1	
2	Eco-efficiency of mealworms (Tenebrio molitor) protein extracts
3	
4	Supporting information
5	
6	Myriam Laroche, Véronique Perreault, Alice Marciniak, Sergey Mikhaylin and Alain Doyen*
7	
8	Department of Food Sciences, Dairy Research Center STELA, Institute of Nutrition and
9	Functional Foods (INAF), Université Laval, Quebec City, QC, G1V 0A6, Canada.
10 11 12 13 14 15 16 17 18	*Corresponding author: Alain Doyen Department of Food Sciences Pavillon Paul-Comtois 2425 Rue de l'Agriculture, Local 2322B Université Laval, Quebec City, Quebec, G1V 0A6 Canada Phone number: +1418-656-2131 ext. 405454 E-mail address: <u>alain.doyen@fsaa.ulaval.ca</u>
19	
20 21	
22	6 pages; 2 Tables; 6 Equations
23	Table S1. LCA input and output
24	Table S2. Data and references used in Figure 5
25	Equation S1. Electricity for blanching
26	Equation S2. Electricity for homogenization
27	Equation S3. Electricity for centrifugation
28	Equation S4. Electricity for stirring during protein solubilization
29	Equation S5. Electricity for heating during protein solubilization
30	Equation S6. Steam for pre-concentration
31	Equation S7. Electricity for drying
32	Equation S8. Electricity for hexane and ethanol recovery

Table S1. LCA input and output

Input to produce 1 kg mealworms (Mealworm rearing phase)

INPUT	PROCESS	QUANTITY	DATA SOURCE
STEEL FRAME (KG)	steel, low-alloyed market for steel, low-alloyed	0.008136	
STEEL (GALVANIZED) (KG)	sheet rolling, steel market for sheet rolling, steel	0.001238	
POLYURETHANE FOAM (KG)	polystyrene foam slab market for polystyrene foam slab	0.0008331	
SAWNWOOD (M ³)	1.433E-05	33	
CONCRETE (M ³)	concrete, sole plate and foundation market for concrete, sole plate and foundation	3.508E-05	
GLASSWOOL (KG)	glass wool mat market for glass wool mat	0.0003351	
PVC (KG)	polyvinylchloride, bulk polymerised market for polyvinylchloride, bulk polymerised	2.526E-05	
WATER (KG)	tap water market for tap water CA,Qc	2.536	34
ELECTRICITY (KWH)	electricity, medium voltage electricity voltage transformation from high to medium voltage	2.286	Personnal communication with a local TM farmer
WHEAT BRAN (KG)	wheat bran	1.383	
DDGS (KG)	Distiller's Dried Grains with Solubles market for Distiller's Dried Grains with Solubles	1.106	33 - 35
CARROT (KG)	carrot carrot335 production	0.2766	
PET (KG)	polyethylene, high density, granulate market for polyethylene, high density, granulate	0.0290	
GLASS (KG)	glass tube, borosilicate market for glass tube, borosilicate	8.927E-07	
STEEL (KG)	steel, low-alloyed market for steel, low-alloyed	0.0003153	
POLYURETHANE (KG)	polyurethane, rigid foam market for polyurethane, rigid foam	0.0003158	
POLYVINYLCHLORIDE (KG)	polyvinylchloride, bulk polymerised market for polyvinylchloride, bulk polymerised	1.710E-05	
ALUMINIUM (KG)	aluminium alloy, AlMg3 market for aluminium alloy, AlMg3	2.229E-07	33
SODIUM HYDROXIDE (KG)	sodium hydroxide, without water, in 50% solution state market for sodium hydroxide, without water, in 50% solution state	2.871E-06	
SODIUM HYPOCHLORITE (KG)	sodium hypochlorite, without water, in 15% solution state market for sodium hypochlorite, without water, in 15% solution state	5.511E-05	
AMMONIUM CHLORIDE (KG)	ammonium chloride market for ammonium chloride	2.5835E-05	
POLYPROPYLENE (KG)	polypropylene, granulate market for polypropylene, granulate	8.1267E-07	

CO ₂ (G)	Emission to atmosphere - Carbon dioxide	1134.1	
CH4 (G)	Emission to atmosphere - Methane	0.11	12
N ₂ O (MG)	Emission to air - Dinitrogen monoxide	28.05	12
NH ₃ (MG)	Emission to air - Ammonia	100.1	

Processing phase

INPUT/OUTPUT		PROCESS	SCENARIO 1				SCENARIO 2				
		PROCESS	SP1	SP2	IP3	IP4	SP1	SP2	IP3	IP4	DATA SOURCE
	Mealworm (KG)	Mealworm rearing phase	2 181	2 006	2 120	2 042	3 701	5 489	7 589	7 477	From experiment
	Water (L)	tap water tap water production, conventional treatment	12 871	23 512	57 379	73 801	20 871	31 043	10 2072	10 4671	From experiment
	Electricity (KWH)	electricity, medium voltage electricity voltage transformation from high to medium voltage	8 759	9 315	11 074	11 765	11 235	10 779	18 044	16 167	1, 38, 40, 41
INPUT	Steam (KG)	steam, in chemical industry market for steam, in chemical industry	6 866	9 443	-	-	6 866	9 443	-	-	39
=	Hexane (KG)	hexane market for hexane	1	1	2	2	2	2	5	3	36
	Ethanol (KG)	ethanol, without water, in 99.7% solution state, from ethylene market for ethanol, without water, in 99.7% solution state, from ethylene	1	1	1	2	2	1	4	3	
	NaOH (KG)	sodium hydroxide, without water, in 50% solution state market for sodium hydroxide,	326	599	442	995	552	813	1 133	1 639	From experiment

