Supporting Information

Tailoring Surface of Natural Graphite with Functional Metal Oxides via a Facile Crystallization for Lithium-ion Batteries

Jun Won Lee[‡], So Yeun Kim[‡], Dong Young Rhee, Sungmin Park, Jae Yup Jung, Min-Sik Park*

Department of Advanced Materials Engineering for Information and Electronics, Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, 1732 Deogyeong–daero, Giheung–gu, Yongin 17104, Republic of Korea

[‡]These authors contributed equally.

*Corresponding author : mspark@khu.ac.kr (M-S. Park)

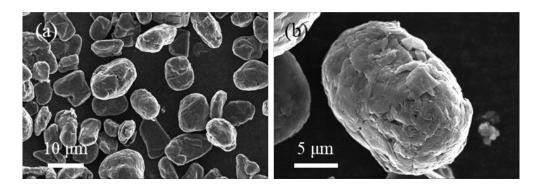


Figure S1. (a) Low-magnification and (b) high-magnification FESEM images of pristine NG.



Figure S2. Corresponding EDS elemental mapping results of (a-d) a-MoO_x-NG and (e-h) a-FeO_x-NG particles.

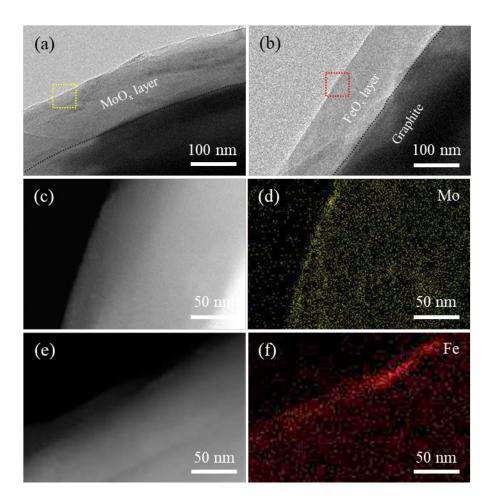


Figure S3. TEM images of (a) $a-MoO_x-NG$ and (b) $a-FeO_x-NG$. Dark-field TEM images and corresponding elemental mapping of (c, d) $a-MoO_x-NG$ and (e, f) $a-FeO_x-NG$; molybdenum (Mo, yellow) and iron (Fe, red)

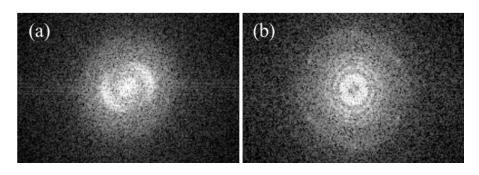


Figure S4. FFT patterns taken from the amorphous regions of (a) c-MoO₂-NG and (b) c-Fe₃O₄-NG.

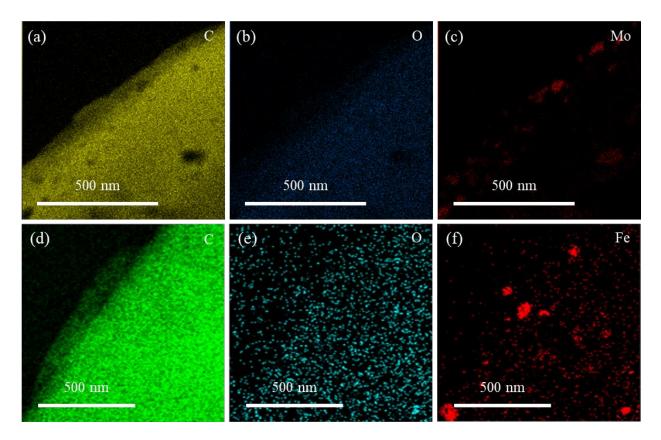


Figure S5. Corresponding EDS elemental mapping results of (a-c) c-MoO₂-NG and (d-f) c-Fe₃O- $_4$ -NG prepared by a facile-crystallization process.

