Supporting Information for:

Electrochemistry, Chemical Reactivity, and Timeresolved IR Spectroscopy of Donor-Acceptor Systems [(Q^x)Pt(pap^y)] (Q = substituted *o*-Quinone or *o*-Iminoquinone, pap = Phenylazopyridine)

Naina Deibel,[±] David Schweinfurth,[∫] Stephan Hohloch, [∫] Milan Delor,[#] Igor V. Sazanovich,[#]

Michael Towrie,[£] Julia A. Weinstein,^{*, #} and Biprajit Sarkar^{*, [}

	[1] BF ₄	[2] PF ₆
Chemical formula	$C_{31}H_{34}BF_4N_4OPt$	C57H55Cl2F6NOP3Pt
$M_{ m r}$	760.52	1242.92
Crystal system	monoclinic	triclinic
Space group	Cc	<i>P</i> -1
<i>a</i> (Å)	42.720(9)	13.037(2)
<i>b</i> (Å)	5.940(1)	14.066(2)
<i>c</i> (Å)	24.200(5)	15.397(3)
α (°)	90	78.583(7)
β (°)	114.00(3)	82.987(9)
γ (°)	90	70.899(7)
$V(Å^3)$	5610.0(2)	2610.1(7)
Ζ	8	2
$D_{\rm calc} ({\rm g/cm}^3)$	1.801	1.581
Temperature (K)	100(2)	100(2)
μ (mm ⁻¹)	5.063	2.945
Crystal size (mm)	0.40 x 0.10 x 0.05	0.35 x 0.23 x 0.19
ΜοΚα	0.71073	0.71073
F(000)	3000	1246
meas./ indep. refl.	22637/ 8236	164155 / 15978
obsvd. $[I > 2\sigma(I)]$	7698	14942
refl.		
R _{int}	0.0324	0.0295
$\mathbb{R}[F^2 > 2\sigma(F^2)]$	0.0283	0.0183
wR (F^2)	0.0780	0.0451
S	1.173	1.070
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	2.544, -0.918	1.409, -0.800

Table S1. Crystallographic data for $[1]BF_4$ and $[2]PF_6$.

	1^{a}	[1] BF ₄	[2]PF ₆	3 ^b
Pt - O1/Pt - O2	1.964(3)	1.976(5)	2.051(1)	1.994(4)/1.966(5)
Pt - N1	1.978(3)	1.890(9)	2.088(1)	-
01 - C1	1.329(4)	1.227(9)	1.315(2)	1.360(7)
N1 - C2/O2 - C2	1.386(5)	1.31(1)	1.355(2)	1.353(7)
C1 - C2	1.422(5)	1.40(1)	1.439(2)	1.416(8)
C2 - C3	1.407(5)	1.34(2)	1.423(2)	1.379(9)
C3 - C4	1.379(5)	1.35(1)	1.370(2)	1.395(8)
C4 - C5	1.408(5)	1.40(1)	1.433(2)	1.396(9)
C5 - C6	1.388(5)	1.30(1)	1.383(2)	1.385(9)
C6 - C1	1.403(5)	1.42(1)	1.430(2)	1.405(9)
Pt - N2 / Pt - P1	1.962(3)	1.859(6)	2.2584(5)	1.983(5)
Pt - N4 / Pt - P2	1.964(3)	1.989(7)	2.2675(5)	1.966(5)
N2 - N3	1.321(4)	1.25(1)	-	1.307(7)
N3 - C21	1.362(5)	1.36(1)	_	1.390(8)

Table S2. Selected bond lengths (Å) and bond angles (°)

^{*a*}From reference S1. ^{*b*}From reference S2.

