Cobalt Catalyzed C-H Borylation

Jennifer V. Obligacion, Scott P. Semproni, and Paul J. Chirik

Department of Chemistry Princeton University, Princeton NJ 08544, United States

Supporting Information

Table of Contents

Experimental Section General Considerations Preparation of Cobalt Compounds Procedures for Catalytic Borylation	S3 S3 S4 S8
Solid State Structure of (^{iPr} PNP)CoCH ₂ SiMe ₃ (3)	S10
Variable Temperature ¹ H NMR Spectra for 3	S11
Variable Temperature ¹ H NMR Spectra for (^{iPr} PNP)CoH ₂ (BPin)	S13
Alternative Mechanism for Cobalt Catalyzed Borylation	S15
Characterization Data for Borylation Products	S16
NMR Spectra of Borylation Products	S25
References	S41

Experimental Section

I. General Considerations. All air- and moisture-sensitive manipulations were carried out using standard high vacuum line, Schlenk or cannula techniques or in an M. Braun inert atmosphere drybox containing an atmosphere of purified nitrogen. The M. Braun drybox was equipped with a cold well designed for freezing samples in liquid nitrogen. Solvents for air- and moisture-sensitive manipulations were dried and deoxygenated using literature procedures.¹ Deuterated solvents for NMR spectroscopy were distilled from sodium metal under an atmosphere of argon and stored over 4 Å molecular sieves. The ligands 2,6-(CH₂P(ⁱPr)₂)₂C₅H₃N (^{iPr}PNP)² and 2,6-(NH₂P(ⁱPr)₂)₂C₅H₃N (^{iPr}PNNP)³ were prepared according to literature procedures. (^{tBu}PDI)CoCl₂⁴ and (^{Cy}APDI)CoCH₃⁵

¹H NMR spectra were recorded on a Varian Inova 400 spectrometer operating at 399.860 MHz. All chemical shifts are reported relative to SiMe₄ using ¹H (residual) chemical shifts of the solvent as a secondary standard. ¹³C NMR spectra were recorded on a Bruker 500 spectrometer operating at 125.71 MHz. ¹³C chemical shifts are reported relative to SiMe₄ using chemical shifts of the solvent as a secondary standard where applicable. ¹¹B NMR spectra were collected on a Bruker 300 AVANCE spectrometer operating at 299.763 MHz and were referenced to BF₃(OEt₂) as an external standard. ³¹P NMR spectra were collected on a Bruker 300 AVANCE spectrometer operating at 299.763 MHz and were referenced to 85 % H₃PO₄ as an external standard. Infrared spectroscopy was conducted on a Thermo-Nicolet iS10 FT-IR spectrometer calibrated with a polystyrene standard. Elemental analyses were performed at Robertson Microlit Laboratories, Inc., in Ledgewood, NJ.

Single crystals suitable for X-ray diffraction were coated with polyisobutylene oil in a drybox, transferred to a nylon loop and then quickly transferred to the goniometer head of a Bruker X8 APEX2 diffractometer equipped with molybdenum and copper X-ray tubes ($\lambda = 0.71073$ and 1.54184 Å respectively). Preliminary data revealed the crystal system. The data collection strategy was optimized for completeness and redundancy using the Bruker COSMO software suite. The space group was identified, and the data were processed using the Bruker SAINT+ program and corrected for absorption using SADABS. The structures were solved using direct methods (SHELXS) completed by subsequent Fourier synthesis and refined by full-matrix least-squares procedures.

II. Preparation of Cobalt Complexes

Preparation of (^{HBu}**PDI**)**CoCH**₃ (1). A 100 mL round bottom flask was charged with 0.250 g (0.450 mmol) of (^{HBu}**PDI**)**CoCI**₂ and 50 mL of toluene. The resulting solution was chilled in the cold well filled with liquid nitrogen. A 1.6 M solution of LiCH₃ in diethyl ether (0.530 mL, 0.848 mmol) was then added dropwise to the chilled solution of (^{HBu}**PDI**)**CoCI**₂. The dark pink solution was stirred for 2 hours at room temperature and was filtered through Celite. Concentration of the filtrate in vacuo yielded 0.201 g (89%) of a reddish brown powder. Anal Calcd for C₃₀H₃₆CoN₃: C, 72.13; H, 7.67; N, 8.41. Found: C, 71.95; H, 7.33; N, 8.24. ¹H NMR (benzene-*d*₆, 23 °C): δ -1.09 (bs, 6H, C(N)*Me*), 0.97 (bs, 8H, tBu *Me*), 7.23 (m, 2H, aryl C*H*), 7.34 (m, 2H, aryl C*H*), 7.65 (d, Δv_{1/2} = 8.25 Hz, 2H, aryl C*H*), 7.83 (d, Δv_{1/2} = 7.45 Hz, 2H, pyridine meta C*H*), 10.11 (t, Δv_{1/2} = 7.45 Hz, 2H, pyridine para C*H*), 1216.00 (aryl CH), 122.98 (pyridine meta CH), 124.69 (aryl CH), 125.84 (aryl CH), 126.00 (aryl CH), 128.73 (aryl CH), 140.90 (aryl ipso C), 156.00 (aryl ortho C), 158.66 (pyridine ortho C), 165.11 (C(N)Me).

Preparation of (^{iPr}PNP)CoCH₂SiMe₃ (3). A 20 mL scintillation vial was charged with 0.150 g (0.346 mmol) of (^{iPr}PNP)CoCl and 5 mL of diethyl ether. The purple solution was chilled in the freezer to -35 °C. A solution of 0.033 g (0.346 mmol) of LiCH₂SiMe₃ in 5 mL of diethyl ether was added to the warming solution and a color change from dark purple to brown was observed. The solution was stirred for 1 hour at room temperature before the volatiles were removed in vacuo and the residue extracted into 5 mL of toluene and filtered through Celite. Concentration of the filtrate in vacuo and recrystallization of the dark residue from diethyl ether at -35 °C for 18 hours yielded 0.150 g (88%) of analytically pure dark brown crystals suitable for X-ray diffraction. Anal Calcd for C₂₃H₄₆CoNP₂Si: C, 56.89; N, 9.55; N, 2.88. Found: C, 56.88; H, 9.07; N, 2.80. ¹H NMR (benzene-d₆, 23 °C): δ 0.22 (bs, $\Delta v_{1/2} = 19$ Hz, 9H, CH₂Si*Me*₃), 1.00 (bs, $\Delta v_{1/2} = 36$ Hz, 1H, aryl C*H*), 1.49 (bs, $\Delta v_{1/2} = 36$ Hz, 12H, iPr *Me*), 1.73 (bs, $\Delta v_{1/2} = 36$ Hz, 12H, iPr *Me*), 2.88 (bs, $\Delta v_{1/2} = 135$ Hz, 2H, Co-CH₂ or aryl CH), 4.62 (bs, $\Delta v_{1/2} = 180$ Hz, 4H, iPr CH), 7.54 (bs, $\Delta v_{1/2} = 165$ Hz, 4H, P-CH₂), 27.3 (bs, $\Delta v_{1/2}$ = 117 Hz, 2H, aryl CH). ¹H NMR (toluene-d₈, -75 °C): δ -1.17 (s, 2H, Co-CH₂), 1.09 (s, 12H, P-CHMe₂), 1.25 (s, 4H, P-CHMe₂), 1.37 (s, 12H, P-CHMe₂), 2.21 (s, 4H, P-CH₂), 5.58 (s, 2H, meta pyridine CH), 8.48 (s, 1H, para pyridine CH). {¹H}¹³C NMR (toluene-d₈ -70 °C): δ 0.4 (CH₂SiMe₃), 6.3 (CH₂SiMe₃), 18.6 (P-CHMe₂), 20.0 (P-CHMe₂), 23.2 (P-CHMe₂), 35.9 (P-CH₂), 111.0 (pyridine meta CH), 123.5 (pyridine para CH), 155.3 (pyridine ortho CH). {¹H}³¹P NMR (toluene- d_{g} -70 °C): δ 46.8 (br s, *P*-CHMe₂).

