Supplementary Information for

Palladium Catalyzed Stille-Type Coupling of N-Acyl Iminium Ions with Distannanes: A Multicomponent Synthesis of α Amidostannanes

Boran Xu and Bruce A. Arndtsen*
Department of Chemistry, McGill University, 801 Sherbrooke St. W. Montreal, Quebec,Canada H3A 2K6
Table of Contents
I. General Procedures S2
II. Typical Synthesis and Characterization of α-Amidostannanes S2-S7
III. Synthesis of α-Amidostannane 1a with $\left[\mathrm{SnMe}_{3}\right]_{2}$ S7-S8
IV. Synthesis of α-Amidostannane 1a with $\mathrm{Bu}_{3} \mathrm{SnSiMe}_{3}$ S8
V. Reaction of Complex A with $\left(\mathrm{SnBu}_{3}\right)_{2}$ S8-S9
VI. Synthesis and Characterization of α-Amido Acids S9-S10
VII. References S10
VIII. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra S10-S32

[^0]
I. General Procedures

All manipulations were performed under inert atmosphere inside a nitrogen glovebox unless otherwise noted. All solvents were dried by passage through activated alumina and stored in a nitrogen glovebox. All common reagents were purchased from Aldrich and used as received. $\mathrm{Pd}_{2} \mathrm{dba}_{3} \mathrm{CHCl}_{3}$ was synthesized from a literature procedure. ${ }^{1}$ Imines were synthesized by the condensation of the appropriate amine and aldehyde in presence of MgSO_{4} according a literature protocol. ${ }^{2}$ Complex A was synthesized according to a literature procedure. ${ }^{3}$ NMR characterization was performed at $300 \mathrm{MHz}, 400 \mathrm{MHz}$ and 500 MHz for ${ }^{1} \mathrm{H}$ NMR and 75 MHz and 126 MHz for ${ }^{13} \mathrm{C}$ NMR. Chemical shifts are reported in parts per million relative to the residual solvent signal. Mass spectra were recorded on a high-resolution electrospray ionization quadrupole spectrometer.

II. Typical Synthesis of α-Amidostannanes

$\left(4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{HC}=\mathrm{NCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}(41.9 \mathrm{mg}, 0.2 \mathrm{mmol}, 1 \mathrm{eq})$, benzoyl chloride ($42.2 \mathrm{mg}, 0.3$ $\mathrm{mmol}, 1.5 \mathrm{eq})$ and $\mathrm{Pd}_{2} \mathrm{dba}_{3} \mathrm{CHCl}_{3}(3.1 \mathrm{mg}, 0.003 \mathrm{mmol}, 1.5 \mathrm{~mol} \%$) were combined in 2 mL of THF. The resulting mixture was stirred for 15 min until the disappearance of the initial purple color. $\left(\mathrm{SnBu}_{3}\right)_{2}(174.0 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5 \mathrm{eq})$ was added dropwise as a solution in 2 mL of THF. The resulting solution was stirred at room temperature for 16 h inside the glovebox. The mixture was then directly charged on a column packed with 10% wt. $\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{SiO}_{2}$. The product was isolated by eluting with hexanes: ethyl acetate (gradient $100: 1$ to $20: 1$) as a clear oil $(74 \%, 89.5 \mathrm{mg}, 0.14 \mathrm{mmol})$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.50-7.47 (m, 2H), 7.40-7.38 (m, $3 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, 7.09 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.95-6.93(\mathrm{~m}, 2 \mathrm{H}), 4.79(\mathrm{~d}, J=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.12(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.74\left(\mathrm{~s}, J_{S n-H}=54.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.31(\mathrm{~s}$, $3 \mathrm{H}), 1.39-1.24(\mathrm{~m}, 7 \mathrm{H}), 1.24-1.16(\mathrm{~m}, 6 \mathrm{H}), 0.92-0.73(\mathrm{~m}, 16 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz ; CDCl_{3}): $\delta 172.9,139.7,136.6,136.3,134.1,129.5,129.2,128.7,128.6,127.6,127.3$, $126.4,125.1,54.0,49.4,29.0\left(J_{S n-C}=18.5 \mathrm{~Hz}\right), 27.5\left(J_{S n-C}=61.4 \mathrm{~Hz}\right), 21.0,13.7,12.2$
$\left(J_{S n-C}=343.9 \mathrm{~Hz}\right)$ HRMS $(\mathrm{ESI}): \mathrm{C}_{34} \mathrm{H}_{47} \mathrm{NNaOSn}(\mathrm{M}+\mathrm{Na})^{+}$calc: 628.2579 observed: 628.2579

