Stereoselective Capture of N-Acyliminium Ions Generated from α-Hydroxy-N-Acylcarbamides: Direct Synthesis of Uracils from Barbituric Acids Enabled by SmI₂ Reduction

Michal Szostak,* Brice Sautier and David J. Procter*

School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK

michal.szostak@manchester.ac.uk; david.j.procter@manchester.ac.uk

Supplementary Information

Table of Contents	1
List of Known Compounds/General Methods	2
Experimental Procedures and Characterization Data	3
Preparation of Starting Materials	3
General Procedure and Optimization Study	8
Addition of Nucleophiles to alpha-Hydroxy-N-Acylcarbamides	9
• Synthesis of $6-D^1$ -Deuterated Uracils	20
• Rearrangement of N,N-Dimethylphenobarbital	21
Towards Library Development: Product Derivatization	22
• H ₂ ¹⁸ O Incorporation Experiments/Stability Studies	25
References	27
¹ H and ¹³ C NMR Spectra	28

Corresponding Author:

Dr. Michal Szostak Professor David J. Procter School of Chemistry University of Manchester Oxford Road Manchester, M13 9PL United Kingdom

List of Known Compounds/General Methods

All starting materials reported in the manuscript have been previously described or prepared by the method reported previously.¹ D^{1} -Enriched starting materials were prepared according to the previously reported procedure using SmI₂-D₂O.¹⁻³ Samarium(II) iodide was prepared by standard methods and titrated prior to use.⁴⁻⁸ All experiments involving SmI₂ were performed using standard techniques under argon or nitrogen atmosphere unless stated otherwise. All solvents were purchased at the highest commercial grade and used as received or after purification by passing through activated alumina columns or distillation from Na/benzophenone (tetrahydrofuran) or calcium hydride (dichloromethane) under nitrogen. All solvents were deoxygenated prior to use. All other chemicals were purchased at the highest commercial grade and used as received. Reaction glassware was oven-dried at 140 °C for at least 24 h or flamedried prior to use, allowed to cool under vacuum and purged with argon (three cycles). All yields refer to isolated yields unless stated otherwise. ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ on Bruker spectrometers at 300, 400 and 500 MHz (¹H NMR) and 75, 100 and 125 MHz (¹³C NMR). All shifts are reported in parts per million (ppm) relative to residual CHCl₃ and (CH₃)₂CO peaks (7.27 and 77.2 ppm, 2.05 and 29.8 ppm, ¹H NMR and ¹³C NMR, respectively). All coupling constants (J) are reported in hertz (Hz). Abbreviations are: s, singlet; d, doublet; t, triplet; q, quartet; br s, broad singlet. GC-MS chromatography was performed using Agilent 7890A GC System and Agilent 5975C inert XL EI/CI MSD with Triple Axis Detector equipped with Agilent HP-5MS column (19091S-433) (length 30 m, internal diameter 0.25 mm, film 0.25 µm) using helium as the carrier gas at a flow rate of 1 mL/min and an initial oven temperature of 40 °C or 50 °C. The injector temperature was 250 °C. The detector temperature was 250 °C. For runs with the initial oven temperature of 50 °C, temperature was increased with a 25 °C/min ramp after 50 °C hold for 3 min to a final temperature of 300 °C, then hold at 300 °C for 5 min (splitlesss mode of injection, total run time of 18 min). All flash chromatography was performed using silica gel, 60 Å, 230-400 mesh. TLC analysis was carried out on aluminium sheets coated with silica gel 60 F254, 0.2 mm thickness. The plates were visualized using a 254 nm ultraviolet lamp or aqueous potassium permanganate solutions. ¹H NMR and ¹³C NMR data are given for all compounds in the Supporting Experimental for characterization purposes. ¹H NMR, ¹³C NMR, IR and HRMS data are reported for all new compounds.