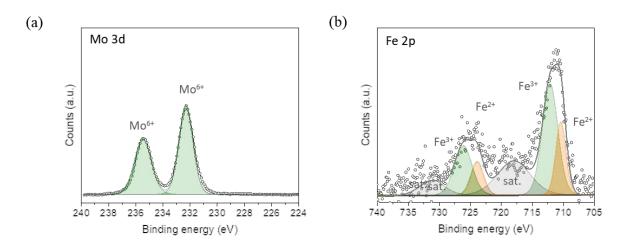


Figure S6. Deconvoluted XPS (a) Mo 3d spectra of a-MoO_x-NG and (b) Fe 2p spectra of a-FeO_x-NG composites.

	a-MoO _x -NG			c-MoO ₂ -NG		
	3d _{3/2}	3d _{5/2}	total	3d _{3/2}	3d _{5/2}	total
Mo ⁶⁺	39.74	60.26	100	7.2	15.8	23.0
Mo ⁵⁺	-	-	-	5.1	15.6	20.7
Mo ⁴⁺	-	-	-	22.9	33.4	56.3

Table S1. The contents of $Mo^{4+}/Mo^{5+}/Mo^{6+}$ from XPS spectrum of a-MoO_x-NG and c-MoO₂-NG.

	a-FeO _x -NG			c-Fe ₃ O ₄ -NG		
	2P _{1/2}	2P _{3/2}	total	2P _{1/2}	2P _{3/2}	total
Fe ³⁺	30.6	42.9	73.5	23.4	45.8	69.2
Fe ²⁺	10.3	16.2	26.5	11.2	19.6	30.8

Table S2. The contents of Fe^{3+}/Fe^{2+} from XPS spectrum of a-FeO_x-NG and c-Fe₃O₄-NG.

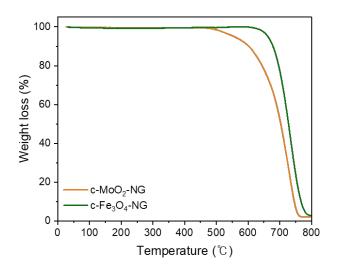


Figure S7. Thermogravimetric analysis curve of c-Fe₃O₄-NG and c-MoO₂-NG composite.

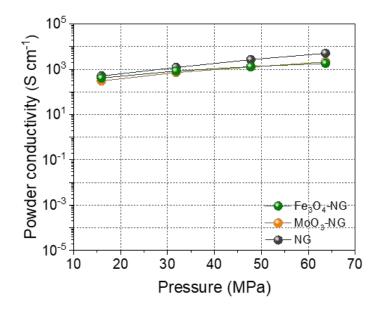


Figure S8. Powder conductivities of pristine NG, c-MoO₂-NG and c-Fe₃O₄-NG.

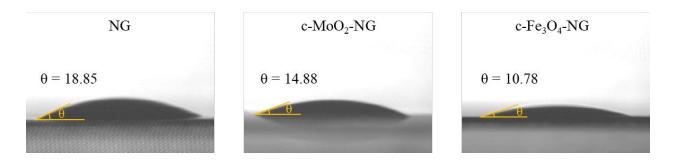


Figure S9. Static contact angles of pristine NG, c-MoO₂-NG and c-Fe₃O₄-NG anodes.

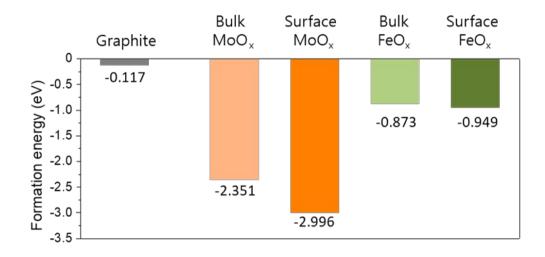


Figure S10. Comparison of calculated formation energies for Li⁺ adsorption of MoO_x and FeO_x.