Yield $76 \%{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.47-7.44 (m, 2H), 7.42$7.40(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.98-6.96(\mathrm{~m}, 2 \mathrm{H}), 5.75-5.71$ $(\mathrm{m}, 1 \mathrm{H}), 5.23(\mathrm{dd}, J=10.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{dd}, J=17.1,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.05-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.92\left(\mathrm{~s}, J_{S n-H}=53.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.63(\mathrm{dd}, J=16.2,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.32(\mathrm{~s}, 3 \mathrm{H}), 1.47-1.35(\mathrm{~m}, 6 \mathrm{H}), 1.25(\mathrm{~m}, 7 \mathrm{H}), 0.93-0.79(\mathrm{~m}, 16 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 172.8,139.9,136.3,134.0,133.3,129.5,129.1_{2}, 129.0_{9}, 128.5,126.3,125.0$, $117.9,53.5,50.1\left(J_{S n-C}=304.8 \mathrm{~Hz}\right), 29.1\left(J_{S n-C}=18.6 \mathrm{~Hz}\right), 27.5\left(J_{S n-C}=60.6 \mathrm{~Hz}\right), 20.9$, 13.8, $12.3\left(J_{S n-C}=342.7 \mathrm{~Hz}\right)$ HRMS $(\mathrm{ESI}): \mathrm{C}_{30} \mathrm{H}_{45} \mathrm{NNaOSn}(\mathrm{M}+\mathrm{Na})^{+}$calc: 578.2421 observed: 578.2429

Yield $67 \%{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.44-7.42 (m, 5H), 7.08 $(\mathrm{d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.89\left(\mathrm{~s}, J_{S n-H}=53.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 3.37(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.50-1.36(\mathrm{~m}, 6 \mathrm{H})$, $1.29(\mathrm{~m}, 7 \mathrm{H}), 1.09(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.96-0.77(\mathrm{~m}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.4,140.5,136.9,133.8,129.1_{8}, 129.0_{8}, 128.5,126.1,124.7$, $50.4\left(J_{S n-C}=306.7 \mathrm{~Hz}\right), 46.1,29.2\left(J_{S n-C}=18.9 \mathrm{~Hz}\right), 27.6\left(J_{S n-C}=60.1 \mathrm{~Hz}\right), 20.9,14.1$, 13.8, $12.4\left(J_{S n-C}=351.8 \mathrm{~Hz}\right) .{ }^{119} \mathrm{Sn}$ NMR $\left(\mathrm{CDCl}_{3}, 186 \mathrm{MHz}\right): \delta-35.2 \mathrm{ppm}$. HRMS (ESI): $\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{NNaOSn}(\mathrm{M}+\mathrm{Na})^{+}$calc: 566.2421 observed: 566.2435

Yield 65\% ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.46(\mathrm{~d}, J=5.0 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.40(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.03(\mathrm{~m}, 3 \mathrm{H}), 6.93(\mathrm{~d}, J=7.9$
$\mathrm{Hz}, 2 \mathrm{H}), 5.86(\mathrm{~m}, 1 \mathrm{H}), 5.28(\mathrm{~m}, 2 \mathrm{H}), 4.42(\mathrm{~m}, 1 \mathrm{H}), 3.94\left(\mathrm{~s}, J_{S n-H}=\right.$ $52.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.44-1.29(\mathrm{~m}, 7 \mathrm{H}), 1.29-$ $1.18(\mathrm{~m}, 7 \mathrm{H}), 0.94-0.70(\mathrm{~m}, 16 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.8,139.7,137.3$, $134.0,133.4,129.1,128.7,128.3,126.8,125.0,117.7,53.8\left(J_{S n-C}=18.9 \mathrm{~Hz}\right), 52.0\left(J_{S n-C}\right.$ $=295.8 \mathrm{~Hz}), 29.0\left(J_{S n-C}=18.6 \mathrm{~Hz}\right), 27.5\left(J_{S n-C}=60.6 \mathrm{~Hz}\right), 20.9,13.7$, $12.2\left(J_{S n-C}=341.3\right.$ $\mathrm{Hz})$ HRMS (ESI): $\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{NNaOSSn}(\mathrm{M}+\mathrm{Na})^{+}$calc: 584.1983 observed: 584.1996