Preparation of (^{iPr}**PNP)CoH**₂(**BPin).** A 20 mL scintillation vial was charged with 0.111 g (0.228 mmol) of (^{iPr}PNP)CoCH₂SiMe₃ and 1.5 mL of diethyl ether. A solution of 0.060 g (0.456 mmol) of pinacolborane in 0.5 mL of diethyl ether was added via pipette. A color

change to dark red-brown was immediately observed. Storing the solution at -35 °C overnight resulted in deposition of yellow-brown crystals. The crystals were washed with 2 x 1 mL of cold pentane and dried in vacuo and 0.080 g (67 % yield) of analytically pure material. Anal Calcd for C₂₅H₄₉BCoNO₂P₂: C, 56.94; H, 9.37; N, 2.66. Found: C, 56.63; H, 8.98; N, 2.47. ¹H NMR (benzene- d_{6} , 23 °C): δ -8.71 (br s, 2H, Co-*H*), 1.07 (pq, ³J_{PH} = 6.1 Hz, 12H, P-CH*Me*₂), 1.15 (s, 12H, pinacol *Me*), 1.48 (pq, ³J_{PH} = 7.1 Hz, 12H, P-CH*Me*₂), 2.41 (br m, 4H, P-C*H*Me₂), 2.86 (s, 4H, P-C*H*₂), 6.44 (d, ³J_{HH} = 7.5 Hz, 2H, pyridine meta *CH*), 6.71 (t, ³J_{HH} = 7.5 Hz, 1H, pyridine para *CH*). {¹H}¹³C NMR (benzene- d_{6} , 23 °C): δ 17.8 (P-CH*Me*₂), 20.0 (P-CH*Me*₂), 24.7 (P-CHMe₂), 25.7 (pinacol *Me*), 38.3 (P-CH₂), 80.1 (pinacol *C*), 118.3 (pyridine meta *C*H), 130.6 (pyridine para *C*H), 161.5 (pyridine ortho *C*H). {¹H}³¹P NMR (benzene- d_{6} , 23 °C): δ 103.5 (br s, *P*-CHMe₂). ¹¹B NMR (benzene- d_{6} , 23 °C): δ 41.1 (br s, Co-*B*Pin). IR (KBr): v_{Co-H} = 1716 cm⁻¹.

Preparation of (^{iPr}**PNNNP)CoCl**₂. A 100 mL round bottom flask was charged with a stirbar, 0.470 g (3.62 mmol) of cobalt dichloride and 40 mL of tetrahydrofuran. To this stirring suspension was added 1.293 g (3.65 mmol) of ^{iPr}PNNNP as a solid in one portion. The solution immediately turned red-brown and a red precipitate was observed. The solution was stirred at room temperature for 18 hours before the volatiles were removed in vacuo and the red solid collected on a sintered glass frit and washed with 50 mL of pentane (50 mL) and furnished 1.60 g (93%) of an analytically pure red solid identified as (^{iPr}PNNNP)CoCl₂. Anal Calcd for C₁₇H₃₃Cl₂CoN₃P₂: C, 43.33; H, 7.06; N, 8.92. Found: C, 43.18; H, 6.80; N, 8.51. Magnetic Susceptibility (MSB): $\mu_{eff} = 1.84(2) \ \mu_{B}$.

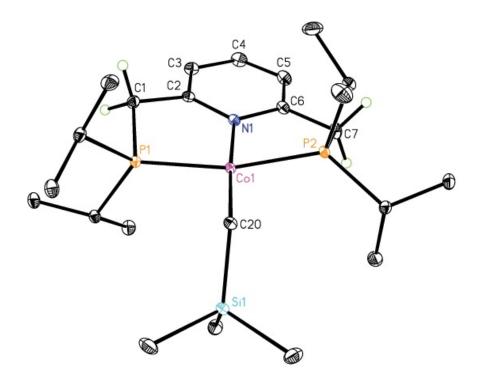
Preparation of (^{iPr}**PNNNP)CoCH₂SiMe₃ (4)**. A 50 mL round bottom flask was charged with 0.510 g (1.083 mmol) of (^{iPr}PNNNP)CoCl₂ and 15 mL of toluene. A separate vial was

charged with 0.214 g (2.17 mmol) of LiCH₂SiMe₃ and 5 mL of toluene. The alkyl lithium solution was added dropwise via pipette to the stirring red cobalt suspension and an immediate color change from dark red to deep forest green was observed as the addition proceeded. The solution was stirred for 30 minutes before the solution was filtered through a pad of Celite to remove insoluble material. The volatiles were removed in vacuo and the resulting green material was recrystallized from concentrated toluene and furnished 0.280 g (53 %) of a microcrystalline green solid identified as (^{IPr}PNNNP)CoCH₂SiMe₃. Anal Calcd for C₂₁H₄₄CoN₃P₂Si: C, 51.73; H, 9.10; N, 8.62. Found: C, 51.68; H, 8.74; N, 8.49. ¹H NMR (benzene- d_6 , 23 °C): δ -22.52 (bs, $\Delta v_{1/2}$ = 125 Hz, 2H, CH₂SiMe₃), -20.00 (bs, $\Delta v_{1/2}$ = 115 Hz, 9H, CH₂SiMe₃), 10.58 (bs, $\Delta v_{1/2}$ = 877 Hz, 12H, P-CH*Me*₂), 16.65 (bs, $\Delta v_{1/2}$ = 670 Hz, 14H, P-CH*Me*₂ and P-N*H*), 58.29 (bs, $\Delta v_{1/2}$ = 1893 Hz, 3H, meta and para pyridine C*H*). One signal not located. Magnetic Susceptibility (MSB): μ_{eff} = 2.6(1) μ_{B} .

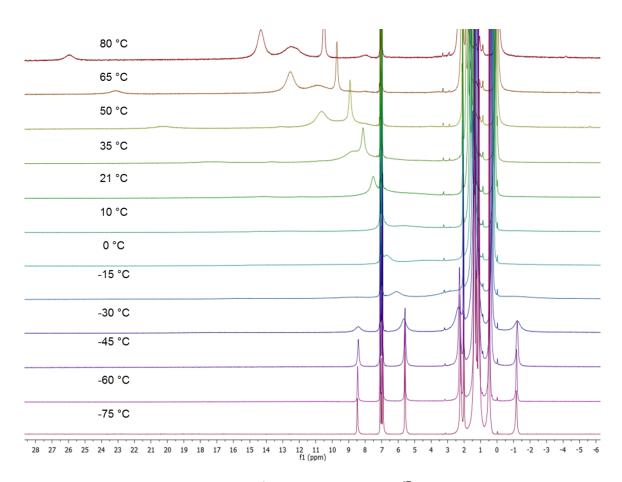
II. General Procedures for Cobalt-Catalyzed Borylations.

A. 5-Membered Heterocycles with HBPin. In a nitrogen-filled glovebox, a scintillation vial was charged with a magnetic stir bar and 0.004 g (0.008 mmol) of (^{iPr}PNP)CoNs, 0.781 mmol of the desired 5-membered heterocycle, and 0.100 g (0.781 mmol) of HBPin. The resulting mixture was stirred at 23 °C, 60 °C or 80 °C for 24 hours or until solid formed. The crude reaction mixture was dissolved in CDCl₃, passed through a plug of silica gel in a Pasteur pipette and then analyzed by ¹H and ¹³C NMR spectroscopy without additional purification.

B. Substituted Pyridines with B_2Pin_2 . In a nitrogen-filled glovebox, a scintillation vial was charged with a magnetic stir bar and 0.008 g (0.016 mmol) of (^{iPr}PNP)CoNs, 0.070 g

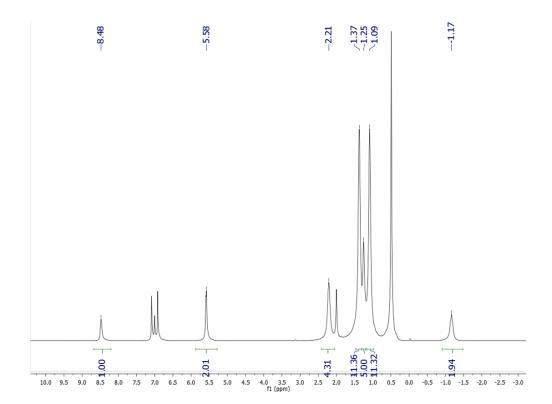

(0.276 mmol) (CONDITION A) or 0.140 g (0.552 mmol) (CONDITION B) of B_2Pin_2 , 0.552 mmol of the desired pyridine derivative and 1 mL of THF. The resulting mixture was stirred at 80 °C for 24 hours. The THF was removed by vacuum and the workup procedure is described for each individual example (see section III).