Experimental Procedures and Characterization Data

Preparation of Starting Materials

5-(4-Methoxyphenethyl)-1,3,5-trimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (SI-1). Prepared according to the procedure previously described¹ using 5-(4-methoxyphenethyl)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (0.50 g, 1.72 mmol, 1.0 equiv), iodomethane (1.6 mL, 17.2 mmol, 10 equiv) and K₂CO₃ (0.48 g, 3.44 mmol, 2.0 equiv) in acetone (2.6 mL) at 50 °C for 24 h to give the title compound as an oil. Yield (0.52 g, 99%). ¹H NMR (500 MHz, CDCl₃) δ 1.52 (s, 3 H), 2.32 (d, *J* = 10.2 Hz, 1 H), 2.33 (d, *J* = 8.8 Hz, 1 H), 2.42 (d, *J* = 8.8 Hz, 1 H), 2.43 (d, *J* = 10.2 Hz, 1 H), 3.22 (s, 6 H), 3.76 (s, 3 H), 6.77 (d, *J* = 8.6 Hz, 2 H), 6.97 (d, *J* = 8.6 Hz, 2 H); ¹³C NMR (125 MHz, CDCl₃) δ 25.7, 28.5, 30.8, 40.3, 51.0, 55.2, 113.7, 129.4, 131.3, 150.9, 158.1, 172.0; IR (neat) 749, 821, 913, 1033, 1064, 1178, 1245, 1281, 1381, 1421, 1444, 1511, 1673, 2834, 2938; HRMS calcd for C₁₆H₂₄N₃O₄ (M⁺ + NH₄) 322.1716, found 322.1764.

1,3,5-Trimethyl-5-(4-(trifluoromethyl)phenethyl)pyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (SI-2). Prepared according to the procedure previously described¹ using 1,3-dimethyl-5-(4-(trifluoromethyl)phenethyl)pyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (0.50 g, 1.52 mmol, 1.0 equiv), iodomethane (1.4 mL, 15.2 mmol, 10 equiv) and K₂CO₃ (0.42 g, 3.05 mmol, 2.0 equiv) in acetone (2.3 mL) at 50 °C for 24 h to give the title compound as an oil. Yield (0.52 g, 99%). ¹H NMR (400 MHz, CDCl₃) δ 1.56 (s, 3 H), 2.35 (d, *J* = 11.1 Hz, 1 H), 2.37 (d, *J* = 9.1 Hz, 1 H), 2.51 (d, *J* = 9.1 Hz, 1 H), 2.53 (d, *J* = 11.1 Hz, 1 H), 3.27 (s, 6 H), 7.22 (d, *J* = 8.1 Hz, 2 H), 7.51 (d, *J* = 8.1 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 26.1, 28.6, 31.5, 39.7, 51.2, 124.1 (q, *J*¹=

271.3 Hz), 125.3 (q, J^3 = 3.7 Hz), 128.8, 128.8 (q, J^2 = 32.3 Hz), 143.8, 150.8, 171.8; ¹⁹F NMR (470.6 MHz, CDCl₃) δ -62.5; IR (neat) 632, 753, 823, 842, 914, 1018, 1064, 1114, 1162, 1282, 1322, 1383, 1422, 1447, 1676, 2862, 2941; HRMS calcd for C₁₆H₂₁N₃O₃F₃ (M⁺ + NH₄) 360.1530, found 360.1532.

5-(4-Bromophenethyl)-1,3,5-trimethylpyrimidine-2,4,6(1*H***,3***H***,5***H***)-trione (SI-3**). Prepared according to the procedure previously described¹ using 5-(4-bromophenethyl)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (0.50 g, 1.47 mmol, 1.0 equiv), iodomethane (1.4 mL, 14.7 mmol, 10 equiv) and K₂CO₃ (0.41 g, 2.95 mmol, 2.0 equiv) in acetone (2.2 mL) at 50 °C for 24 h to give the title compound as an oil. Yield (0.52 g, 99%). ¹H NMR (400 MHz, CDCl₃) δ 1.54 (s, 3 H), 2.31 (d, *J* = 11.1 Hz, 1 H), 2.32 (d, *J* = 9.2 Hz, 1 H), 2.41 (d, *J* = 9.2 Hz, 1 H), 2.42 (d, *J* = 11.1 Hz, 1 H), 3.26 (s, 6 H), 6.96 (d, *J* = 8.3 Hz, 2 H), 7.36 (d, *J* = 8.3 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 26.0, 28.6, 31.1, 40.1, 51.1, 120.2, 130.2, 131.4, 138.5, 150.8, 171.9; IR (neat) 754, 809, 832, 1011, 1067, 1143, 1283, 1382, 1420, 1446, 1677, 2862, 2937; HRMS calcd for C₁₅H₁₇N₂O₃Br (M⁺ + H) 352.0417, found 352.0405.