Yield $54 \%{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): δ 7.48-7.46 (m, 2 H), 7.37-7.29 (m, 3H), 7.16 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.08 (d, J
$=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.94-6.88(\mathrm{~m}, 4 \mathrm{H}), 4.88(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.16(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.76\left(\mathrm{~s}, J_{S n-H}=53.0\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.38-1.28(\mathrm{~m}, 6 \mathrm{H}), 1.27-1.17(\mathrm{~m}, 7 \mathrm{H}), 0.87-0.74(\mathrm{~m}, 15 \mathrm{H}) .13-\mathrm{C}$ NMR (126 MHz; CDCl_{3}): $\delta 172.8,160.6,139.9,136.9,134.0,129.1,128.7,128.39$, $128.3_{4}, 127.5,127.1,125.1,113.9,55.3,54.1\left(J_{S n-C}=19.3 \mathrm{~Hz}\right), 50.0\left(J_{S n-C}=309.1 \mathrm{~Hz}\right)$, $29.0\left(J_{S n-C}=18.4 \mathrm{~Hz}\right), 27.5\left(J_{S n-C}=61.2 \mathrm{~Hz}\right), 20.9,13.7,12.3\left(J_{S n-C}=343.4 \mathrm{~Hz}\right)$ HRMS (ESI): $\mathrm{C}_{35} \mathrm{H}_{49} \mathrm{NNaO}_{2} \mathrm{Sn}(\mathrm{M}+\mathrm{Na})^{+}$calc: 658.2685 observed: 658.2672

Yield $67 \%{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52(\mathrm{~m}, 1 \mathrm{H}), 7.05-$ $7.01(\mathrm{~m}, 3 \mathrm{H}), 6.93-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.49(\mathrm{~m}, 1 \mathrm{H}), 5.92(\mathrm{~m}, J=3.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.29-5.21(\mathrm{~m}, 2 \mathrm{H}), 4.56-4.52(\mathrm{~m}, 1 \mathrm{H}), 3.91\left(\mathrm{~s}, J_{S n-H}=\right.$ $53.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73$ (m, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.41-1.28(\mathrm{~m}$, $7 \mathrm{H}), 1.22(\mathrm{~m}, 7 \mathrm{H}), 0.94-0.71(\mathrm{~m}, 16 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.5,147.3$, $144.1,139.7,134.0,133.7,129.0,125.1,117.6,115.5,111.1,52.8,52.0,29.0\left(J_{S n-C}=\right.$ $18.8 \mathrm{~Hz}), 27.4\left(J_{S n-C}=58.0 \mathrm{~Hz}\right), 20.9,13.7,12.1\left(J_{S n-C}=366.7 \mathrm{~Hz}\right)$ HRMS (ESI): $\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{NNaO}_{2} \mathrm{Sn}(\mathrm{M}+\mathrm{Na})^{+}$calc: 568.2213 observed: 568.2209

Yield $64 \%{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.29(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $6.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.70(\mathrm{~m}, 1 \mathrm{H}), 5.28-5.14(\mathrm{~m}, 2 \mathrm{H})$, 3.92-3.85 (m, 2H), 3.66 (m, 1H), 2.32 (s, 3H), 1.45-1.34 (m, $7 \mathrm{H}), 1.31-1.21(\mathrm{~m}, 8 \mathrm{H}), 0.94-0.79(\mathrm{~m}, 17 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.6$, $148.3,142.5,139.4,134.4,132.5,129.3,127.4,125.0,123.9,118.4,53.4,50.5,29.0\left(J_{S n-}\right.$ $\left.c_{c}=18.3 \mathrm{~Hz}\right), 27.5\left(J_{S n-C}=61.7 \mathrm{~Hz}\right), 20.9,13.7,12.2\left(J_{S n-C}=344.2 \mathrm{~Hz}\right)$ HRMS $(\mathrm{ESI}):$ $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{Sn}(\mathrm{M}+\mathrm{Na})^{+}$calc: 623.2272 observed: 623.2246