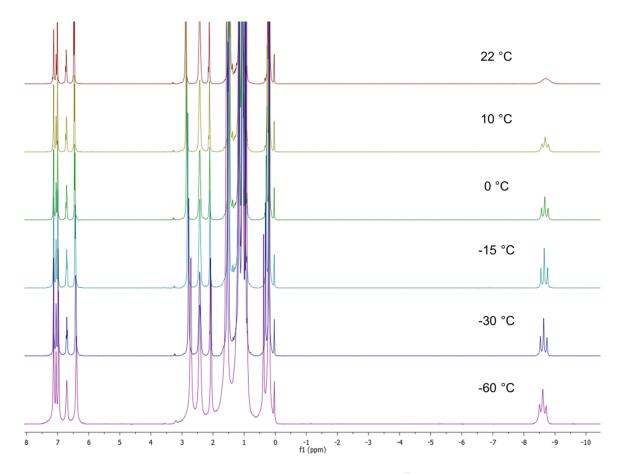
C. Arenes with B₂**Pin**₂. In a nitrogen-filled glovebox, a scintillation vial was charged with a magnetic stir bar, 0.008 g (0.016 mmol) of (^{iPr}PNP)CoNs, 0.070 g (0.276 mmol) of B₂Pin₂, and 5.520 mmol of the corresponding arene. The resulting mixture was stirred at 80 °C for 24 hours. The reaction was quenched by exposing the mixture to air. The excess arene was removed via vacuum distillation and the crude product was dissolved in CDCl₃, passed through a plug of silica gel in a Pasteur pipette and then analyzed by ¹H and ¹³C NMR spectroscopy without additional purification.


D. Iridium Catalyzed Borylation of 2,4-lutidine. In the glovebox, a 20 mL scintillation vial was charged with a stir bar, 0.214 g (2 mmol) of 2,4-lutidine, 0.356 g (1.4 mmol) of B_2Pin_2 , 0.040 g (0.06 mmol) of [(COD)Ir(OMe)]₂ and 0.033 g (0.12 mmol) of 4,4'-di-tert-butyl-2,2'-bipyridine. To this vial was added 3.0 mL of tetrahydrofuran. The vial was tightly sealed with a screw cap before being heated to 80 °C for 16 h. The vial was cooled to room temperature and brought into the glovebox without being exposed to air. The volatile components were removed in vacuo and the dark residue dissolved in benzene- d_6 and analyzed by ¹H NMR spectroscopy.

E. Deuterium Labeling Experiment. A scintillation vial was charged with a magnetic stir bar, 0.150 g (1.83 mmol) of 2-methylfuran, 0.236 g of DBPin (1.83 mmol) and with 0.009 g (0.018 mmol) of (^{iPr}PNP)CoNs. After 1 hour, the mixture was transferred to a J-Young

tube and the volatiles (1:1 mixture of 2-methylfuran and DBPin) were separated from the borylation product via an air-free vacuum distillation. No deuterium incorporation (as judged by ²H and quantitative ¹³C NMR spectroscopies) was observed in the borylation product. Analysis of the volatiles by ²H and quantitative ¹³C NMR spectroscopies established no deuterium incorporation in the recovered 2-methylfuran. The volatiles (1:1 mixture of 2-methylfuran and DBPin) were then mixed with a stoichiometric amount of 1-octene and with 1 mol% of (^{Mes}PDI)CoCH₃ and analysis of 1-octyl pinacolboronate ester hydroboration product revealed a 16% reduction in deuterium content in the recovered DBPin.⁶


Figure S1. ORTEP plot (^{iPr}PNP)Co(CH₂SiMe₃) at 30% probability ellipsoids. Hydrogen atoms, except those attached to benzylic positions, omitted for clarity.


Figure S2. Variable temperature ¹H NMR spectra of (^{iPr}PNP)CoCH₂SiMe₃ recorded in toluene- d_{β} .

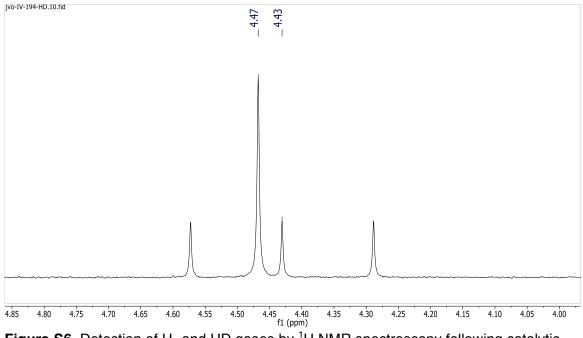

Figure S3. ¹H NMR spectrum of (^{iPr}PNP)CoCH₂SiMe₃ recorded at 21 °C in toluene- d_8 .

Figure S4. ¹H NMR spectrum of (^{iPr}PNP)CoCH₂SiMe₃ recorded at -75 °C in toluene- d_8 .

Figure S5. Variable temperature ¹H NMR spectra of (^{iPr}PNP)CoH₂(BPin) recorded in toluene- d_8 .

Figure S6. Detection of H_2 and HD gases by ¹H NMR spectroscopy following catalytic borylation of 2-methylfuran with DBPin in the presence of 1 mol% **3** (40% conversion).

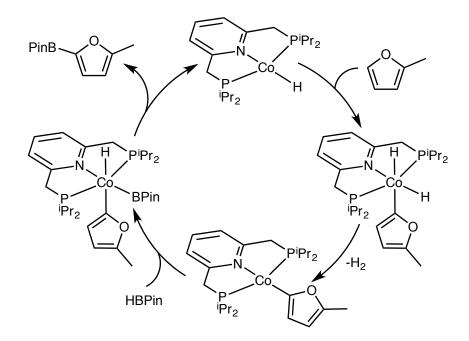


Figure S7. Alternative mechanism for cobalt-catalyzed borylation.

III. Characterization of Borylation Products.

(**3a**): In a nitrogen-filled glovebox, a scintillation vial was charged with a magnetic stir bar and 0.004 g (0.008 mmol) of (^{iPr}PNP)CoNs, 0.064 g (0.781 mmol) of 2methylfuran, and 0.100 g (0.781 mmol) of HBPin. The resulting mixture was shaken in a vortex shaker at 23 °C for 72 hours. The crude reaction mixture was dissolved in hexane and the resulting solution was passed through a plug of silica gel in a Pasteur pipette to remove the catalyst. The title compound was isolated as a colorless oil (0.147 g, 91% yield) upon removal of solvent in vacuo. ¹H NMR (chloroform-*d*, 23 °C): δ 6.93 (d, $\Delta v_{1/2} = 3.07$ Hz, 1H), 5.97 (d, $\Delta v_{1/2} = 3.07$ Hz, 1H), 2.29 (s, 3H), 1.27 (s, 12H). {¹H}¹³C NMR (chloroform-*d*, 23 °C): δ 157.58, 124.80, 106.87, 83.90, 24.66, 13.83. GCMS m/z (% relative intensity, ion): 208.00 (68, M⁺), 193.00 (32, M⁺-15).

PinB , O , BPin (3b): ¹H NMR (chloroform-*d*, 23 °C): δ 7.01 (s, 2H), 1.27 (s, 24H). {¹H}¹³C
NMR (chloroform-*d*, 23 °C): δ 123.34, 84.22, 24.75. GCMS m/z (% relative intensity, ion): 320.20 (29, M⁺), 305.10 (23, M⁺-15), 277.10 (48, M⁺-43).