	1^{a}		[1] BF ₄		[2] PF ₆
N1 – Pt – N2	108.1 (1)	01 – Pt – N2	96.1(3)	01 – Pt – N1	79.14(5)
N2 - Pt - N4	77.6(1)	01 – Pt – N1	82.0(3)	N1 – Pt – P2	97.17(4)
N4 – Pt – O1	93.7(2)	N1 – Pt – N4	102.6(3)	P2 – Pt – P1	94.79(2)
N1 – Pt – O1	80.9(1)	N4 - Pt - N2	79.6(3)	P1 – Pt – O1	88.71(3)

^{*a*}From reference S1.

Figure S1. Normalized absorption spectra of 3 in various solvents.

Figure S2. Normalized absorption spectra of 1 in various solvents.

Figure S3. EPR spectrum of the reaction product between 1^{++} and PPh₃ in CH₂Cl₂ at 295 K recorded immediately after mixing stoichiometric amounts of the two reactants (bottom) together with simulation (top). g = 1.998, $a(^{195}Pt) = 32$ G, $a(^{14}N) = 7.6$ G, $a(^{1}H) = 4.6$ G, $a(^{31}P) = 7$ G.

Figure S4. Cyclic voltammogram of 1 in $CH_2Cl_2 / 0.1$ M Bu_4NPF_6 at -40 °C in the presence of various amounts of CH_2Cl_2 .

	λ [nm] (ε [10 ³ M ⁻¹ · cm ⁻¹])
[1] ⁰	241 (17.6); 326 (12.1); 392 (5.4); 457 (4.6); 679 sh; 897 (20.9)
[1] ⁺	238 (22.5); 305 (11.9); 338 sh; 415 (10.5); 535 (9.4); 1114 (3.8)
$[2]^{0}$	229 (83.8); 340 (12.3); 400 sh
[2] ⁺	229 (85.9); 265 sh; 334 (18.5); 421 (5.8); 469 (6.7); 908 (2.0)
$[2]^{2+}$	227 (83.8); 270 sh; 369 sh; 593 (1.8)
$[3]^{0,b}$	319(8.4), 390(9.3), 477 (2.1), 650 (1.7), 970(9.5)

Table S3. UV-vis-NIR data of the complexes in their various redox forms^a

^{*a*} From OTTLE spectroelectrochemistry in CH₂Cl₂/0.1 M Bu₄NPF₆. ^{*b*} From ref. 7b.

Figure S5. Simulated IR spectrum of the singlet ground state of 1b in CH₂Cl₂. The corresponding band assignment is given in Table S4.

Table S4 Band	assignments	corresponding to	Figure S	5 and inset
Table 54. Danu	assignments	concepting it	J riguic o	5 and moet.

Mode	Frequency	T^^2	assignments
165	1463	140	All tButyl + phenyl
			bending modes.
			Mainly * and 3

166	1466	225	Same, all involved equally
168	1478	180	Mainly 1 and 3
171	1548	88	Mainly 4, strong amplitude, coupled to 3
173	1582	66	Mainly 4, coupled to 2
177	1607	24	Mainly 2 and 3, coupled to 4
178	1609	27	Mainly 3, coupled to 1 and 2

Figure S6. Simulated IR spectrum of the triplet ground state of 1b in CH₂Cl₂. The corresponding band assignment is given in Table S5.

Mode	Frequency	T^^2	Assignments
151	1409	155	Mainly 4, affecting
			O, N and *
152	1422	219	As above, different
			bending modes
161	1452	42	Mostly * and **
162	1453	26	Mostly ** and 1
169	1477	158	Mostly 1, 2 and 3
170	1479	246	As above

Table S5. Band assignments corresponding to Figure S6 and inset.

171	1531	126	Mostly 4
172	1535	86	Mostly 3
173	1579	72	Mostly 4
176	1595	115	Mostly 3, coupled
			to 2
177	1599	61	Mostly 1, coupled
			to 3

Figure S7. Simulated IR spectrum of the singlet ground state of **3** in CH_2Cl_2 . The corresponding band assignment is given in Table S6.