5-Isopentyl-1,3,5-trimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (SI-4). Prepared according to the procedure previously described¹ using 5-isopentyl-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (0.24 g, 1.00 mmol, 1.0 equiv), iodomethane (1.0 mL, 10.0 mmol, 10 equiv), tetrabutylammoniumbisulfate (34 mg, 0.10 mmol, 0.10 equiv) and K₂CO₃ (0.28 g, 2.00 mmol, 2.0 equiv) in DMF (2.5 mL) at 80 °C for 18 h to give the title compound after purification by chromatography on silica gel (10% EtOAc/petroleum ether) as an oil. Yield (0.0878 g, 36%). ¹H NMR (500 MHz, CDCl₃) δ 0.82 (d, *J* = 6.6 Hz, 6 H), 0.88-0.97 (m, 2 H), 1.45 (dquin, *J* = 6.6,

13.2 Hz, 1 H), 1.51 (s, 3 H), 1.92-1.99 (m, 2 H), 3.30 (s, 6 H); 13 C NMR (125 MHz, CDCl₃) δ 22.2, 24.7, 28.0, 28.6, 33.9, 38.2, 51.6, 151.2, 172.4; IR (neat) 755, 1061, 1098, 1190, 1279, 1313, 1359, 1381, 1418, 1445, 1673, 2870, 2957; HRMS calcd for C₁₁H₁₇N₂O₃ (M⁺-CH₃) 225.1243, found 225.1225.

(5S*,6R*)-6-Hydroxy-5-(4-methoxyphenethyl)-1,3,5-trimethyldihydropyrimidine-

2,4(1*H***,3***H***)-dione (1c). Prepared according to the procedure previously described¹ using 5-(4methoxyphenethyl)-1,3,5-trimethylpyrimidine-2,4,6(1***H***,3***H***,5***H***)-trione (0.10 mmol, 1.0 equiv), SmI₂ (0.30 mmol, 3 equiv, 3.75 mL, 0.060 M) and H₂O (1.8 mL, 1000 equiv) for 60 s at room temperature to afford after purification by chromatography (3/1 EtOAc/hexanes) the title compound as a colorless oil. Rf (1/1 EtOAc/hexanes) = 0.27. Yield 74%. ¹H NMR (500 MHz, CD₃Cl) (major diastereoisomer) \delta 1.32 (s, 3 H), 1.59-1.66 (m, 1 H), 1.75-1.82 (m, 1 H), 2.34-2.41 (m, 1 H), 2.48-2.56 (m, 1 H), 2.92 (br, 1 H), 3.00 (s, 3 H), 3.10 (s, 3 H), 3.70 (s, 3 H), 4.45 (s, 1 H), 6.74 (d,** *J* **= 8.5 Hz, 2 H), 6.95 (d,** *J* **= 8.5 Hz, 2 H); (minor) 1.21 (s, 3 H), 1.92-1.99 (m, 1 H), 2.07-2.15 (m, 1 H), 2.48-2.56 (m, 1 H), 2.67 (td,** *J* **= 5.0, 12.5 Hz, 1 H), 2.94 (br, 1 H), 3.06 (s, 3 H), 3.11 (s, 3 H), 3.72 (s, 3 H), 4.49 (s, 1 H), 6.76 (d,** *J* **= 8.5 Hz, 2 H), 7.07 (d,** *J* **= 8.5 Hz, 2 H). ¹³C NMR (75 MHz, CD₃Cl) (major diastereoisomer) \delta 17.3, 27.9, 29.5, 34.7, 38.3, 47.5, 55.3, 85.9, 114.1, 129.2, 132.8, 153.0, 158.1, 173.2; (minor) 21.0, 27.9, 28.5, 34.6, 34.9, 46.2, 55.3, 85.3, 114.0, 129.2, 133.8, 152.9, 158.0, 174.3. IR (neat) 3389, 2961, 1712, 1671, 1492, 1443, 1416, 1380, 1260, 1220, 1178, 1093, 1036, 801, 772. HRMS calcd for C₁₆H₂₁N₂O₃ (M⁺ + H – H₂O) 289.1552, found 289.1538.**

(5S*,6R*)-6-Hydroxy-1,3,5-trimethyl-5-(4-(trifluoromethyl)phenethyl)dihydropyrimidine-