(**3c**): In a nitrogen-filled glovebox, a scintillation vial was charged with 0.006 g (0.012 mmol) of (^{iPr}PNP)CoNs, 0.150 g (1.189 mmol) of methyl furan-2-carboxylate, and 0.152 g (0.189 mmol) of HBPin. The resulting mixture was shaken in a vortex shaker at 23 °C until formation of a solid occurred. The crude reaction mixture was dissolved in pentane and the resulting solution was passed through a plug of silica gel in

a Pasteur pipette to remove the catalyst. The title compound was isolated as a white powder (0.300 g, >99% yield) upon removal of solvent in vacuo. ¹H NMR (chloroform-*d*, 23 °C): δ 7.18 (d, $\Delta v_{1/2} = 5.54$ Hz, 1H), 7.06 (d, $\Delta v_{1/2} = 5.54$ Hz, 1H), 3.89 (s, 3H), 1.34 (s, 12H). {¹H}¹³C NMR (chloroform-*d*, 23 °C): δ 159.22, 148.48, 124.19, 118.04, 84.87, 52.11, 24.86. GCMS m/z (% relative intensity, ion): 252.10 (16, M⁺), 237.10 (25, M⁺-15), 221.10 (12, M⁺-31), 210.10 (47, M⁺-42).

(**3d**): In a nitrogen-filled glovebox, a scintillation vial was charged with 0.006 g (0.012 mmol) of (^{iPr}PNP)CoNs, 0.140 g (1.189 mmol) of benzofuran, and 0.152 g (0.189 mmol) of HBPin. The resulting mixture was shaken in a vortex shaker at 23 °C until formation of a solid occurred. The crude reaction mixture was dissolved in pentane and the resulting solution was passed through a plug of silica gel in a Pasteur pipette to remove the catalyst. The title compound was isolated as a white powder (0.289 g, >99% yield) upon removal of solvent in vacuo. ¹H NMR (chloroform-*d*, 23 °C): δ 7.65 – 7.62 (m, 1H), 7.57 (dd, $\Delta v_{1/2} = 8.1$, 1.1 Hz, 1H), 7.40 (s, 1H), 7.34 (ddd, $\Delta v_{1/2} = 8.4$, 7.2, 1.3 Hz, 1H), 7.25 – 7.21 (m, 1H), 1.39 (s, 12H). {¹H}¹³C NMR (chloroform-*d*, 23 °C): δ 157.64, 127.62, 126.07, 122.85, 122.03, 119.68, 112.10, 84.83, 24.93. ¹H and ¹³C NMR data agree with previously reported data.⁷

 $\int e^{BPin}$ (**3e**): ¹H NMR (chloroform-*d*, 23 °C): δ 7.64 (d, $\Delta v_{1/2} = 3.23$ Hz, 1H), 7.62 (d, $\Delta v_{1/2} = 4.87$ Hz, 1H), 7.18 (m, 1H), 1.25 (s, 12H). {¹H}¹³C NMR (chloroform-*d*, 23 °C): δ 137.30, 132.51, 128.34, 84.27, 24.58. ¹H and ¹³C NMR data agree with previously reported data.⁸

^{PinB} (**3f**): ¹H NMR (chloroform-*d*, 23 °C): δ 7.66 (s, 2H), 1.33 (s, 12H). {¹H}¹³C NMR (chloroform-*d*, 23 °C): δ 137.82, 84.21, 24.82. ¹H and ¹³C NMR data agree with previously reported data.⁹

(**3g**): ¹H NMR (chloroform-*d*, 23 °C): δ 7.64 (d, $\Delta v_{1/2} = 8.05$ Hz, 1H), 7.07 - 7.35 (m, 5H), 3.95 (s, 3H), 1.35 (s, 12H). {¹H}¹³C NMR (chloroform-*d*, 23 °C): δ 140.23, 127.94, 123.27, 121.67, 119.39, 114.36, 109.78, 83.77, 32.30, 24.91. ¹H and ¹³C NMR data agree with previously reported data.¹⁰

BPin

(**3h**): In a nitrogen-filled glovebox, a scintillation vial was charged with a magnetic stir bar, 0.003 g (0.006 mmol) of (^{iPr}PNP)CoNs, 0.070 g (0.276 mmol) of B₂Pin₂, and 0.431 g (5.520 mmol) of benzene. The resulting mixture was stirred at 80 °C for 24 hours. The HBPin formed and the excess benzene were removed via vacuum distillation and the crude product was dissolved in hexane and the resulting solution was passed through a through a plug of silica gel in a Pasteur pipette to remove the catalyst. The title compound was isolated as a white solid (0.049 g, 87% yield) upon removal of solvent in vacuo. ¹H NMR (chloroform-*d*, 23 °C): δ 7.83 (d, $\Delta v_{1/2} = 7.31$ Hz, 2H), 7.50 – 7.34 (m, 3H), 1.35 (s, 12H). {¹H}¹³C NMR (chloroform-*d*, 23 °C): δ 134.87, 131.39, 127.85, 83.92, 25.01. ¹H and ¹³C NMR data agree with previously reported data.¹¹

^J_{BPin}(**3i**): The ¹H NMR spectrum was not assigned because the proton resonances of the *meta* and *para* isomers overlap with each other. The *meta*: *para* ratio was determined to be 70:30 by integration of the characteristic peaks in the quantitative ¹³C NMR spectrum. {¹H}¹³C NMR (chloroform-*d*, 23 °C): δ 137.27, 135.45, 132.19, 131.88, 127.83, 83.85, 24.97, 21.41 (*meta*); δ 141.55, 134.91, 128.65, 83.74, 24.97, 21.87 (*para*). ¹³C NMR data agree with previously reported data.¹²

BPin (**3j**): ¹H NMR (chloroform-*d*, 23 °C): δ 7.41 (s, 2H), 7.08 (s, 1H), 2.29 (s, 6H), 1.32 (s, 12H). {¹H}¹³C NMR (chloroform-*d*, 23 °C): δ 137.23, 133.07, 132.47, 83.80, 24.92, 21.22. ¹H and ¹³C NMR data agree with previously reported data.¹³

BPin (**3k**): ¹H NMR (chloroform-*d*, 23 °C): δ 7.59 (s, 1H), 7.54 (d, $\Delta v_{1/2} = 7.38$ Hz, 1H), 7.15 (d, $\Delta v_{1/2} = 7.34$ Hz, 1H), 2.28 (s, 3H), 2.26 (s, 3H), 1.34 (s, 12H). {¹H}¹³C NMR (chloroform-*d*, 23 °C): δ 140.25, 136.04, 135.97, 132.52, 129.26, 83.72, 24.93, 20.12, 19.58. ¹H and ¹³C NMR data agree with previously reported data.¹⁴

(**3I**): In a nitrogen-filled glovebox, a scintillation vial was charged with a magnetic stir bar, 0.003 g (0.006 mmol) of (^{iPr}PNP)CoNs, 0.070 g (0.276 mmol) of B₂Pin₂, and 0.530 g (5.520 mmol) of fluorobenzene. The resulting mixture was stirred at 80 °C for

24 hours. The HBPin formed and the excess fluorobenzene were removed via vacuum distillation and the crude product was dissolved in hexane and the resulting solution was passed through a through a plug of silica gel in a Pasteur pipette to remove the catalyst. The title compound was isolated as a white solid (0.049 g, 95% yield) upon removal of solvent in vacuo. The ¹H NMR was not assigned since the proton resonances of the *meta* and *para* isomers overlap with each other. The *ortho: meta* ratio was determined to be 89:11 by integration of the characteristic peaks in the quantitative ¹³C NMR spectrum. {¹H}¹³C NMR (chloroform-*d*, 23 °C): δ 168.29, 166.30, 136.97, 136.91, 133.43, 133.36, 123.72, 123.69, 115.46 115.27, 84.19, 24.94 (*ortho*).; δ 163.59, 161.63, 130.41, 130.38, 129.61, 129.56, 121.14, 120.99, 118.36, 118.20, 84.00, 24.97 (*meta*). ¹³C NMR data agree with previously reported data.¹⁵

^{BPin}(**3m**): The ¹H NMR was not assigned since the proton resonances of the *meta*, *para* and *ortho* isomers overlap with each other. The *meta: para: ortho* ratio was determined to be 81:10:9 by integration of the characteristic peaks in the quantitative ¹³C NMR spectrum. {¹H}¹³C NMR (chloroform-*d*, 23 °C): δ 159.04, 128.93, 127.15, 118.79, 117.75, 83.72, 54.89, 24.73 (*meta*).; δ 162.17, 136.54, 113.27, 83.43, 54.89, 24.70 (*para*). δ 164.19, 136.87, 132.54, 120.10, 110.27, 83.30, 55.42, 24.81 (*ortho*). ¹³C NMR data agree with previously reported data.^{16,17,18}

