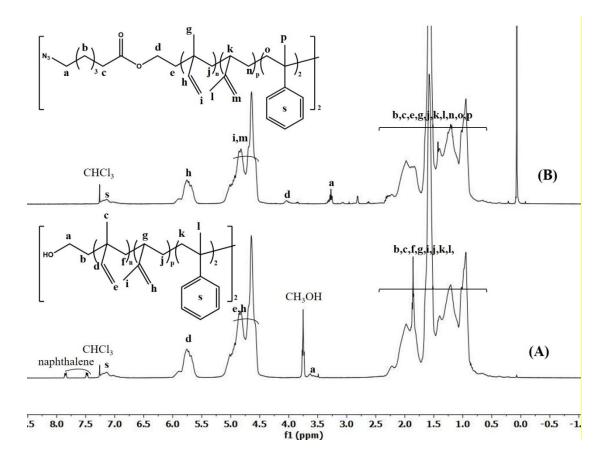
N-maltoheptaosyl-3-acetamido-1-propyne (MH-C \equiv CH)¹ and 6-Azidohexanoic acid² were synthesized following the reported methods. α , ω -dihydroxyl-terminated polyisoprenes (1,2 and 3,4addition) (HO-PI-OH), with molecular weights (M_n) of 8500 g mol⁻¹ and dispersity (D) of 1.14 (data from supplier), were purchased from Polymer Source, Inc (Montreal, Quebec, Canada). 6bromohexanoic acid (Aldrich, 97%), sodium azide (NaN₃, Alfa Aesar, 99%). 4-(dimethylamino)pyridine 1-(3-dimethylaminopropyl)-3-(DMAP, Aldrich, ≥99%), ethylcarbodiimide hydrochloride (EDC, TCI Europe, >98%) and copper nanopowder (Cu(core)/CuO(shell), Alfa Aesar, 99.9%) were used as received. Dry dichloromethane (CH₂Cl₂, ≥99.8%, water content ≤0.001%) was purchased, from Aldrich and used as received. CupriSorb resin was purchased from Seachem (Madison, Georgia, USA) and used as received. Other reagents and solvents were used without further purification.

Synthesis of α , ω -di-azido-terminated polyisoprene (N₃-PI_{8.5k}-N₃)

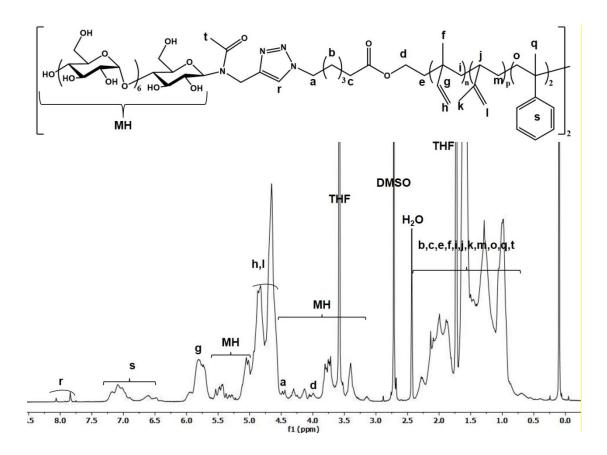
The synthesis was adapted from the procedure described by Isono *et al.*³ In a three-necked flask equipped with a magnetic stir bar, a solution of 6-azidohexanoic acid (349 mg, 2.22 mmol) in dry


 CH_2Cl_2 (10 mL) was added dropwise to a solution of HO-PI_{8.5k}-OH (M_n = 9000 g/mol, ¹H NMR) (2.0 g, 0.222 mmol), DMAP (380 mg, 3.11 mmol) and EDC (596 mg, 3.11 mmol) in dry CH_2Cl_2 (50 mL) under an argon atmosphere. The reaction vessel was cooled with an ice bath during the addition and the reaction mixture was left stirring for 36 h at 35 °C. The reaction mixture was then concentrated. Hexane was added and the solution was washed three times with a saturated solution of K2CO3 and two times with water. The solution was dried with MgSO₄, filtrated and concentrated to give N₃-PI_{8.5k}-N₃ as a sticky white solid. Yield 85%. M_n (¹H NMR = 9300 g/mol.