Mode	Frequency	T^^2	Assignments
135	1451	18	All bending modes,
			mainly 1 and **
136	1453	10	Mainly 3, * and **
			with some 1
137	1455	17	Mostly *
143	1482	323	Mainly 1 and 2,
			some 3 and **
145	1541	113	Mainly 2 and 3
146	1546	38	Mainly 2 and 3
147	1586	107	Mainly 3
150	1608	22	Mainly 2, some 1

Table S6. Band assignments corresponding to Figure S7 and inset.

Figure S8. Simulated IR spectrum of the triplet ground state of **3** in CH_2Cl_2 . The corresponding band assignment is given in Table S7.

Mode	Frequency	T^^2	Assignments
127	1409	139	Mainly 3, affecting
			**, * and O
142	1473	291	Mainly 2 and 1
144	1487	222	As above, 1 more
			than 2
146	1534	95	Mainly 2
147	1574	267	Mostly 3
149	1594	141	Mostly 2

 Table S7. Band assignments corresponding to Figure S8 and inset.

Figure S9. Early-time TRIR spectra following 400 nm excitation for **1b** (left) and **3** (right). The 0.3 - 2 ps traces show large signals in the 1600 cm⁻¹ region associated with vibrationally excited water molecules that are hydrogen-bonded to the compounds. It should be noted that compounds **1b** and **3** are expected to have strong affinity to water, through H-bonding to one (^{0,N}Q) or two (^{0,O}Q) oxygen atoms. This leads to water molecules being associated in a "supermolecule" if even traces of moisture are present. This susceptibility to water can give rise to early-time effects in the TRIR spectra as some of the excitation energy is rapidly distributed to H-bonded water molecules which give strong signals in the fingerprint IR region investigated, and which decay with lifetimes of 0.5 - 1 ps as vibrationally excited water molecules cool down. Such an interpretation is further supported by the fact that these early-time effects have not been observed in our experiments using the same set-up and related Pt(II) compounds but without O-donor atoms – such as Pt(II) diimine acetylides^{S3} – and is more pronounced for **3** than for **1b**.

References:

(S1) Deibel, N.; Schweinfurth, D.; Hohloch, S.; Fiedler, J.; Sarkar, B., *Chem. Commun.*, **2012**, 48, 2388.

(S2) Sarkar, B.; Huebner, R.; Pattacini, R.; Hartenbach, I., Dalton Trans., 2009, 4653.

(S3) Adams, C. J.; Fey, N.; Harrison, Z. A.; Sazanovich, I. V; Towrie, M.; Weinstein, J. A. *Inorg. Chem.* **2008**, *47*, 8242.

Optimized structure (BP86) of **1** in the singlet state:

С	3.452208	4.910924	6.480684
С	2.042023	5.144147	6.460672
С	1.308189	5.151585	5.229976
С	3.384620	4.815974	3.985036
С	4.240259	4.870359	7.807830
С	5.735564	4.547174	7.588849
Η	6.252374	4.513689	8.568080
Η	6.245073	5.315466	6.974945
Η	5.882346	3.562143	7.103914
С	3.654563	3.771656	8.735264
Η	4.206835	3.747298	9.696586
Η	3.746487	2.772366	8.266022
Η	2.586322	3.947730	8.953495
С	4.155681	6.255461	8.504875
Η	4.703541	6.234624	9.468958
Η	3.109240	6.546407	8.705155
Η	4.611546	7.041794	7.871638
С	4.186789	4.661854	2.673934
С	3.293184	4.782608	1.420288
Η	3.909748	4.671092	0.506750
Η	2.791035	5.767856	1.363234
Η	2.512890	3.997327	1.390433
С	5.272670	5.768283	2.598787
Η	5.864251	5.669936	1.666072
Η	5.978775	5.714564	3.449264
Η	4.812719	6.775683	2.608521
С	4.869949	3.268397	2.647051
Η	5.457931	3.141242	1.715519
Η	4.117001	2.457288	2.690587
Η	5.561144	3.129027	3.500114
С	-0.869605	5.621093	4.251013
С	-1.551092	6.853080	4.144483