OMe

(3n): The crude reaction mixture was dissolved in $CDCI_3$, passed through a plug of silica gel in a Pasteur pipette and then analyzed by ¹H and ¹³C NMR spectroscopy without additional purification.¹H NMR (chloroform-*d*, 23 °C): δ 7.31 (s, 2H), 2.52 (s, 6H), 1.35 (s, 12H). {¹H}¹³C NMR (chloroform-*d*, 23 °C): δ 157.19, 125.38, 84.50, 24.99. ¹H and ¹³C NMR data agree with previously reported data.¹³

BPin

BPin

(30): In a nitrogen-filled glovebox, a scintillation vial was charged with a magnetic stir bar and 0.008 g (0.016 mmol) of (^{iPr}PNP)CoNs, 0.140 g (0.551 mmol) of B₂Pin₂, 0.051 g (0.551 mmol) of 2-picoline, and 1 mL of THF. The resulting mixture was stirred at 80 °C for 24 hours. The HBPin and THF were removed by vacuum and the resulting mixture was dissolved in hexane and was passed through a plug of silica gel in a Pasteur pipette to remove the catalyst. The title compound was isolated as yellow crystals (0.111 g, 92% yield) upon removal of solvent in vacuo. The 4-:5-:6- isomer ratio was determined to be 79:12:9 by integration of the characteristic peaks in the ¹H NMR spectrum. ¹H NMR (chloroform-*d*, 23 °C): δ 8.51 (d, $\Delta v_{1/2}$ = 4.99 Hz, 1H), 7.52 (s, 1H), 7.44 (d, Δv_{1/2} = 5.00 Hz, 1H), 2.56 (s, 3H), 1.34 (s, 12H) (4- isomer); δ 8.83 (s, 1H), 7.97 (dd, $\Delta v_{1/2} = 7.74$ Hz, 1.66 Hz, 1H), 7.15 (d, $\Delta v_{1/2} = 7.71$ Hz, 1H), 2.58 (s, 3H), 1.34 (s, 12H) (5- isomer); δ 7.36 (dd, $\Delta v_{1/2}$ = 9.15 Hz, 6.86 Hz, 1H), 6.41 (d, $\Delta v_{1/2}$ = 9.14 Hz, 1H), 6.04 (d, $\Delta v_{1/2}$ = 6.79 Hz, 1H), 2.32 (s, 3H), 1.34 (s, 12H) (6- isomer). {¹H}¹³C NMR (chloroform-d 23 °C): δ 157.53, 148.19, 128.80, 125.89, 84.64, 24.97, 24.00 (4-isomer); δ 160.81, 154.63, 143.10, 123.09, 84.64, 24.97, 24.23 (5-isomer); δ 145.08, 142.13,

117.09, 106.29, 84.64, 24.97, 19.47 (6-isomer). GCMS m/z (% relative intensity, ion): 219.10 (47, M⁺), 204.10 (53, M⁺-15).

BPin

MeO (**3p**): The crude reaction mixture was dissolved in CDCl₃, passed through a plug of silica gel in a Pasteur pipette and then analyzed by ¹H and ¹³C NMR spectroscopy without additional purification. The ¹H NMR was not assigned since the proton resonances of the 4- and 5- boronic ester isomers overlap with each other. The 4-:5- isomer ratio was determined to be 88:12 by integration of the characteristic peaks in the quantitative ¹³C NMR spectrum. {¹H}¹³C NMR (chloroform-*d*, 23 °C): δ 163.99, 146.37, 121.28, 116.62, 84.52, 53.49, 24.64 (4- isomer).; δ 166.16, 154.24, 144.60, 110.36, 83.94, 53.61, 25.00 (5- isomer). ¹³C NMR data agree with previously reported data.^{19,20}

 Me_2N (**3q**): The crude reaction mixture was dissolved in CDCl₃, passed through a plug of silica gel in a Pasteur pipette and then analyzed by ¹H and ¹³C NMR spectroscopy without additional purification. The 4-:5-:6- isomer ratio was determined to be 83:12:5 by integration of the characteristic peaks in the ¹H NMR spectrum. ¹H NMR (chloroform-*d*, 23 °C): δ 8.17 (d, $\Delta v_{1/2} = 4.46$ Hz, 1H), 6.90 (s, 1H), 6.86 (d, $\Delta v_{1/2} = 4.32$ Hz, 1H), 3.07 (s, 6H), 1.33 (s, 12H) (4- isomer); δ 8.52 (s, 1H), 7.76 (d, $\Delta v_{1/2} = 8.73$ Hz, 1H), 6.46 (d, $\Delta v_{1/2} = 8.71$ Hz, 1H), 3.07 (s, 6H), 1.31 (s, 12H) (5- isomer); δ 7.86 (d, $\Delta v_{1/2} = 6.19$ Hz, 1H), 7.57 (s, 1H), 6.71 (d, $\Delta v_{1/2} = 6.17$ Hz, 1H), 3.07 (s, 6H), 1.33 (s, 12H) (6isomer). {¹H}¹³C NMR (chloroform-*d*, 23 °C): δ 159.42, 147.30, 116.14, 111.52, 84.29, 38.27, 24.95 (4-isomer); δ 155.31, 143.20, 105.00, 82.89, 38.17, 24.69 (one signal not

located) (5-isomer); not observed (6-isomer). GCMS m/z (% relative intensity, ion): 248.10 (47, M⁺), 233.10 (53, M⁺-15).

BPin

(**3r**): The crude reaction mixture was dissolved in CDCl₃, passed through a plug of silica gel in a Pasteur pipette and then analyzed by ¹H and ¹³C NMR spectroscopy without additional purification. The 4-:5- isomer ratio was determined to be 50:50 by integration of the pyridine protons at the 2-position of the product. ¹H NMR analysis of isomer mixture (chloroform-*d*, 23 °C): δ 9.04 (dd, $\Delta v_{1/2} = 1.59$ Hz, 0.97 Hz, 1H) (5-isomer), 8.73 (dd, $\Delta v_{1/2} = 4.76$ Hz, 0.95 Hz, 1H) (4-isomer), 8.14 (dd, $\Delta v_{1/2} = 7.75$ Hz, 1.71 Hz, 1H) (5-isomer), 8.11 (t, $\Delta v_{1/2} = 0.97$ Hz, 1H) (4-isomer), 8.06-7.98 (m, 6H) (aryl C*H*), 7.72 (d, $\Delta v_{1/2} = 7.86$ Hz, 1H) (5-isomer), 7.58 (dd, $\Delta v_{1/2} = 4.77$ Hz, 0.97 Hz, 1H) (4-isomer), 7.50-7.40 (m, 4H) (aryl C*H*), 1.38 (s, 12H), 1.37 (s, 12H). {¹H}¹³C NMR of the isomer mixture (chloroform-*d*, 23 °C): δ 159.60 (5-isomer), 156.90 (4-isomer), 155.68 (5-isomer), 149.20 (4-isomer), 143.18 (5-isomer), 139.52 (4-isomer), 139.46 (5-isomer), 129.35, 128.94, 128.77, 127.28 (aryl CH), 127.24 (4-isomer), 127.11 (aryl CH), 120.70 (5-isomer), 119.94 (aryl CH), 84.65, 84.27, 25.00, 24.98. GCMS m/z (% relative intensity, ion): 281.10 (83, M⁺), 266.10 (17, M⁺-15).

 1 N 1 BPin (**3s**): The crude reaction mixture was dissolved in benzene- d_6 and was passed through a glass frit. The filtrate was placed in J-Young tube and was analyzed by 1 H and 13 C NMR spectroscopies under air and moisture-free conditions. 1 H NMR (benzene- d_6 , 23 °C): δ 7.64 (s, 1H), 6.58 (s, 1H), 2.47 (s, 3H), 1.88 (s, 3H), 1.13 (s, 12H).

{¹H}¹³C NMR (benzene-*d*₆, 23 °C): δ 158.56, 144.94, 129.47, 125.23, 83.91, 25.17, 25.05, 20.60. Combustion analysis was not successful.