Synthesis of Maltoheptaose-*block*-polyisoprene-*block*-maltoheptaose (MH-*b*-PI_{8.5k}-*b*-MH) by clickchemistry


A solution of $(N_3-PI_{8.5k}-N_3)$ (2.00 g, 0.215 mmol) in tetrahydrofuran (THF) (24 mL) was degassed by high-purity argon for 10 min. The solution was then cannulated to a similarly degassed solution of MH-C=CH (636 mg, 0.516 mmol) in dimethylformamide (DMF) (15 mL) and copper nanopowder (66 mg, 1.03 mmol) was added under an argon atmosphere. The mixture was stirred at 64 °C until the infrared (IR) spectrum shows complete disappearance of the signal due to the azido group of N₃-PI_{8.5k}-N₃ precursor (~48h). The reaction mixture was then filtered through celite and concentrated. To completely remove copper, the concentrate was redissolved in an excess of THF together with a few milliliter of water and charged with Cuprisorb resin. The mixture was stirred at 50 °C, filtered through celite and concentrated by evaporation. The crude product was then purified by precipitation in cold CH₃OH. The copolymer was collected by filtration and dried under vacuum to give MH-*b*- $PI_{8.5k}$ -*b*-MH triblock copolymer as a white solid, with 75% yield.

Characterization


¹H nuclear magnetic resonance (NMR) spectra were recorded at room temperature on a 400 MHz Bruker Avance DRX400 in CDCl₃ or a mixture of THF- d^{g} with six drops of dimethyl sulfoxide- d^{g} (DMSO- d^{g}). Chemical shifts (¹H NMR) were referenced to the peak of residual CHCl₃ at $\delta = 7.26$ ppm or to the peaks of residual THF at $\delta = 3.60$ and 1.75 ppm. Size exclusion chromatography (SEC) with THF as eluent, calibrated with polystyrene standards from Polymer Laboratories, was run with a Varian Prostar (model 210) pump at a flow rate of 1 mL min-1 using two 300 mm long, mixed-D PL-gel 5 µm columns (molecular weight range: 2 × 10² – 4 × 10⁵ g mol/mol from Polymer Laboratories) thermostated at 30 °C, connected to a Shodex (model RI-101) refractometer detector. The infrared (IR) spectra were recorded using a Perkin-Elmer Spectrum RXI FTIR spectrometer.

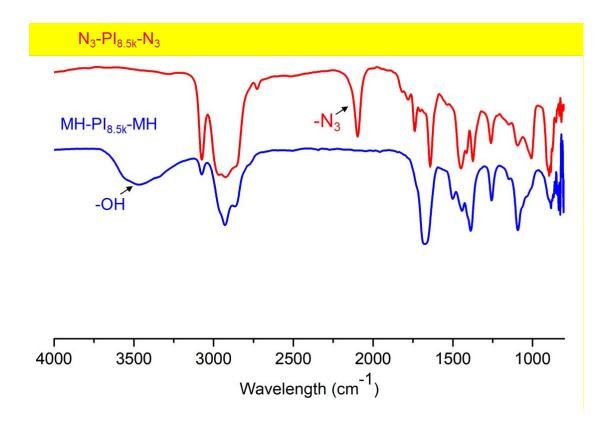

Scheme S1: Synthesis of MH-*b*-PI_{8.5k}-*b*-MH triblock copolymer.

Figure S1: ¹H NMR of HO-PI_{8.5k}-OH (A) and N₃-PI_{8.5k}-N₃ (B) in CDCl₃ (400 MHz, RT). The complete disappearance of signals at 3.63 ppm due to $-CH_2$ -OH of the HO-PI_{8.5k}-OH and appearance of new signals at 4.04 ppm dedicated to $-CH_2$ -N3, indicates complete azido functionalization.

Figure S2: ¹H NMR of MH-*b*-PI_{8.5k}-*b*-MH tri block copolymer. The presence of signals dedicated to both PI and MH along with the appearance of new peaks positioned at 7.75 – 8.07 ppm due to triazole ring, confirms the successful formation of MH-*b*-PI_{8.5k}-*b*-MH triblock copolymer.