Yield $47 \%{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52-7.50(\mathrm{~m}, 2 \mathrm{H})$, 7.41-7.39 (m, 3H), 7.27-7.24 (m, 3H), 7.09-7.06 (m, 1H), 7.04$7.00(\mathrm{~m}, 3 \mathrm{H}), 6.45(\mathrm{dd}, J=8.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=2.4$
$\mathrm{Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=21.6 \mathrm{~Hz}, 4 \mathrm{H})$, $3.65(\mathrm{~s}, 3 \mathrm{H}), 1.36-1.25(\mathrm{~m}, 7 \mathrm{H}), 1.20(\mathrm{~m}, 7 \mathrm{H}), 0.84-0.71(\mathrm{~m}, 16 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz ; CDCl_{3} : $\delta 172.8,160.6,158.5,143.4,136.7,129.8,129.3,128.30,128.29,126.7,124.9$, $124.3,116.9,103.7,98.4,55.3,54.8,49.8,49.5,28.9\left(J_{S n-C}=18.3 \mathrm{~Hz}\right) 27.5\left(J_{S n-C}=61.4\right.$ $\mathrm{Hz}), 13.7,12.1\left(J_{S n-C}=343.0 \mathrm{~Hz}\right)$ HRMS (ESI): $\mathrm{C}_{35} \mathrm{H}_{49} \mathrm{NNaO}_{3} \mathrm{Sn}(\mathrm{M}+\mathrm{Na})^{+}$calc: 674.2634 observed: 674.2603

Yield $60 \%{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.43-7.40 (m, 5H), 7.05-7.02 (m, 2H), 6.85-6.82 (m, 2H), $3.84\left(\mathrm{~s}, J_{S n-H}=53.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{dd}, J=14.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{dd}, J=$ $14.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.48-1.38(\mathrm{~m}, 7 \mathrm{H}), 1.27(\mathrm{~m}, 7 \mathrm{H}), 1.08(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.92-0.79(\mathrm{~m}, 16 \mathrm{H}) .13-\mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.4,156.9,136.9$, $135.9,129.2,128.5,126.09,125.92,113.9,55.3,49.9\left(J_{S n-C}=314.6 \mathrm{~Hz}\right), 46.0\left(J_{S n-C}=\right.$ $18.4 \mathrm{~Hz}), 29.1\left(J_{S n-C}=18.9 \mathrm{~Hz}\right), 27.5\left(J_{S n-C}=58.8 \mathrm{~Hz}\right), 14.1,12.3\left(J_{S n-C}=341.2 \mathrm{~Hz}\right)$ HRMS (ESI): $\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{NNaO}_{2} \mathrm{Sn}(\mathrm{M}+\mathrm{Na})^{+}$calc: 582.2370 observed: 582.2342

Yield $46 \%{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.46-7.37 (m, 7H), 6.95-6.93 (m, 2H), 5.79-5.66 (m, 1H), $5.23(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.14(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.89\left(\mathrm{~s}, J_{S n-H}=52.0\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=16.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.46-1.33(\mathrm{~m}, 6 \mathrm{H}), 1.29-$ $1.21(\mathrm{~m}, 6 \mathrm{H}), 0.94-0.78(\mathrm{~m}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.8,142.5,135.9$, $133.1,131.4,129.7,128.6,126.6,126.4,118.2,117.8,53.8,50.3,29.0\left(J_{S n-C}=18.8 \mathrm{~Hz}\right)$, $27.5\left(J_{S n-C}=60.2 \mathrm{~Hz}\right), 13.7,12.4\left(J_{S n-C}=344.2 \mathrm{~Hz}\right)$ HRMS $(\mathrm{ESI}): \mathrm{C}_{29} \mathrm{H}_{42} \mathrm{BrNNaSn}$ $(\mathrm{M}+\mathrm{Na})^{+}$calc: 642.1359 observed: 642.1349

Yield $64 \%{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.44-7.41 (m, 5H), 7.26-7.19 (m, 2H), 7.03-7.00 (m, 2H), $3.87\left(\mathrm{~s}, J_{S n-H}=53.5 \mathrm{~Hz}\right.$,
$1 \mathrm{H}), 3.37(\mathrm{dd}, J=14.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=14.3,7.1 \mathrm{~Hz}$,
$1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.47-1.36(\mathrm{~m}, 6 \mathrm{H}), 1.30-1.22(\mathrm{~m}, 6 \mathrm{H}), 1.07(\mathrm{~m}$, 3H), 0.92-0.79 (m, 15H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 172.4,141.3,136.7,133.4$, $129.3,128.6,127.7_{2}, 127.6_{8}, 127.6_{5}, 126.1,125.2_{5}, 125.1_{9}, 50.6\left(J_{S n-C}=296.1 \mathrm{~Hz}\right), 46.3$
$\left(J_{S n-C}=18.0 \mathrm{~Hz}\right), 29.0\left(J_{S n-C}=19.0 \mathrm{~Hz}\right), 27.5\left(J_{S n-C}=58.9 \mathrm{~Hz}\right), 16.7,14.1,13.7,12.4\left(J_{S n-}\right.$ $\left.{ }_{c}=341.7 \mathrm{~Hz}\right)$ HRMS (ESI): $\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{NNaOSSn}(\mathrm{M}+\mathrm{Na})^{+}$calc: 598.2140 observed: 598.2144