MeO N BPin (**3t**): The crude reaction mixture was dissolved in benzene- d_6 and was passed through a glass frit. The filtrate was placed in J-Young tube and was analyzed by ¹H and ¹³C NMR spectroscopies under air and moisture-free conditions. ¹H NMR (benzene- d_6 , 23 °C): δ 7.47 (s, 1H), 6.54 (s, 1H), 3.89 (s, 3H), 1.84 (s, 3H), 1.14 (s, 12H). {¹H}¹³C NMR (benzene- d_6 , 23 °C): δ 164.92, 148.13, 127.15, 113.50, 83.97, 53.24, 25.06, 20.41. Combustion analysis was not successful.

IV. NMR Spectra of Borylation Products

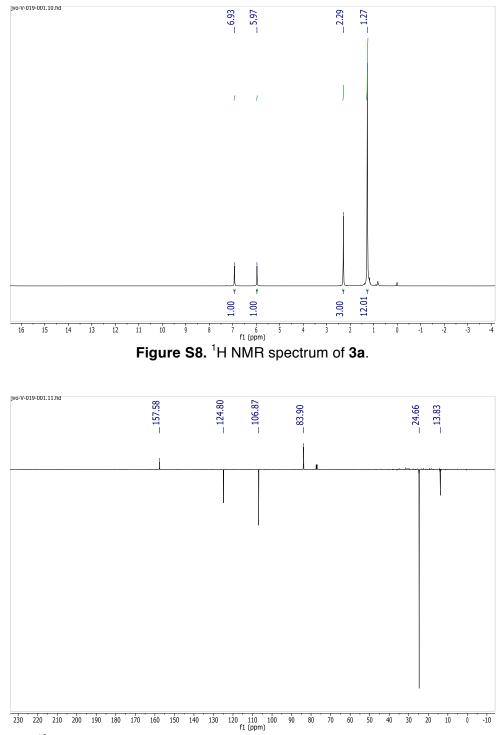


Figure S9. ¹³C NMR spectrum of 3a.

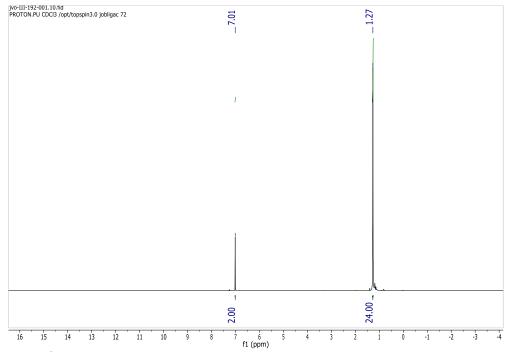


Figure S10. ¹H NMR spectrum of 3b.

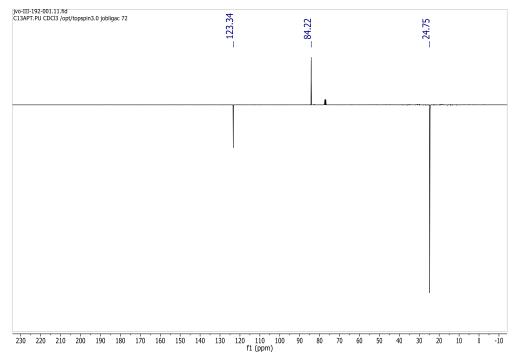


Figure S11. ¹³C NMR spectrum of 3b.

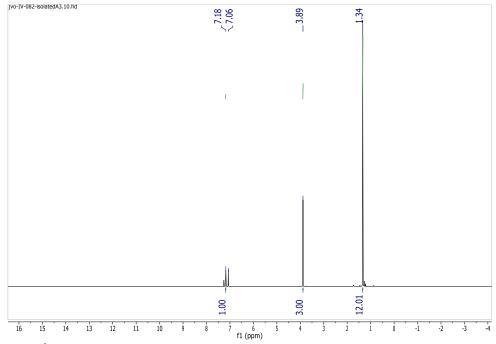


Figure S12. ¹H NMR spectrum of 3c.

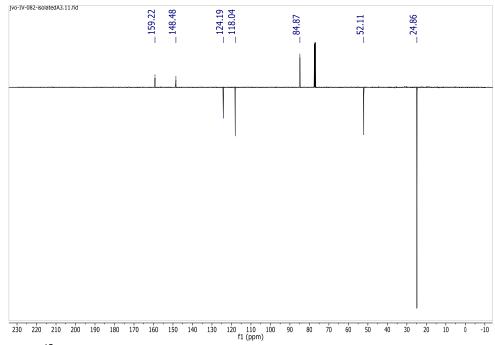


Figure S13. ¹³C NMR spectrum of 3c.

Figure S14. ¹H NMR spectrum of 3d.

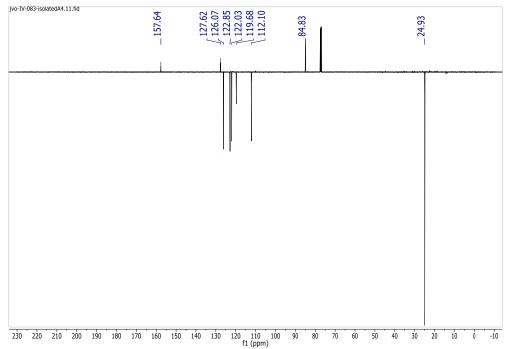


Figure S15. ¹³C NMR spectrum of 3d.

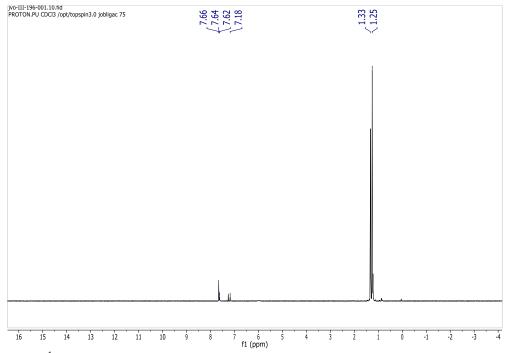


Figure S16. ¹H NMR spectrum of 3e + 3f.

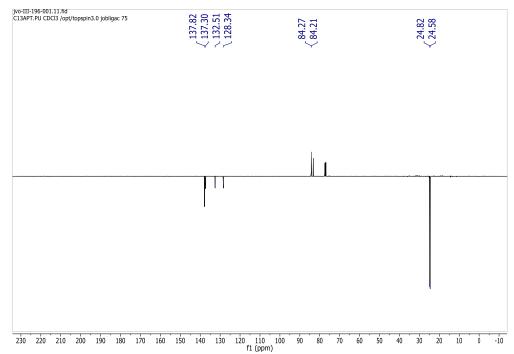
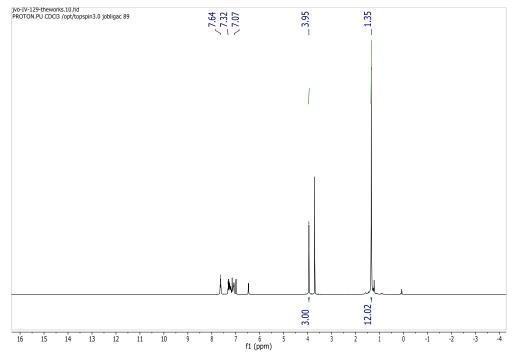



Figure S17. ¹³C NMR spectrum of 3e + 3f.

Figure S18. ¹H NMR spectrum of **3g.** The unlabeled peaks are that of the unreacted N-methyl indole.

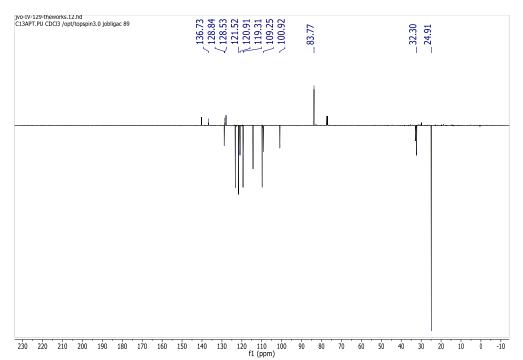


Figure S19. ¹³C NMR spectrum of **3g.** The unlabeled peaks are that of the unreacted N-methyl indole.