2,4(1H,3H)-dione (1d). Prepared according to the procedure previously described¹ using 1.3.5trimethyl-5-(4-(trifluoromethyl)phenethyl)pyrimidine-2,4,6(1H,3H,5H)-trione (0.10 mmol, 1.0 equiv)), SmI₂ (0.30 mmol, 3 equiv, 3.75 mL, 0.060 M) and H₂O (1.8 mL, 1000 equiv) for 60 s at room temperature to afford after purification by chromatography (3/1 EtOAc/hexanes) the title compound as a colorless oil. Rf (1/1 EtOAc/hexanes) = 0.30. Yield 71%. ¹H NMR (500 MHz, CD₃Cl) (major diastereoisomer) δ 1.34 (s, 3 H), 1.61-1.68 (m, 1 H), 1.81-1.88 (m, 1 H), 2.48 (td, J = 5.0, 12.0 Hz, 1 H), 2.61-2.69 (m, 1 H), 2.75 (br, 1 H), 3.03 (s, 3 H), 3.11 (s, 3 H), 4.46 (s, 1 H), 7.15 (d, J = 8.0 Hz, 2 H), 7.46 (d, J = 8.0 Hz, 2 H); (minor) 1.24 (s, 3 H), 1.93-2.00 (m, 1 H), 2.09-2.16 (m, 1 H), 2.60-2.69 (m, 1 H), 2.75 (br, 1 H), 2.79 (td, J = 4.5, 13.0 Hz, 1 H), 3.09 (s, 3 H), 3.12 (s, 3 H), 4.53 (s, 1 H), 7.27 (d, J = 8.0 Hz, 2 H), 7.47 (d, J = 8.0 Hz, 2 H). ¹³C NMR (75 MHz, CD₃Cl) (major diastereoisomer) δ 17.3, 27.9, 30.3, 34.8, 38.2, 47.4, 86.0, 125.5 (a. $J^3 =$ 3.8 Hz), 128.6, 144.9, 152.9, 172.8; (minor) 21.0, 27.9, 29.5, 34.6, 34.9, 46.1, 85.4, 125.5 (q, J³) = 3.8 Hz), 128.7, 145.9, 152.8, 173.9. Aromatic CF groups were not apparent in the 13 C NMR spectrum despite long acquisition times. The ¹⁹F spectrum clearly indicates the presence of the CF₃ group. ¹⁹F NMR (470.6 MHz, CDCl₃) δ -62.4. IR (neat) 3400, 2961, 1716, 1672, 1421, 1326, 1260, 1219, 1067, 799, 772. HRMS calcd for $C_{16}H_{18}N_2O_2F_3$ (M⁺ + H) 327.1315, found 327.1309.

(5*S**,6*R**)-5-(4-Bromophenethyl)-6-hydroxy-1,3,5-trimethyldihydropyrimidine-2,4(1*H*,3*H*)dione (1e). Prepared according to the procedure previously described¹ using 5-(4bromophenethyl)-1,3,5-trimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (0.10 mmol, 1.0 equiv), SmI₂ (0.30 mmol, 3 equiv, 3.75 mL, 0.060 M) and H₂O (1.8 mL, 1000 equiv) for 60 s at room temperature to afford after purification by chromatography (3/1 EtOAc/hexanes) the title compound as a colorless oil. Rf (1/1 EtOAc/hexanes) = 0.33. Yield 64%. ¹H NMR (500 MHz, CD₃Cl) (major diastereoisomer) δ 1.32 (s, 3 H), 1.58-1.64 (m, 1 H), 1.77-1.84 (m, 1 H), 2.342.41 (m, 1 H), 2.50-2.58 (m, 1 H), 2.82 (br, 1 H), 3.02 (s, 3 H), 3.10 (s, 3 H), 4.45 (s, 1 H), 6.91 (d, J = 8.0 Hz, 2 H), 7.32 (d, J = 8.0 Hz, 2 H); (minor) 1.22 (s, 3 H), 1.90-1.97 (m, 1 H), 2.05-2.12 (m, 1 H), 2.50-2.58 (m, 1 H), 2.68 (td, J = 4.5, 12.5 Hz, 1 H), 2.87 (br, 1 H), 3.08 (s, 3 H), 3.11 (s, 3 H), 4.51 (s, 1 H), 7.03 (d, J = 8.5 Hz, 2 H), 7.33 (d, J = 8.5 Hz, 2 H). ¹³C NMR (75 MHz, CD₃Cl) (major diastereoisomer) δ 17.3, 27.9, 29.8, 34.8, 38.3, 47.4, 86.0, 120.1, 130.0, 131.7, 139.7, 152.8, 172.9; (minor) 21.0, 27.9, 29.0, 34.5, 34.9, 46.1, 85.3, 119.8, 130.1, 131.6, 140.8, 152.9, 174.1. IR (neat) 73381, 2967, 1715, 1672, 1423, 1219, 1072, 772. HRMS calcd for C₁₅H₁₈N₂O₂Br (M⁺ + H) 337.0546, found 337.0544.