Η	-1.429979	7.593120	4.946247
С	-2.360404	7.121248	3.028717
Н	-2.885506	8.083740	2.960408
С	-2.494012	6.169956	2.001887
Η	-3.126443	6.382040	1.129418
С	-1.818026	4.940295	2.104554
Η	-1.927743	4.184012	1.315023
С	-1.014293	4.662747	3.221464
Н	-0.511006	3.691853	3.317466
С	-2.336158	6.352450	9.442480
С	-2.746543	6.847078	10.710874
Н	-3.809440	7.070488	10.857434
С	-1.800373	7.022411	11.712896
Н	-2.099754	7.401164	12.698473
С	-0.440448	6.700597	11.449836
Η	0.331416	6.818129	12.219281
С	-0.081457	6.229729	10.191720
Н	0.948881	5.973634	9.919368
С	-3.539068	5.134796	6.385879
С	-3.211495	3.971814	5.659713
Η	-2.241299	3.490706	5.835795
С	-4.141780	3.426787	4.761743
Н	-3.885827	2.513395	4.208561
С	-5.396305	4.035201	4.578950
Η	-6.121259	3.604786	3.875071
С	-5.719633	5.197004	5.306191
Η	-6.696289	5.680236	5.166650
С	-4.802215	5.745050	6.212580
Η	-5.043680	6.642250	6.793738
С	2.001848	5.027142	3.996987
Η	1.441020	5.108048	3.062098
С	4.071036	4.742900	5.233064
Η	5.150996	4.560721	5.213073
Ν	-0.056970	5.364766	5.394174

Ν	-0.998748	6.059147	9.200329
Ν	-3.214157	6.093039	8.451128
Ν	-2.614989	5.638717	7.350629
0	1.334757	5.413806	7.564514
Pt	-0.631739	5.580721	7.300658

Optimized structure (BP86) of **1** in the triplet state:

С	3.471343	4.881297	6.491196
С	2.053267	5.105009	6.488043
С	1.319577	5.143181	5.239858
С	3.405204	4.893989	3.985280
С	4.260264	4.787217	7.814744
С	5.758829	4.492555	7.578941
Н	6.276518	4.418565	8.555244
Н	6.259727	5.295670	7.003443
Н	5.918172	3.533116	7.048525
С	3.687340	3.637241	8.686871
Н	4.240746	3.573309	9.645386
Η	3.791493	2.662817	8.170223
Η	2.617675	3.790306	8.914432
С	4.159983	6.135943	8.578000
Η	4.708002	6.072379	9.539809
Η	3.111144	6.405788	8.793259
Η	4.608915	6.957218	7.985396
С	4.220069	4.820354	2.677213
С	3.333082	4.985854	1.424269
Η	3.957726	4.928258	0.511463
Η	2.815450	5.964600	1.409678
Η	2.566284	4.190378	1.350444
С	5.284804	5.949994	2.667648
Η	5.884967	5.907836	1.736522
Η	5.986466	5.868707	3.519644
Η	4.805695	6.946924	2.721406

С	4.929947	3.442546	2.589743
Η	5.529063	3.374541	1.659411
Н	4.193034	2.615837	2.583283
Η	5.616813	3.272558	3.440813
С	-0.864031	5.411041	4.233414
С	-1.671466	6.556354	4.058746
Н	-1.639358	7.347310	4.818825
С	-2.491175	6.673822	2.926324
Н	-3.111443	7.570990	2.799285
С	-2.526994	5.648567	1.963598
Н	-3.176650	5.740417	1.083077
С	-1.735163	4.499352	2.141794
Н	-1.769583	3.686063	1.403904
С	-0.907585	4.376828	3.268593
Н	-0.307754	3.470802	3.424690
С	-2.303664	6.492820	9.423163
С	-2.670111	7.047913	10.682950
Н	-3.700250	7.399531	10.809927
С	-1.728886	7.117083	11.704519
Н	-2.006770	7.540018	12.678934
С	-0.411605	6.634402	11.484503
Н	0.352940	6.669577	12.268525
С	-0.091645	6.112925	10.230384
Η	0.907605	5.737902	9.979595
С	-3.600136	5.305363	6.394572
С	-3.330863	4.143542	5.633769
Η	-2.382919	3.615169	5.793421
С	-4.286138	3.654906	4.731979
Η	-4.068449	2.744280	4.158005
С	-5.519369	4.313961	4.570831
Η	-6.264844	3.929282	3.861967
С	-5.792237	5.466738	5.334296
Η	-6.753187	5.987230	5.218690
С	-4.849944	5.959941	6.245414