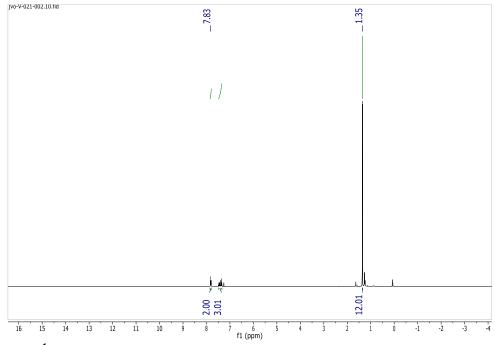
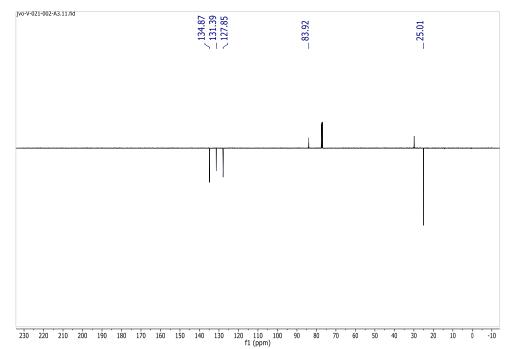
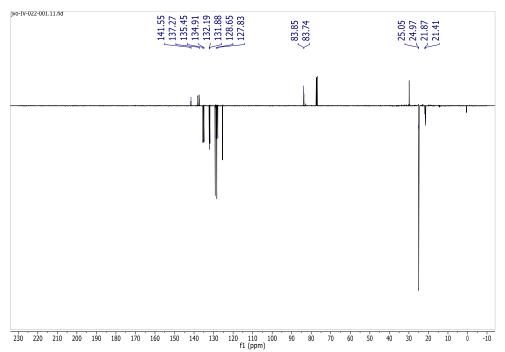




Figure S20. ¹H NMR spectrum of 3h.

Figure S21. ¹³C NMR spectrum of **3h.** The peak at δ = 29.86 ppm is from H-grease.

Figure S22. ¹³C NMR spectrum of **3i.** The peaks at δ = 137.98, 129.15, 128.35, and 21.61 ppm are from excess toluene in the reaction. The peak at δ = 29.86 ppm is from H-grease.

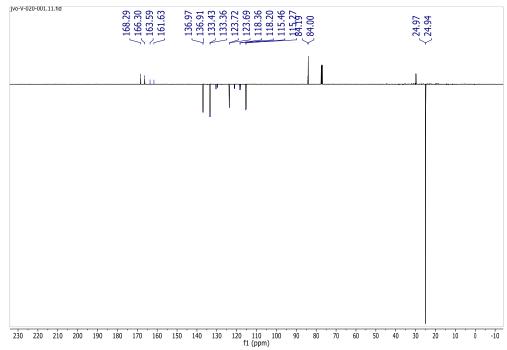
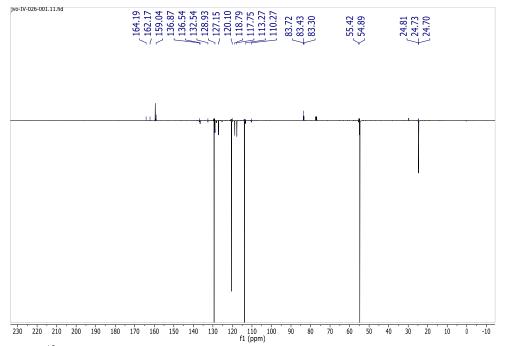



Figure S23. ¹³C NMR spectrum of 3I.

Figure S24. ¹³C NMR spectrum of **3m.** The peaks at δ = 159.51, 129.38, 120.53, 113.78, and 54.80 are from excess anisole in the reaction.

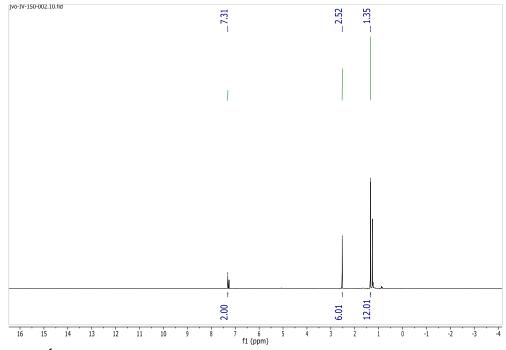


Figure S25. ¹H NMR spectrum of 3n.

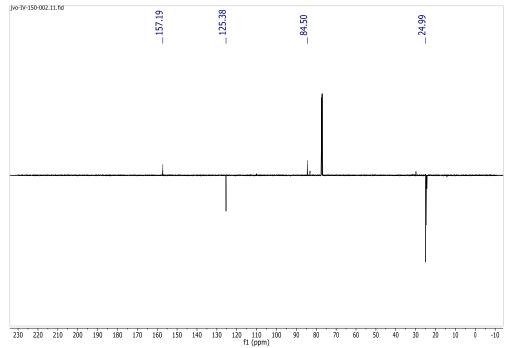


Figure S26. ¹³C NMR spectrum of 3n.

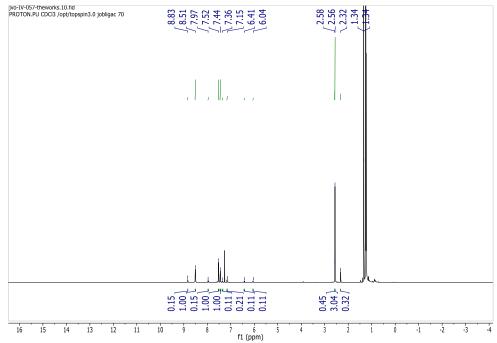


Figure S27. ¹H NMR spectrum of 3o.

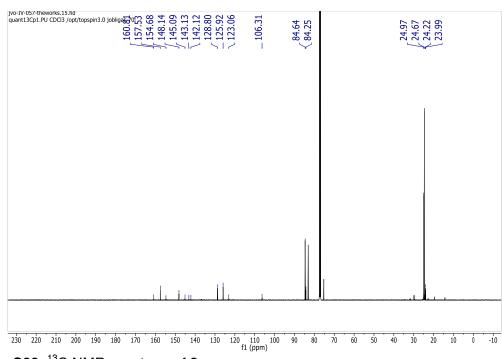


Figure S28. ¹³C NMR spectrum of **30**.

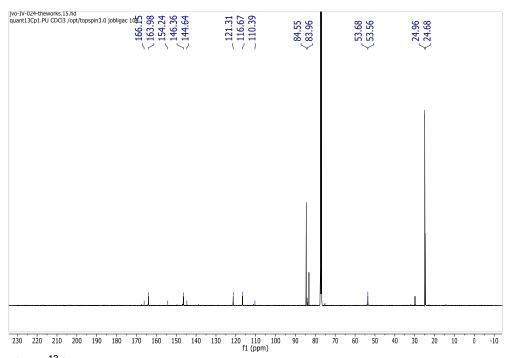


Figure S29. ¹³C NMR spectrum of 3p.

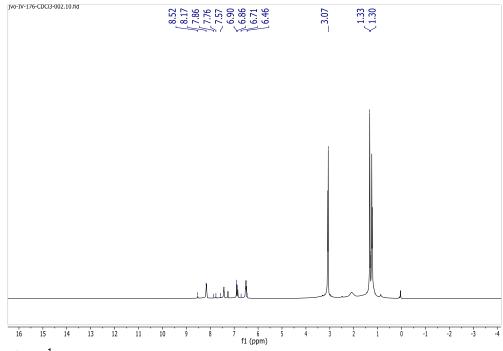


Figure S30. ¹H NMR spectrum of 3q.

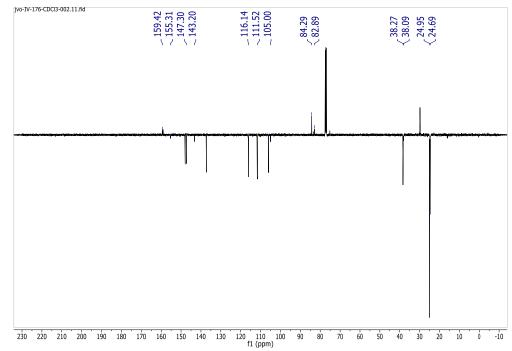


Figure S31. ¹³C NMR spectrum of 3q.