Figure S3: FTIR spectra of N_3 -PI_{8.5k}- N_3 and MH-*b*-PI_{8.5k}-*b*-MH. The complete disappearance of the signals at 2196 cm⁻¹ due to azido group in FTIR spectrum of MH*b*-PI_{8.5k}-*b*-MH, indicates its full consumption during click reaction.

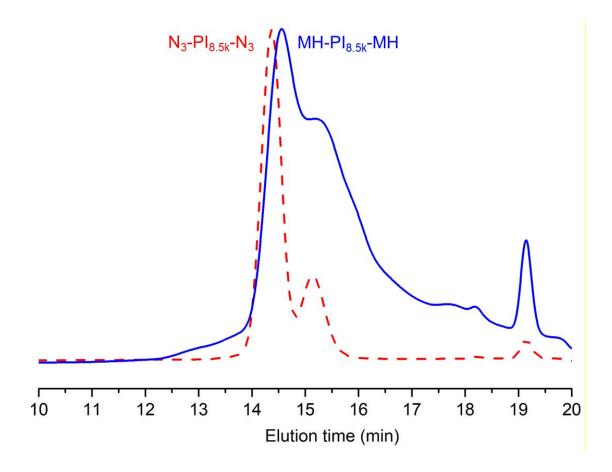


Figure S4: SEC traces of N_3 -PI_{8.5k}- N_3 and MH-*b*-PI_{8.5k}-*b*-MH. The presence of a small peak in lower molecular weight side of N_3 -PI_{8.5k}- N_3 attributed to mono-functional starting material (PI-OH) with half molecular weight. The retention volumes of MH-*b*-PI_{8.5k}-*b*-MH are slightly larger than those of their precursors N_3 -PI_{8.5k}- N_3 , which apparently indicates a decrease of molecular weights. In addition, a high molecular weight shoulder peak appears in the case of MH-*b*-PI_{8.5k}-*b*-MH. Even though we assume that the copolymers seem to be sufficiently soluble in THF for SEC analyses, the latter is not a good solvent for maltoheptaose block. Thus, the two phenomena observed on SEC traces may be due to aggregation or self-assembly of the amphiphilic copolymers in THF. Similar observations have already been reported in the literature^{4.5}.