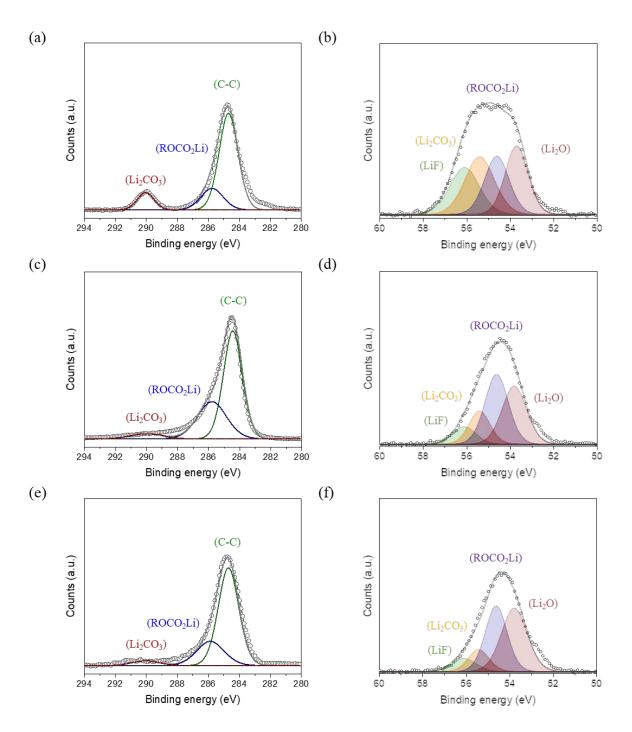


Figure S11. XPS C 1s and Li 1s spectra of (a, b) NG, (c, d) c-MoO₂-NG and (e, f) c-Fe₃O₄-NG anodes after cycling.

	OCV		After 1 st charge			
_	R _b	R _{ct}	R _b	R _{SEI}	R _{ct}	
c-Fe ₃ O ₄ -NG	0.9	203.4	1.5	94.7	35.0	
c-MoO ₂ -NG	1.3	217.5	2.0	75.9	29.7	
Pristine NG	1.4	313.4	5.3	211.1	38.9	

Table S3. Fitting results of the Nyquist plots using the equivalent circuit.

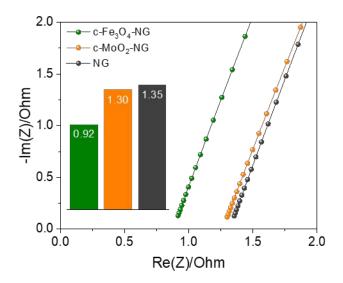


Figure S12. Nyquist plots for magnified high-frequency region of pristine NG, c-MoO₂-NG and

c-Fe₃O₄-NG anodes.

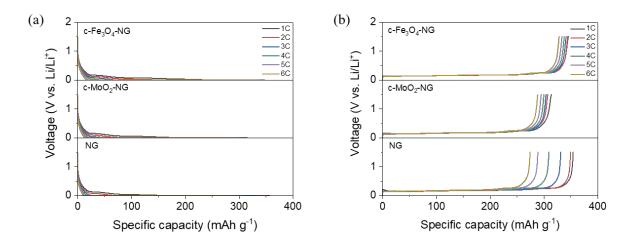


Figure S13. Voltage profiles during (a) charging and (b) discharging process of pristine NG, c- MoO_2 -NG and c-Fe₃O₄-NG andodes recorded at various current densities from 1 C to 6 C.

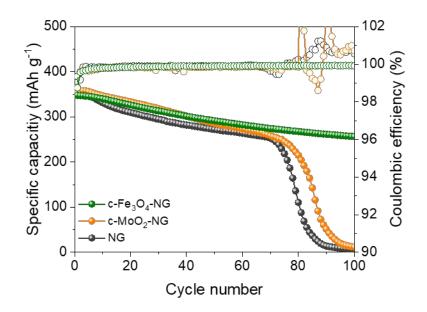


Figure S14. Cycle performance of pristine NG, c-MoO₂-NG and c-Fe₃O₄-NG andodes at a constant current density of 1 C for 100 cycles.

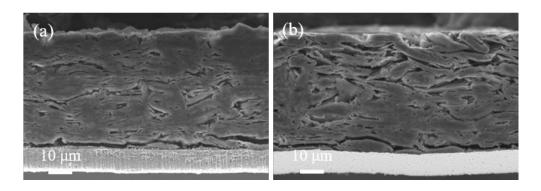


Figure S15. Cross-sectional SEM images of (a) pristine NG and (b) c-Fe₃O₄-NG anodes after the

300 cycles.