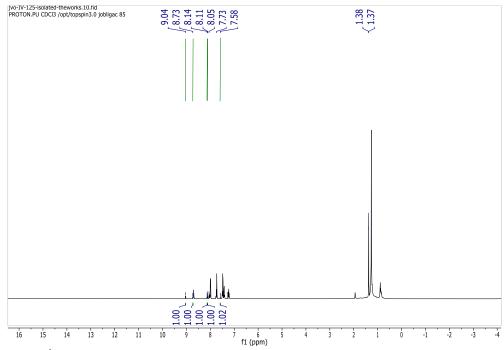
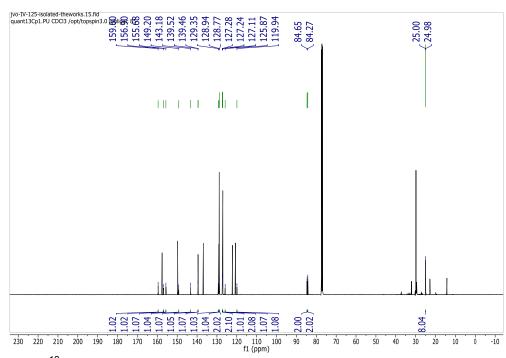
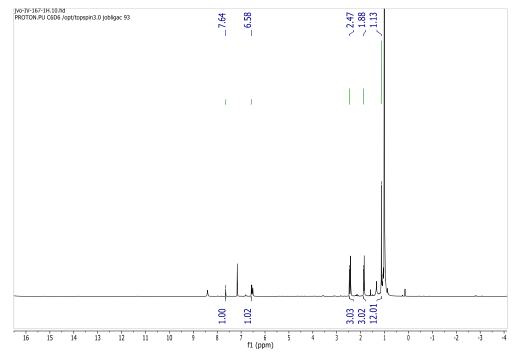
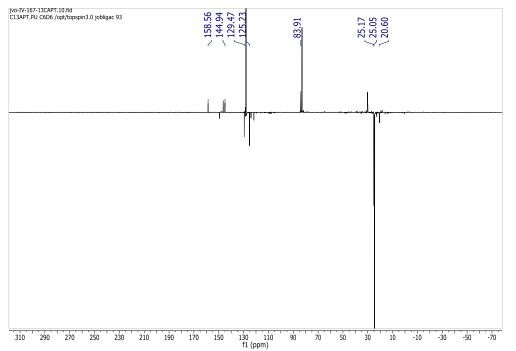
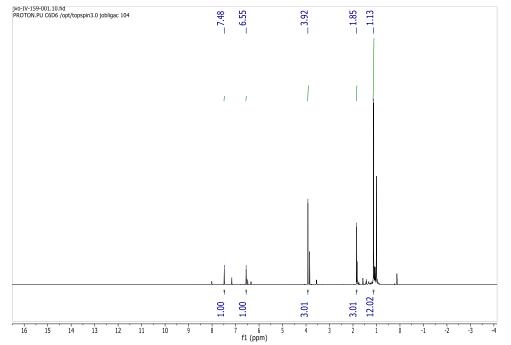


Figure S32. ¹H NMR spectrum of 3r.


Figure S33. ¹³C NMR spectrum of 3r.

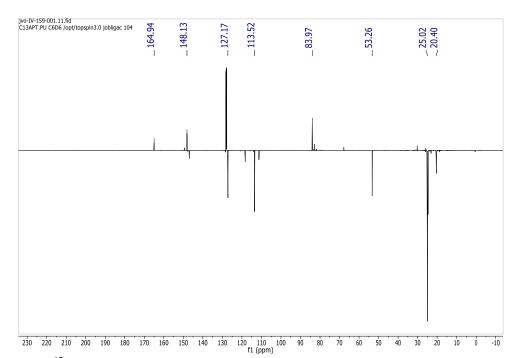

Figure S34. ¹H NMR spectrum of **3s.** The peaks at δ = 8.40, 6.55, 6.51, 2.42, and 1.85 ppm are from unreacted 2,4-lutidine in the reaction. The peak at δ = 1.00 is from unreacted B₂Pin₂.

Figure S35. ¹³C NMR spectrum of **3s.** The peaks at δ = 158.43, 149.35, 146.55, 123.98, 121.72, 24.38, and 20.55 are from unreacted 2-4-lutidine in the reaction. The peak at δ = 24.67 is from unreacted B₂Pin₂.

Figure S36. ¹H NMR spectrum of **3t.** The peaks at δ = 8.04, 6.51, 6.31, 3.86, and 1.78 ppm are from unreacted 2-methoxy-4-picoline in the reaction. The peaks at δ = 3.55 and 1.44 are from THF. The peak at δ = 1.00 is from unreacted B₂Pin₂.

Figure S37. ¹³C NMR spectrum of **3t.** The peaks at δ = 165.08, 149.48, 146.94, 118.31, 111.29, 53.12, and 20.55 are from unreacted 2-methoxy-4-picoline in the reaction. The peaks at δ = 67.80 and 25.84 are from THF. The peak at δ = 24.66 is from unreacted B₂Pin₂.

IV. References.

¹ Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. *Organometallics* **1996**, *15*, 1518.

² Jansen, A.; Pitter, S. *Monatsh. Chem.* **1999**, 130, 783.

³ Benito-Garagorri, D.; Becker, E.; Wiedermann, J.; Lackner, W.; Pollak, M.; Mereiter, K.; Kisala, J.; Kirchner, K. *Organometallics* **2006**, *25*, 1900.

⁴ Small, B. L.; Brookhart, M.; Bennett, A. M. A.; Hill, C.; Carolina, N. *J. Am. Chem. Soc.* **1998**, *120*, 4049.

⁵ Bowman, A. C.; Milsmann, C.; Bill, E.; Lobkovsky, E.; Weyhermüller, T.; Wieghardt, K.; Chirik, P. J. *Inorg. Chem.* **2010**, *49*, 6110.

⁶ Obligacion, J. V.; Chirik, P. J. *J. Am. Chem. Soc.* **2013**, *135*, 19107.

⁷ Ishida K.; Ishiyama, T.; Miyaura, N. *Tetrahedron* **2001**, *57*, 9813.

⁸ Kleeberg, C.; Dang, L.; Lin, Z.; Marder, T. Angew. Chem. **2009**, *121*, 5454.

⁹ Usta, H.; Lu, G.; Facchetti, A.; Marks, T. J. J. Am. Chem. Soc. **2006**, 128, 9034.

¹⁰ Mertins, K.; Zapf, A.; Beller, M. J. Mol. Catal. 2004, 207, 21.

¹¹ Murata, M.; Oyama, T.; Watanabe, S.; Masuda, Y. *J. Org. Chem.* **2000**, *65*, 164.

¹² Chow, W. K.; Yuen, O. Y.; So, C. M.; Wong, W. T.; Kwong F. Y. *J. Org. Chem.* **2012**, *77*, 3543.

¹³ Harrisson, P.; Morris, J.; Marder, T. B.; Steel, P. G. *Org. Lett.* **2009**, *11*, 3586.

¹⁴ Ishiyama, T.; Takagi, J.; Ishida, K.; Miyaura, N.; Anastasi, N. R.; Hartwig, J. F. *J. Am. Chem. Soc.* **2002**, *124*, 390.

¹⁵ Qiu, D.; Jin, L.; Zheng, Z.; Meng, H.; Mo, F.; Wang, X.; Zhang, Y.; Wang, J. *J. Org. Chem.* **2013**, *78*, 1923.

¹⁶ Zhu, C.; Yamane, M. *Org. Lett.* **2012**, *14*, 4560.

¹⁷ Mo, F.; Jiang, Y.; Qui, D.; Zhang, Y.; Wang, J. Angew. Chem. Int. Ed. **2010**, 49, 1846.

¹⁸ Billingsley, K. L.; Buchwald, S. L. *J. Org. Chem.* **2008**, *73*, 5589.

¹⁹ Wang, L.; Li, J.; Cui, X.; Wu, Y.; Zhu, Z.; Wu, Y. *Adv. Synth. Catal.* **2010**, *352*, 2002.

²⁰ Qiu, Di; Jin, Liang; Zheng, Zhitong; Meng, He; Mo, Fanyang; Wang, Xi; Zhang, Yan; Wang, Jianbo *J. Org. Chem.* **2013**, *78*, 1923.