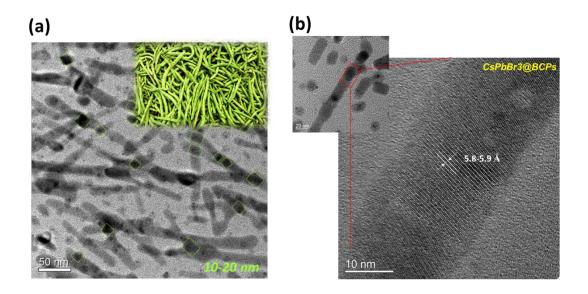
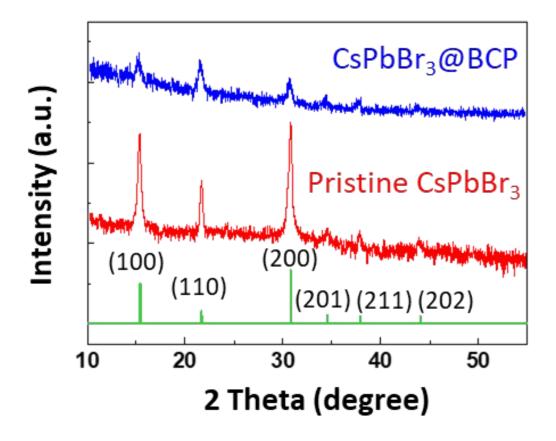
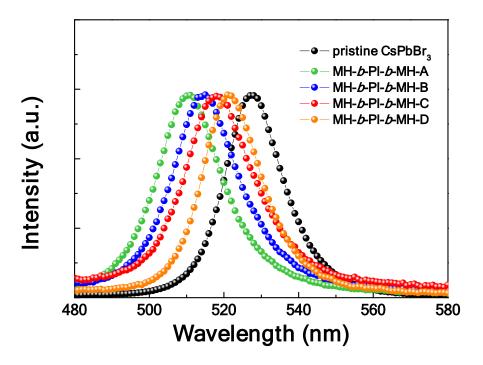
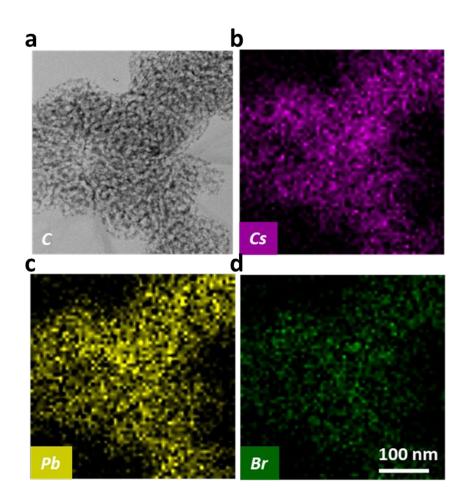
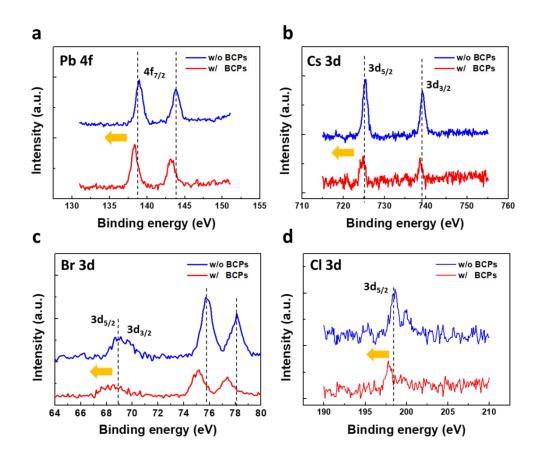


Figure S5. a. TEM image and b. HR-TEM of the quantum-confined CsPbBr3@BCPs

for MH-*b*-PI-*b*-MH-B sample.


Figure S6. XRD patterns of pristine CsPbBr₃ and CsPbBr₃@BCP.

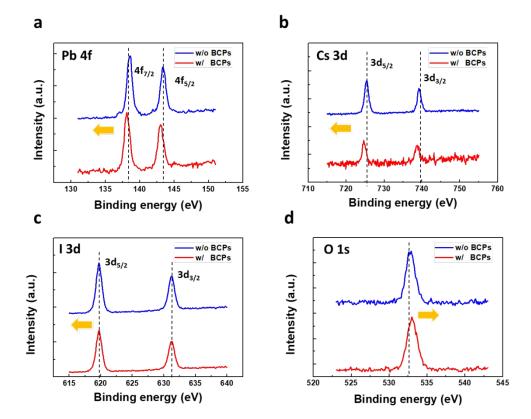

Figure S7. PL emission peak of the pristine CsPbBr₃ and MH-*b*-PI_{8.5k}-*b*-MH-based composite films.

Figure S8. a. The bright field TEM image of MH-*b*-PI_{8.5k}-*b*-MH/CsPbBr₃ nanostructured film with 100% CsPbBr3. EDS mapping images of **b.** Cs, **c.** Pb and **d.** Br atoms of the TEM image

Figure S9. Photoelectron spectra from x-ray photoelectron spectroscopy (XPS) for **a**. Pb 4f, **b**. Cs 3d, **c**. Br 3d and **d**. Cl 3d of pristine CsPbClBr₂ and MH-*b*-PI_{8.5k}-*b*-MH-based composite films.

S-15

Figure S10. Photoelectron spectra from x-ray photoelectron spectroscopy (XPS) for **a**. Pb 4f, **b**. Cs 3d, **c**. I 3d and **d**. O 12 of pristine CsPbI₃ and MH-*b*-PI_{8.5k}-*b*-MH-based composite films.