(55*,6*R**)-6-Hydroxy-5-isopentyl-1,3,5-trimethyldihydropyrimidine-2,4(1*H*,3*H*)-dione (1f). Prepared according to the procedure previously described¹ using 5-isopentyl-1,3,5-trimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (0.10 mmol, 1.0 equiv), SmI₂ (0.40 mmol, 4 equiv) and H₂O (0.36 mL, 200 equiv) for 60 s at room temperature to afford after purification by chromatography (1/1 EtOAc/hexanes) the title compound as a colorless oil. Yield 69%. ¹H NMR (400 MHz, CD₃C(O)CD₃) (major diastereoisomer) δ 0.90 (d, *J* = 6.8 Hz, 3 H), 0.92 (d, *J* = 6.8 Hz, 3 H), 1.14 (s, 3 H), 1.26-1.33 (m, 2 H), 1.48-1.57 (m, 1 H), 1.77 (dd, *J* = 2.6, 5.9 Hz, 1 H), 1.80 (dd, *J* = 3.1, 5.9 Hz, 1 H), 2.69 (br, 1 H), 3.05 (s, 3 H), 4.67 (s, 1 H); (minor, diagnostic peaks) 0.84 (d, *J* = 6.8 Hz, 3 H), 0.85 (d, *J* = 6.8 Hz, 3 H), 1.05-1.13 (m, 1 H), 1.22 (s, 3 H), 1.19-1.26 (m, 1 H), 1.39-1.46 (m, 1 H), 2.69 (br, 1 H), 3.05 (s, 3 H), 3.06 (s, 3 H), 4.65 (s, 1 H); ¹³C NMR (100 MHz, CD₃C(O)CD₃) (major diastereoisomer) δ 21.1, 23.0, 27.7, 29.7, 31.3, 32.1, 34.6, 46.6, 86.0, 153.6, 175.6; (minor) 17.7, 22.7, 22.9, 29.1, 33.6, 34.7, 35.3, 48.0, 84.9, 153.7, 174.5; IR (neat) 764, 789, 874, 945, 1039, 1095, 1178, 1293, 1366, 1383, 1419, 1468, 1482, 1655, 1712, 2870, 2926, 2955, 3397; HRMS calcd for C₁₂H₂₂N₂O₃Na (M⁺ + Na) 265.1528, found 265.1523. General procedure for the generation and capture of N-acyliminiums. An oven-dried vial equipped with a stir bar was charged with hemiaminal substrate (neat), placed under a positive pressure of argon, and subjected to three evacuation/backfilling cycles under high vacuum. Dichloromethane was added, followed by silicon-based nucleophile (neat, typically, 10 equiv) and the mixture was stirred vigorously under argon. Lewis acid (typically, BF₃•Et₂O, 3 equiv) was added at room temperature, and the reaction mixture was stirred for the indicated time. The reaction was diluted with CH₂Cl₂ (20 mL) and HCl (0.1 *N*, 20 mL). The aqueous layer was extracted with CH₂Cl₂ (3 x 20 mL), the organic layers were combined, dried over Na₂SO₄, filtered, and concentrated. The sample was analyzed by ¹H NMR (CDCl₃, 400 and 500 MHz) to obtain selectivity, conversion and yield using internal standard and comparison with authentic samples. Purification by chromatography using silica gel afforded the title product.