Yield $77 \%{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.75-7.73(\mathrm{~m}, 1 \mathrm{H})$, 7.69 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 3 \mathrm{H})$, 7.37-7.34 (m, 1H), 7.28-7.24 (m, 2H), 7.09 (dd, $J=7.9,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.79-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.26-5.16(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{~m}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.03\left(\mathrm{~s}, J_{S n-H}=54.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.88(\mathrm{~d}, J=3.7 \mathrm{~Hz}$, $\left.J_{S n-H}=53.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.70(\mathrm{~s}, 1 \mathrm{H}), 1.48-1.37(\mathrm{~m}, 6 \mathrm{H}), 1.25(\mathrm{~m}, 6 \mathrm{H}), 0.94-0.79(\mathrm{~m}, 15 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.8,143.8,143.0,142.2,141.8,138.5,136.3,133.3$, $129.6,128.5,126.6,126.4,126.0,124.9,123.8,121.6,119.8,119.4,118.0,53.7\left(J_{S n-C}=\right.$ $19.0 \mathrm{~Hz}), 50.9\left(J_{S n-C}=297.9 \mathrm{~Hz}\right), 29.1\left(J_{S n-C}=18.6 \mathrm{~Hz}\right), 27.5\left(J_{S n-C}=60.9 \mathrm{~Hz}\right), 13.7$, $12.4\left(J_{S n-C}=342.5 \mathrm{~Hz}\right)$ HRMS (ESI): $\mathrm{C}_{36} \mathrm{H}_{47} \mathrm{NNaOSn}(\mathrm{M}+\mathrm{Na})^{+}$calc: 652.2579 observed: 652.2584

Yield $75 \%{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): δ 7.49-7.47 (m, 2H), 7.41-7.28 (m, 6H), 7.15-7.13 (m, 2H), $6.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.62(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~m}, J=0.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{q}, J=1.4$ $\mathrm{Hz}, 2 \mathrm{H}), 4.78(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.67$ $\left(\mathrm{s}, J_{S n-H}=53.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.40-1.26(\mathrm{~m}, 7 \mathrm{H}), 1.25-1.17(\mathrm{~m}, 6 \mathrm{H}), 0.88-0.76(\mathrm{~m}, 16 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz; CDCl_{3}): $\delta 172.9,147.8,144.9$, 137.1, 136.5, 136.1, 129.6, 128.74, $128.6_{5}, 127.7,127.3,126.4,118.1,108.2,106.2,100.7,53.9\left(J_{S n-C}=19.2 \mathrm{~Hz}\right), 49.5\left(J_{S n-C}\right.$ $=305.3 \mathrm{~Hz}), 29.0\left(J_{S n-C}=18.4 \mathrm{~Hz}\right), 27.5\left(J_{S n-C}=61.1 \mathrm{~Hz}\right), 13.8,12.2\left(J_{S n-C}=344.0 \mathrm{~Hz}\right)$ HRMS (ESI): $\mathrm{C}_{34} \mathrm{H}_{45} \mathrm{NNaO}_{3} \mathrm{Sn}(\mathrm{M}+\mathrm{Na})^{+}$calc: 658.2321 observed: 658.2330