Η	-5.056986	6.848356	6.852378
С	2.024934	5.079991	4.001521
Η	1.463079	5.196041	3.070843
С	4.088585	4.774851	5.239928
Η	5.171299	4.610267	5.213260
N	-0.038753	5.307627	5.385918
N	-0.998975	6.044898	9.228294
N	-3.189424	6.332579	8.423469
N	-2.651189	5.753912	7.336092
0	1.361234	5.302520	7.596797
Pt	-0.636548	5.544695	7.320722

Optimized structure (BP86) of $\mathbf{1}^+$ in the dublet state:

С	3.461915	4.908837	6.493926
С	2.047059	5.141493	6.476059
С	1.303920	5.161405	5.226814
С	3.374568	4.878978	3.975295
С	4.257044	4.832785	7.813854
С	5.749267	4.515968	7.567488
Н	6.275218	4.453601	8.539012
Н	6.255816	5.302931	6.975578
Н	5.893271	3.544123	7.056318
С	3.677154	3.705558	8.711186
Н	4.247447	3.647975	9.658785
Н	3.757140	2.720422	8.211947
Η	2.614798	3.875352	8.962084
С	4.177780	6.200115	8.546726
Н	4.742165	6.150804	9.498502
Н	3.136877	6.488013	8.779108
Н	4.624273	7.006053	7.932648
С	4.194307	4.777922	2.677290
С	3.314942	4.924901	1.417362
Н	3.945602	4.848776	0.511466

Η	2.804076	5.906604	1.378164
Η	2.548300	4.128661	1.348791
С	5.263940	5.905021	2.662450
Н	5.865802	5.841699	1.735127
Н	5.965859	5.833461	3.514935
Η	4.791752	6.905830	2.694235
С	4.897926	3.393422	2.627176
Η	5.497902	3.308825	1.700272
Η	4.160141	2.567913	2.631319
Η	5.586614	3.236974	3.479159
С	-0.880759	5.459898	4.237707
С	-1.634500	6.638816	4.053700
Η	-1.558100	7.446649	4.793073
С	-2.443618	6.777576	2.915606
Η	-3.014393	7.703395	2.767069
С	-2.517948	5.741577	1.965996
Η	-3.153337	5.853962	1.078026
С	-1.777160	4.560548	2.158177
Η	-1.840005	3.744835	1.425846
С	-0.958372	4.415013	3.288370
Η	-0.393226	3.488454	3.453220
С	-2.297398	6.376611	9.466247
С	-2.711956	6.872871	10.720168
Η	-3.767433	7.131726	10.859873
С	-1.762716	7.008943	11.737875
Η	-2.058451	7.391290	12.722574
С	-0.423181	6.641644	11.485564
Η	0.345644	6.724494	12.262288
С	-0.066817	6.161496	10.220845
Η	0.956387	5.867693	9.960968
С	-3.566378	5.268711	6.376761
С	-3.303935	4.085901	5.654731
Η	-2.377806	3.529937	5.845513
С	-4.265376	3.604662	4.755099