Optimization of the generation and capture of N-acyliminiums (Table 1). According to the general procedure, hemiaminal **1a** was reacted with allyltrimethylsilane (10 equiv) and a Lewis acid (typically, 3 equiv) for 2 h at room temperature. The reaction was diluted with CH_2Cl_2 (20 mL) and HCl (0.1 *N*, 20 mL). The aqueous layer was extracted with CH_2Cl_2 (3 x 20 mL), the organic layers were combined, dried over Na₂SO₄, filtered, and concentrated. The sample was analyzed by ¹H NMR (CDCl₃, 400 or 500 MHz) to obtain conversion and yield using internal standard and comparison with authentic samples. Specific details are given below.

- Entries 1-8: General optimization procedure was followed using TiCl₄, SnCl₄, AlCl₃, Me₃Al, Me₂AlCl, TMSOTf, TFA, BF₃•Et₂O, respectively.
- Entry 7: Trifluoroacetic acid (50 equiv) was used.
- Entry 9: The reaction was carried out and quenched at -78 °C.
- Entry 10: Allylmagnesium bromide instead of allyltrimethylsilane was used.

In Entries 1-2, 6, 8-9 (TiCl₄, SnCl₄, TMSOTf, BF₃•Et₂O) clean conversion to the corresponding 5-allyl-uracil **2a** was observed. Reaction conditions from Entry 8 (BF₃•Et₂O, rt) were selected to examine the scope of the reaction based on stereoselectivity, yield and experimental convenience as determined by the optimization studies. Importantly, these results indicate that a variety of reaction conditions can be applied to intercept N-acyliminiumions generated from α -alkoxy-*N*-Ac-carbamides under acidic conditions.

Addition of Nucleophiles to alpha-Hydroxy-N-Acylcarbamides

Table 2, Entry 1

(5S*,6S*)-6-Allyl-5-decyl-1,3,5-trimethyldihydropyrimidine-2,4(1H,3H)-dione (2a). To a solution of hemiaminal **1a** (0.032 mmol) and allyltrimethylsilane (10 equiv) in CH₂Cl₂ (1.0 mL), BF₃•Et₂O (3 equiv) was added dropwise at rt and the reaction was stirred at rt for 2 h. The reaction was diluted with CH₂Cl₂ (20 mL)/HCl (0.1 N, 20 mL), extracted with CH₂Cl₂ (2 x 20 mL), dried and concentrated. Purification by chromatography (1/1 EtOAc/hexanes) afforded the title compound as a colorless oil. Yield 86%. Rf (50% EtOAc/hexanes) = 0.76. Dr > 95:5 (crude), > 95:5 (purified). Stereochemistry of the major diastereoisomer was determined by 2 D NMR experiments (NOE between Me and CH₂ (CH₂CH=CH)). Stereochemistry of other compounds was assigned by analogy. ¹H NMR (500 MHz, CDCl₃) δ 0.81 (t, J = 7.0 Hz, 3 H), 0.99-1.08 (m, 1 H), 1.13 (s, 3 H), 1.14-1.26 (m, 15 H), 1.33 (td, J = 4.0, 12.0 Hz, 1 H), 1.53 (td, J = 4.5, 13.0 Hz, 1 H), 2.11-2.17 (m, 1 H), 2.30-2.36 (m, 1 H), 3.00 (s, 3 H), 3.02 (dd, J = 4.5, 7.5 Hz, 1 H), 3.05 (s, 3 H), 4.98-5.03 (m, 2 H), 5.55-5.65 (m, 1 H); ¹³C NMR (125 MHz, CDCl₃) δ 14.1, 18.1, 22.7, 23.8, 27.7, 29.3, 29.4, 29.5, 29.5, 29.9, 31.9, 34.3, 36.7, 37.7, 44.9, 63.1, 119.1, 132.6, 153.1, 174.5. IR (neat) 2924, 2854, 1669, 1467, 1417, 1381, 1366, 1283, 1217, 1083, 917, 757 cm⁻¹. HRMS calcd for $C_{20}H_{37}N_2O_2$ (M⁺ + H) 337.2850, found 337.2852. Note that uracil **2a** has been reported in our preliminary report on the reduction of cyclic 1,3-diimides using SmI₂- H_2O .