		without water, in 50% solution state									
	HCI (KG)	hydrochloric acid, without water, in 30% solution state market for hydrochloric acid, without water, in 30% solution state	321	479	560	990	321	551	846	1 201	From experiment
	Emission - Hexane (KG)	Hexane	1	1	2	2	2	2	5	3	36
	Emission - EthanoL (KG)	Ethanol	1	1	1	2	2	1	4	3	36
٥UT	Wastewater (L)	wastewater, average treatment of wastewater, average, capacity 1.1E10 L/year	10 903	10 032	30 395	34 417	18 504	13 610	11 0606	92 537	From experiment
OUTPUT	Waste (KG)	biowaste treatment of biowaste, composting	-	-	-	-	626	325	1283	656	From experiment
	Lipid fraction (KG)	-	624	459	1279	925	624	459	1279	925	
	Chitin fraction (KG)	-	626	325	1283	656	-	-	-	-	From experiment
	Supernatant (L)	-	-	-	32726	47340	-	-	-	-	
	TM protein extract (Ton)	-	1	1	1	1	1	1	1	1	From experiment

Protein source	Protein (g) / product (kg)	GWP (kg CO ₂ eq./kg)	Eco- efficiency score ¹	Reference	
Scenario 1	547 - 800	3.5 - 5.5	14.5 - 156.3	Current study	
Scenario 2	547 - 800	6.3 – 10.9	50.2 - 127.0	Current study	
Soy protein isolate	870	1 - 6	145 - 870		
Whey protein concentrate	800	12 - 16	50 - 67	50	
Skim milk powder	350	7 - 9.1	38.5 - 50.0		
Sodium caseinate	910	17 - 27	33.7 - 53.5		
Microbial protein	650	1 - 8	81.25 - 650	51	
Faba bean protein ingredients	900	3	300	52	
Lupin seeds protein isolates	930	6	155	53	
Egg protein concentrate	800	23.4	34	54	

Table S2. Data and references used in Figure 5.

¹ Calculated using Equation 4 with GWP values above for each protein source.

General equations for energy consumption

Equation S1. Electricity for blanching ³

Electricity (kwh) =
$$\left(\frac{W \cdot \Delta T \cdot SW}{3\ 600\ 000}\right) + \left(\frac{TM \cdot \Delta T \cdot STM}{3\ 600\ 000}\right)$$
 (S1)

W: Quantity of water (g) Δ T: Temperature difference (°C) SW: Specific heat of water (4.184 J / g / °C) 3 600 000: Conversion factor from J to kwh STM ³⁸: Specific heat of TM (3320 J / kg / °C) TM: Quantity of TM (kg)

Equation S2. Electricity for homogenisation ¹

Electricity (kwh) =
$$\frac{EP \cdot TM \cdot V}{C}$$
 (S2)

EP: Engine power (2.2 kW)

TM: Quantity of TM (kg) V: Volume to homogenize (L/kg TM) C: Capacity (500 L/h)

Equation S3. Electricity for centrifugation ⁴¹

Electricity (kwh) =
$$\frac{EP \cdot TM \cdot V}{C}$$
 (S3)

EP: Engine power (19 kW) TM: Quantity of TM (kg) V: Volume to centrifuge (L/kg TM) C: Capacity (20 000 L/h)

Equation S4. Electricity for agitation in protein solubilisation ⁴²

Electricity (kwh) =
$$\frac{EP \cdot TM \cdot V \cdot T}{C}$$
 (S4)

EP: Engine power (24 kW) TM: Quantity of TM (kg) V: Volume to agitate (L/kg TM) T: Time of agitation (h) C: Capacity (4 000 L)

Equation S5. Electricity for heat during the protein solubilisation ³⁹

$$Electricity (kwh) = \frac{\left(\frac{N \cdot \Delta T \cdot SN}{3\ 600\ 000}\right) + \left(\frac{TM \cdot \Delta T \cdot STM}{3\ 600\ 000}\right)}{E}$$
(S5)

N: Quantity of NaOH (g) ΔT: Temperature difference (°C) SN: Specific heat of NaOH (3.98 J / g / °C) 3 600 000: Conversion factor from J to kwh STM ³⁸: Specific heat of defatted TM (3405 J / kg / °C) TM: Quantity of TM (kg) E: Efficiency (0.75)

Equation S6. Steam for pre-concentration ⁴⁰

Steam $(kg) = SC \cdot W$ (S6)

SC: Steam consumed by a three-effect evaporator (0.4 kg/kg water to evaporate) W: Quantity of water to evaporate (kg)

Equation S7. Electricity for drying ³⁶

Electricity (kwh) = $\frac{EC \cdot W}{3\ 600}$ (S7)

EC: Energy consumption of a single effect spray drying process (5000 kJ/kg of water to evaporate)

W: Quantity of water to evaporate (kg) 3 600: Conversion factor from kJ to kwh

Equation S8. Electricity for recuperating solvent and ethanol³⁷

Electricity (kwh) =
$$\left(\frac{E \cdot \Delta HE}{3\ 600}\right) + \left(\frac{H \cdot \Delta HH}{3\ 600}\right)$$
 (S8)

E: Quantity of ethanol to evaporate (kg)
ΔHE: Ethanol enthalpy (977 kJ/kg)
3 600: Conversion factor from kJ to kwh
H: Quantity of hexane to evaporate (kg)
ΔHH: Hexane enthalpy (335 kJ/kg)