Yield $59 \%{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): δ 7.43-7.41 (m, 5H), 7.05$7.02(\mathrm{~m}, 2 \mathrm{H}), 6.98-6.95(\mathrm{~m}, 2 \mathrm{H}), 3.87\left(\mathrm{~s}, J_{S n-H}=53.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.37$ (dd, $J=14.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.23$ (dd, $J=14.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.47-1.36$ $(\mathrm{m}, 6 \mathrm{H}), 1.26(\mathrm{dq}, J=14.7,7.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.08(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$,
$0.94-0.78(\mathrm{~m}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 172.4,161.4,159.4,139.5\left(\mathrm{~d}, J_{C-F}=\right.$ $2.9 \mathrm{~Hz}), 136.6,129.3,128.6,126.1,125.9\left(\mathrm{~d}, J_{C-F}=7.7 \mathrm{~Hz}\right), 115.1\left(\mathrm{~d}, J_{C-F}=21.2 \mathrm{~Hz}\right)$, $50.2\left(J_{S n-C}=298.5 \mathrm{~Hz}\right), 46.2\left(J_{S n-C}=17.9 \mathrm{~Hz}\right), 29.0\left(J_{S n-C}=18.9 \mathrm{~Hz}\right), 27.5\left(J_{S n-C}=59.2\right.$ $\mathrm{Hz}), 14.1,13.7,12.3\left(J_{S n-C}=335.0 \mathrm{~Hz}\right)$ HRMS $(\mathrm{ESI}): \mathrm{C}_{28} \mathrm{H}_{42} \mathrm{FNNaOSn}(\mathrm{M}+\mathrm{Na})^{+}$calc: 570.2170 observed: 570.2182

Yield $64 \%{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.36-7.24(\mathrm{~m}, 4 \mathrm{H})$, 7.24-7.08 (m, 6H), $6.83(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 4.16\left(\mathrm{~s}, J_{S n-H}=53.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.72-3.66(\mathrm{~m}, 3 \mathrm{H}), 1.55-1.36$ $(\mathrm{m}, 6 \mathrm{H}), 1.37-1.21(\mathrm{~m}, 6 \mathrm{H}), 1.04-0.79(\mathrm{~m}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) (broad due to amide rotamers): $\delta 171.1,157.8,143.8,138.8,136.2,129.7,128.9,128.2,128.1_{2}$, $128.0_{6}, 127.4_{6}, 127.4_{0}, 126.9,124.8,124.0,114.3,113.8,58.7,55.2,29.1,27.6,13.8,12.5$ HRMS (ESI): $\mathrm{C}_{33} \mathrm{H}_{45} \mathrm{NNaO}_{2} \mathrm{Sn}(\mathrm{M}+\mathrm{Na})^{+}$calc: 630.2371 observed: 630.2372

III. Synthesis of α-Amidostannane with $\left(\mathrm{SnMe}_{3}\right)_{2}$ (Table 1, entry 10)

$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{HC}=\mathrm{NCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}(58.6 \mathrm{mg}, 0.3 \mathrm{mmol}, 1 \mathrm{eq})$, benzoyl chloride $(71.7 \mathrm{mg}, 0.45$ $\mathrm{mmol}, 1.5 \mathrm{eq}), \mathrm{Pd}_{2} \mathrm{dba}_{3} \mathrm{CHCl}_{3}(4.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 1.5 \mathrm{~mol} \%)$ and benzyl benzoate (ca. $56.0 \mathrm{mg}, 0.25 \mathrm{mmol}$) were combined in 3 mL of THF. The resulting mixture was stirred for 15 min until the disappearance of the initial purple color. A small aliquot of this mixture was taken. $\left(\mathrm{SnMe}_{3}\right)_{2}(147.4 \mathrm{mg}, 0.45 \mathrm{mmol}, 1.5 \mathrm{eq})$ was added dropwise as a solution in 2 mL of THF. The resulting solution was stirred at room temperature for 1 h inside the glovebox. An aliquot of this solution was taken and the yield assessed by ${ }^{1} \mathrm{H}$ NMR. The product can be purified by charging the mixture on a column packed with 10% wt. $\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{SiO}_{2}$ and eluting with hexanes: ethyl acetate (gradient 100:1 to 20:1).

Yield 33% (by ${ }^{1} \mathrm{H}$ NMR) ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.55-7.53$ (m, 2H), 7.44-7.35 (m, 5H), 7.31 (dd, $J=17.6,9.9 \mathrm{~Hz}, 3 \mathrm{H}$), 7.16 (dt, $J=8.2,4.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.07-7.06(\mathrm{~m}, 2 \mathrm{H}), 4.88(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.21(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72\left(\mathrm{~s}, J_{S n-H}=59.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 0.06\left(\mathrm{~s}, J_{S n-H}\right.$ $=53.5 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.2,142.3,136.7,135.8,129.7,128.9$, $128.6_{7}, 128.5_{9}, 127.7,126.9,126.5,124.9_{0}, 124.8_{8}, 54.0\left(J_{S n-C}=23.1 \mathrm{~Hz}\right), 51.6\left(J_{S n-C}=\right.$
$359.5 \mathrm{~Hz}),-6.4\left(J_{S n-C}=361.9 \mathrm{~Hz}\right)$ HRMS $(\mathrm{ESI}): \mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NOSn}(\mathrm{M}+1)^{+}$calc: 466.1192 observed: 466.1183