Η	-4.079160	2.669473	4.212283
С	-5.467543	4.309365	4.558647
Η	-6.214084	3.931767	3.847899
С	-5.717733	5.496188	5.276986
Н	-6.654039	6.047419	5.121230
С	-4.777961	5.975051	6.197092
Н	-4.960736	6.889368	6.773192
С	1.999257	5.072775	3.982969
Η	1.438797	5.172191	3.050143
С	4.062182	4.776019	5.240596
Н	5.142802	4.603035	5.208985
N	-0.043065	5.339957	5.387904
N	-0.983039	6.033824	9.232156
N	-3.190237	6.143898	8.454557
N	-2.628318	5.688443	7.368492
0	1.346337	5.380770	7.570227
Pt	-0.628323	5.563182	7.315369

Optimized structure (BP86) of **1**⁻ in the dublet state:

С	3.453062	4.885893	6.470308
С	2.048264	5.133356	6.444427
С	1.325657	5.139776	5.206834
С	3.434369	4.787006	3.987244
С	4.222230	4.848126	7.810584
С	5.719770	4.513293	7.624338
Н	6.218115	4.482820	8.614823
Н	6.244690	5.273256	7.012131
Н	5.867539	3.524820	7.145570
С	3.614517	3.761237	8.737359
Н	4.135833	3.749213	9.717993
Н	3.721081	2.756977	8.280492
Н	2.539346	3.944335	8.911533
С	4.135502	6.236515	8.500124

Η	4.653162	6.218366	9.482777
Η	3.083699	6.533129	8.660014
Η	4.617674	7.012646	7.872614
С	4.240762	4.627837	2.676573
С	3.355224	4.754820	1.417364
Η	3.974464	4.637543	0.504430
Н	2.858319	5.742681	1.361817
Н	2.566168	3.978418	1.389326
С	5.336695	5.723980	2.599215
Η	5.937097	5.622062	1.670093
Η	6.031060	5.667474	3.459321
Η	4.880908	6.733552	2.607023
С	4.916589	3.231087	2.643922
Η	5.511625	3.098357	1.715209
Η	4.155287	2.427283	2.683997
Η	5.596521	3.086245	3.505286
С	-0.848763	5.648727	4.216038
С	-1.650329	6.817986	4.190093
Η	-1.614499	7.485482	5.060958
С	-2.469631	7.108227	3.089474
Η	-3.084532	8.019760	3.101705
С	-2.508010	6.247373	1.976448
Н	-3.151193	6.476172	1.115020
С	-1.724986	5.078370	1.992304
Н	-1.762909	4.379268	1.143565
С	-0.912135	4.776872	3.096506
Η	-0.345525	3.837111	3.121302
С	-2.340312	6.454693	9.398974
С	-2.713113	6.996784	10.672177
Н	-3.762377	7.282718	10.814846
С	-1.764255	7.135004	11.673597
Η	-2.051126	7.546634	12.651805
С	-0.416500	6.736590	11.428843
Н	0.360577	6.828863	12.197064

С	-0.089489	6.228573	10.173797
Η	0.927507	5.918229	9.903576
С	-3.581501	5.140674	6.420771
С	-3.201951	4.078819	5.560922
Η	-2.171394	3.707878	5.615186
С	-4.134051	3.495834	4.692570
Η	-3.811958	2.673092	4.038388
С	-5.469850	3.942891	4.659790
Η	-6.197586	3.481815	3.977027
С	-5.856606	4.988149	5.522318
Η	-6.895593	5.351138	5.513537
С	-4.935314	5.578883	6.396808
Η	-5.234050	6.384517	7.076235
С	2.044772	5.010953	3.992426
Η	1.501375	5.107984	3.048548
С	4.104478	4.706562	5.231529
Η	5.183441	4.510750	5.231911
Ν	-0.051008	5.370772	5.345779
N	-1.003401	6.089264	9.180632
N	-3.222116	6.242716	8.422989
N	-2.647210	5.691678	7.312702
0	1.348798	5.412517	7.558721
Pt	-0.635727	5.601426	7.277478