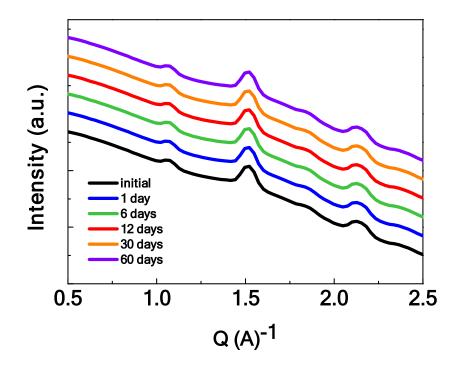
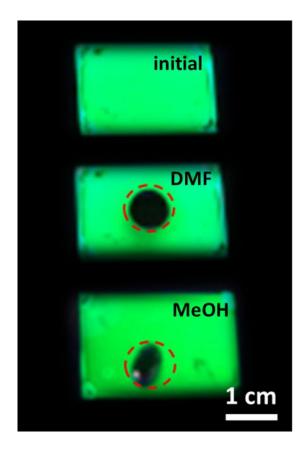



Figure S11. GIWAXS 1D pattern of the MH-b-PI_{8.5k}-b-MH-B composite film upon

70% relative humidity for 60 days.

Figure S12. Anti-solvent characteristics of MH-*b*-PI-*b*-MH-B sample at the initial state and under DMF and MeOH drop test where red dot circle demonstrated the solvent drop.

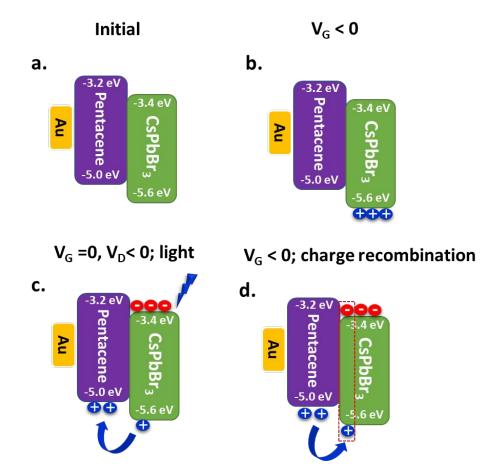


Figure S13. Proposed mechanism for the studied photomemory devices. **a.** Initial state, **b.** after applying a negative V_G for 1s, **c.** after light illumination, and **d.** applying a negative V_G for 1s again.

References

(1) I. Otsuka, K. Fuchise, S. Halila, S. B. Fort, K. Aissou, I. Pignot-Paintrand, Y. Chen,

A. Narumi, T. Kakuchi, R. Borsali, Thermoresponsive Vesicular Morphologies Obtained by Self-Assemblies of Hybrid Oligosaccharide-block-poly(Nisopropylacrylamide) Copolymer Systems: *Langmuir*, **26**, 2325-2332 (2009).

(2) C. Grandjean, A. Boutonnier, C. Guerreiro, J.-M. Fournier, L. A. Mulard, On the Preparation of Carbohydrate–Protein Conjugates Using the Traceless Staudinger Ligation: *J. Org. Chem*, **70**, 7123-7132, (2005)

(3) T. Isono, I. Otsuka, D. Suemasa, C. Rochas, T. Satoh, R. Borsali, T. Kakuchi, Synthesis, Self-Assembly, and Thermal Caramelization of Maltoheptaose-Conjugated Polycaprolactones Leading to Spherical, Cylindrical, and Lamellar Morphologies: *Macromolecules*, **46**, 8932-8940, (2013)

(4) C.-C. Hung, Y.-C. Chiu, H.-C. Wu, C. Lu, C. Bouilhac, I. Otsuka, S. Halila, R. Borsali, S.-H. Tung, W.-C. Chen, Conception of Stretchable Resistive Memory Devices
Based on Nanostructure-Controlled Carbohydrate-block-Polyisoprene Block
Copolymers: *Adv. Funct. Mater.*, 27, 1606161, (2017).

(5) X.-H. Dong, W.-B. Zhang, Y. Li, M. Huang, S. Zhang, R. P. Quirk, S. Z. D. Cheng, Synthesis of fullerene-containing poly(ethylene oxide)-block-polystyrene as model shape amphiphiles with variable composition, diverse architecture, and high fullerene functionality: *Polym. Chem.*, **3**, 124-134 (2012).