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In this supporting information, we will briefly derive the ddCOSMO contributions to

the Fock matrix for a semiempirical Hamiltonian. Let ρ be the density of charge of the

solute. The COSMO solves the electrostatics equation for such a density, accommodated

into a hollow cavity Ω embedded into a metallic, infinite continuum. Here, the cavity is

assumed to be the union of intersecting spheres, which is the case for both Van der Waals

and Solvent Accessible Surface (SAS) cavities. Such a problem is solved by writing the total

electrostatic potential as the sum of two terms: the potential produced by ρ in vacuo and a

reaction contribution due to the polarization of the metal, usually called W . The electrostatic

solvation energy is one half of the interaction energy between the inducing energy ρ and the

reaction potential W :

Es =
1

2
f(ε)

∫

Ω

ρ(r)W (r)dr (1)

In the ddCOSMO paradigm, the reaction potential is computed by solving a collection of

interacting problems, one for each sphere composing the cavity, in an iterative fashion. In

particular, for each sphere Ωj the reaction potential can be expressed as

∀r ∈ Ωj , W (r) =

∫

Γj

σj(s)

|r− s|
ds := (Sjσj)(r) (2)
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where Γj = ∂Ωj and the local apparent surface charge (ASC)

σj =
N
∑

l=0

l
∑

m=−l

[σj ]
m
l Y

m
l (s)

is an intermediate quantity used in the ddCOSMO algorithm, which is obtained by solving

the ddCOSMO linear equations L[σ] = g. All the details can be found elsewhere;1,2 here

it is sufficient to say that the right-hand side g is the solute’s electrostatic potential (and

therefore a quantity linear in the density matrix) weighted with a switching function and

that the L matrix is not symmetric, but very sparse.

In order to couple the ddCOSMO to a SCF-like procedure, the ddCOSMO Fock matrix

contribution has to be computed. Such a contribution is defined as the derivative of the

ddCOSMO solvation energy with respect to the electronic density matrix Pµν :

F s
µν =

∂Es

∂Pµν

=
1

2
f(ε)

∫

Ω

χµ(r)χν(r)W (r) + ρ(r)
∂W (r)

∂Pµν

dr, (3)

where the electronic density of the solute has been expanded in a basis of AO:

ρ(r) =
∑

µν

Pµνχµ(r)χν(r).

For semiempirical methods, both equations 1 and 3 simplify greatly as the electrostatic

properties can be described as the ones produced by a collection of atomic monopoles, dipoles

and quadrupoles, which are related to the density matrix through a linear transformation,

which depends on the specific parametrization. Let [Θj ]
m
l , 0 ≤ l ≤ 2,−l ≤ m ≤ l be such

atomic multipoles (normalized so that the monopole is actually a charge, the l = 1 terms

correspond to a dipole and the l = 2 to a quadrupole). The integral in eq. 1 simplifies to

Es(Θ) =
1

2
f(ε)

M
∑

j=1

∫

Ωj

dr

2
∑

l=0

l
∑

m=−l

√

2l + 1

4π
[Θj ]

m
l δ(r)Y

m
l (θ, φ)W (r, θ, φ) (4)
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By exploiting equation 2 and using a multipolar expansion of the integral there involved, eq.

5 is recovered:

Es(Θ) =
1

2
f(ε)

M
∑

j=1

2
∑

l=0

l
∑

m=−l

√

4π

2l + 1
[Θj]

m
l [σj ]

m
l . (5)

Now, for each atom i and for each atomic multipole l, m, let

[Θi]
m
l =

∑

µ(i)ν(i)

Λilm,iµνPµν (6)

where the indexes µ(i), ν(i) correspond to basis functions centered on the i-th atom. Notice

that the matrix Λ is defined by the semiempirical method and contains the parameters;3 for

the sake of compactness, we will write

Θ = ΛP

In order to derive the ddCOSMO contribution to the Fock matrix, we can exploit the chain

rule

F =
∂Es

∂P
=

∂Es

∂Θ

∂Θ

∂P
= Λ†Ξ,

where we introduced the “atomic Fock matrix”

[Ξi]
m
l =

∂Es

∂[Θi]ml
. (7)

Therefore, we can compute the Fock matrix by assembling the derivatives of the solvation

energy with respect to the atomic multipoles and the transform it in the AO basis through

Λ. By differentiating eq. 5:

[Ξi]
m
l =

√

2l + 1

4π
δl≤2[σj ]

m
l +

∑

j

∑

l′m′

√

2l + 1

4π
[Θj]

m′

l′
∂[σj ]

m′

l′

∂[Θi]
m
l

In order to compute the derivatives of σ with respect to the atomic multipoles, we differ-
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entiate the ddCOSMO linear system of equations Lσ = g. The ddCOSMO matrix is a

block-sparse matrix: for each pair of spheres j, k:

[Ljk]
mm′

ll′ = −

Ng
∑

n=1

wnY
m
l (yn)W

jk
n

4π

2l′ + 1
(tjkn )l

′

Y m′

l′ (sjkn ).

Here, {yn, wn}
Ng

n=1 is the set of Ng points and weights of an appropriate Lebedev integration

grid, W jk
n is a weight depending on the overlap of the two spheres (it vanishes if the spheres

do not intersect each other), tjkn is the distance from the center of sphere k to the n-th grid

point on sphere j divided by the radius of sphere k, sjkn is the unit vector pointing from the

center of sphere k to the same point and Y m
l is a real spherical harmonic. Furthermore,

[gi]
m
l =

∑

n

wnY
m
l (yn)U

i
nΦ

i
n,

where U i
n is a weight introduced in order to regularize the problem and Φi

n is the solute’s

electrostatic potential at the n-th grid point on the i-th sphere and is therefore the only

quantity that depends explicitly on the atomic multipoles:

∂[σj ]
m′

l′

[Θi]
m
l

=
(

[Lji]
m′m
l′l

)−1∑

n

wnY
m
l (yn)U

i
n

∂Φi
n

∂[Θi]
m
l

Now, let [Ψi]
l
m =

√

4π
2l+1

[Θi]
m
l and

s = (L†)−1Ψ

By putting everything together, eq. 8 is recovered:

[Ξi]
m
l =

∂Es

∂[Θi]ml
=

1

2
f(ε)

[

√

4π

2l + 1
[σi]

m
l δl≤2 +

M
∑

j=1

∑

l′m′

[sj]
m′

l′
∂[gj ]

m′

l′

∂[Θi]ml

]

(8)
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