IV. Synthesis of α-Amidostannane and Silane with $\mathrm{Bu}_{3} \mathrm{Sn}^{2}$ SiMe $_{3}$ (Table 1, entry 11)

 $\left(4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{HC}=\mathrm{NCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}(62.8 \mathrm{mg}, 0.3 \mathrm{mmol}, 1 \mathrm{eq})$, benzoyl chloride (71.7 mg , $0.45 \mathrm{mmol}, 1.5 \mathrm{eq}), \mathrm{Pd}_{2} \mathrm{dba}_{3} \mathrm{CHCl}_{3}(4.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 1.5 \mathrm{~mol} \%)$ and benzyl benzoate (ca. $56.0 \mathrm{mg}, 0.25 \mathrm{mmol}$) were combined in 3 mL of THF. The resulting mixture was stirred for 15 min until the disappearance of the initial purple color. A small aliquot of this mixture was taken. $\mathrm{Bu}_{3} \mathrm{Sn}^{2} \mathrm{SiMe}_{3}(147.4 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.7 \mathrm{eq})$ was added dropwise as a solution in 2 mL of THF. The resulting solution was stirred at room temperature for 16 h inside the glovebox. An aliquot of this solution was taken and the yield assessed by ${ }^{1} \mathrm{H}$ NMR. The products can be purified by charging the mixture on a column packed with 10% wt. $\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{SiO}_{2}$ and eluting with hexanes: ethyl acetate (gradient $100: 1$ to $10: 1$), providing the amidostannane (1a) and amidosilane products.

Yield 8% (by ${ }^{1} \mathrm{H}$ NMR) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.49$ (dd, $J=6.6,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.32(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.18(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{q}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 4.70(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 0.07$ (s, 9H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.7,137.3,136.9,136.5,135.6,129.5,129.1$, $128.8,128.6,127.8,127.6,127.1,126.4,55.8,53.6,27.9,26.9,21.1,17.5,13.6,0.0$ HRMS (ESI): $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{NNaOSi}(\mathrm{M}+\mathrm{Na})^{+}$calc: 410.1911 observed: 410.1915

V. Reaction of Complex A with $\left(\mathrm{SnBu}_{3}\right)_{2}$

Complex $\mathbf{A}\left[\mathrm{Pd}(\mathrm{Cl})\left(\eta^{2}-\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{COC}_{6} \mathrm{H}_{5}\right)\right)\right]_{2}{ }^{3}(4.2 \mathrm{mg}, 0.005 \mathrm{mmol})$ and benzyl benzoate standard (ca. $12.0 \mathrm{mg}, 0.05 \mathrm{mmol}$) were dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ in a J-Young NMR tube. An initial NMR was taken of this mixture. $\left(\mathrm{SnBu}_{3}\right)_{2}(34.8 \mathrm{mg}, 0.06$ mmol) was dissolved in minimal $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ and added dropwise to the NMR tube, eliciting the solution to immediately turn purple. The reaction was allowed to stand for 1 h at room temperature and the yield (49%) of amidostannane was determined by ${ }^{1} \mathrm{H}$ NMR analysis.

VI. Typical Synthesis of α-Amido Acid Derivatives

In a flame dried 25 mL Schlenk flask, under argon, the α-amidostannane from Table 2, entry 3 ($66.8 \mathrm{mg}, 0.123 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in 2 mL of dry THF. The flask was cooled to $-78^{\circ} \mathrm{C}$ and n-butyllithium ($1.5 \mathrm{M}, 85.0 \mu \mathrm{~L}, 0.128 \mathrm{mmol}, 1.05 \mathrm{eq}$) was added dropwise, during which the reaction solution turned purple. The solution was stirred for 15 min at $-78^{\circ} \mathrm{C}$. At this point, the flow of argon gas was stopped and CO_{2} (gas) was purged into the flask until the disappearance of the purple color (5 min). The flask was then replaced under an argon atmosphere and allowed to warm to ambient temperature. $\mathrm{NaHSO}_{4}(10 \% \mathrm{wt} ., 5 \mathrm{~mL})$ was then slowly added to quench the reaction. The organic layer was extracted with EtOAc (3 x 10 mL) and the combined organic fractions were dried with MgSO_{4}, filtered and concentrated to give an off-white residue. The residue was dissolved in a minimal amount of dichloromethane $(0.5 \mathrm{~mL})$ and pentane $(20 \mathrm{~mL})$ was carefully layered on top of the solution. This mixture was allowed to stand in a $-10^{\circ} \mathrm{C}$ freezer for 24 h , eliciting the formation of a white precipitate. The pentane was decanted and the precipitate was further washed with pentane to afford amino-acid derivative ($24.8 \mathrm{mg}, 0.079 \mathrm{mmol}, 65 \%$) as a white solid.

Yield $69 \%{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.43-$ $7.35(\mathrm{~m}, 5 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $2 \mathrm{H}), 5.35-5.34(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.82(\mathrm{dd} J=16.1,1 \mathrm{H}), 4.34(\mathrm{~d}, J=16.5 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) (broad due to amide rotamers): $\delta 173.6,172.8,136.2$, 135.1, 133.3, 130.4, 129.4, 128.9, 128.7, 128.6 (2 carbons), 127.5, 127.0 $, 126.9_{7}, 63.9$, 53.2 HRMS (ESI): $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~N}(\mathrm{M}+1)^{+}$calc: 346.14377 observed: 346.14324

Yield $65 \%{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48-7.39(\mathrm{~m}, 5 \mathrm{H})$, 7.34-7.30 (m, 1H), $7.19(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 3.43-3.29$ (m, 2H), $2.36(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz ; CDCl_{3}) (broad due to amide rotamers): $\delta 173.8,173.5,138.6,135.7,130.7,129.9,129.5$, 128.9, 128.5, 126.6, 63.1, 43.8, 21.2, 14.8 HRMS (ESI): $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~N}(\mathrm{M}+1)^{+}$calc: 298.14377 observed: 298.14328

Yield $69 \%{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.58-7.51(\mathrm{~m}, 2 \mathrm{H})$, 7.47-7.33 (m, 3H), 7.11 (dd, $J=7.3,3.7 \mathrm{~Hz}, 2 \mathrm{H}$), 6.97-6.92 (m, $1 \mathrm{H}), 6.77-6.70(\mathrm{~m}, 2 \mathrm{H}), 5.95(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H})$, $4.83(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) (broad due to amide rotamers): $\delta 173.6,173.4,147.97,147.88,136.3$, $135.0,130.3,128.8,128.6,127.5,126.99,126.93,123.7,110.0,108.1,101.3,77.2,63.2$, 52.7 HRMS (ESI): $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{~N}(\mathrm{M}+1)^{+}$calc: 390.13360 observed: 390.13297

Yield $82 \%{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.93$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.56-3.40(\mathrm{~m}$, $2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) (broad due to amide rotamers): $\delta 173.9,172.8,161.4,138.5,130.8,129.5$, 129.1, 128.0, 127.3, 113.9, 64.9, 55.4, 45.3, 21.1, 14.5 HRMS (ESI): $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~N}(\mathrm{M}+1)^{+}$ calc: 328.15433 observed: 328.15364

Yield $79 \%{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.60-7.58 (m, $2 H), 7.48-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.29(\mathrm{~m}$, $3 \mathrm{H}), 7.07(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{dd}, J=8.3,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.35(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=15.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) (broad due to amide rotamers): $\delta 174.6,171.5,161.1,158.4,135.0,134.0,130.8,130.2,128.5_{1}, 128.4_{6}$, 128.3, 128.0, 127.6, 104.1, 98.5, 66.0, 55.3, 55.0, 51.9 HRMS (ESI): $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{~N}(\mathrm{M}+1)^{+}$ calc: 406.16490 observed: 406.16421

VII. References

1. Zalesskiy, S. S.; Ananikov, V. P. Organometallics 2012, 31, 2302-2309.
2. Layer, R. W. Chem. Rev. 1963, 63, 489-510.
3. Dhawan, R.; Dghaym, R. D.; Arndtsen, B .A. J. Am. Chem. Soc. 2003, 125, 14741475

$\prod^{\text {ive }}$

atin

$$
x_{0}^{\infty}
$$

[^0]: *Email: bruce.arndtsen@mcgill.ca