5-Isobutyl-1,3,5-trimethyldihydropyrimidine-2,4(1*H***,3***H***)-dione (2b). To a solution of hemiaminal 1b** (0.050 mmol) and triethylsilane (10 equiv) in CH₂Cl₂ (1.0 mL), BF₃•Et₂O (3 equiv) was added dropwise at rt and the reaction was stirred at rt for 2 h. The reaction was diluted with CH₂Cl₂ (20 mL)/HCl (0.1 *N*, 20 mL), extracted with CH₂Cl₂ (2 x 20 mL), dried and concentrated. Purification by chromatography (1/1 EtOAc/hexanes) afforded the title compound as a colorless oil. Yield 79%. ¹H NMR (300 MHz, CDCl₃) δ 0.80 (d, *J* = 6.6 Hz, 3 H), 0.84 (d, *J* = 6.6 Hz, 3 H), 1.14 (s, 3 H), 1.44 (d, *J* = 6.0 Hz, 1 H), 1.47 (d, *J* = 5.7 Hz, 1 H), 1.52-1.67 (m, 1 H), 3.00 (s, 3 H), 3.04 (d, *J* = 12.3 Hz, 1 H), 3.09 (d, *J* = 12.6 Hz, 1 H), 3.09 (s, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ 21.4, 24.2, 24.5, 24.6, 28.1, 36.1, 41.5, 44.8, 54.3, 153.9, 174.9. IR (neat) 2957, 1712, 1672, 1493, 1442, 1380, 1289, 1178, 1094, 1038 cm⁻¹. HRMS calcd for C₁₁H₂₀N₂O₂Na (M⁺ + Na) 235.1422, found 235.1422.

Table 2, Entry 3

($4R^*,5S^*$)-5-Decyl-1,3,5-trimethyl-2,6-dioxohexahydropyrimidine-4-carbonitrile (2c). According to the general procedure, the reaction of ($5S^*,6R^*$)-5-decyl-6-hydroxy-1,3,5-trimethyldihydropyrimidine-2,4(1*H*,3*H*)-dione (0.032 mmol, 1 equiv), trimethylsilyl cyanide (0.320 mmol, 10 equiv), BF₃•OEt₂ (0.160 mmol, 5 equiv) in CH₂Cl₂ for 3 h afforded after purification by column chromatography (30% EtOAc/petroleum ether) the title compound as a colorless oil. Yield 99%. Dr = 81:19 (crude), 83:17 (isolated). ¹H NMR (500 MHz, CD₃C(O)CD₃) (major diastereoisomer) δ 0.88 (t, J = 6.9 Hz, 3 H), 1.21-1.36 (m, 16 H), 1.38 (s, 3 H), 1.57-1.64 (m, 1 H), 1.67-1.76 (m, 1 H), 3.13 (s, 3 H), 3.13 (s, 3 H), 4.69 (s, 1 H); (minor, diagnostic peaks) δ 0.87 (t, J = 6.9 Hz, 3 H), 1.32 (s, 3 H), 1.44-1.54 (m, 1 H), 1.64-1.70 (m, 1 H), 2.01-2.08 (m, 1 H), 3.12 (s, 3 H), 3.15 (s, 3 H), 4.68 (s, 1 H); ¹³C NMR (125 MHz, CD₃C(O)CD₃) (major diastereoisomer) δ 14.4, 19.0, 23.4, 24.4, 28.4, 29.9, 30.0, 30.2, 30.3, 32.7, 35.3, 36.1, 45.3, 55.9, 116.8, 153.3, 172.4; (minor, diagnostic peaks) δ 20.0, 23.2, 35.0, 35.3, 44.7, 55.5, 116.4, 154.0, 173.3; IR (neat) 757, 963, 1070, 1181, 1289, 1355, 1390, 1415, 1465, 1678, 1722, 2855, 2925; LRMS calcd for $C_{18}H_{32}N_3O_2$ (M⁺ + H) 322.3, found 322.4 (ES). HRMS could not be found due to instability of the title compound.

Table 2, Entry 4

(5*S**,6*S**)-6-Azido-5-decyl-1,3,5-trimethyldihydropyrimidine-2,4(1*H*,3*H*)-dione (2d). According to the general procedure, the reaction of (5*S**,6*R**)-5-decyl-6-hydroxy-1,3,5-trimethyldihydropyrimidine-2,4(1*H*,3*H*)-dione (0.032 mmol, 1 equiv), trimethylsilylazide (0.32 mmol, 10 equiv), BF₃•OEt₂ (0.16 mmol, 5 equiv) in CH₂Cl₂ for 3 h afforded after purification by column chromatography (30% EtOAc/petroleum ether) the title compound as a colorless oil. Yield 99%. Dr = 74:26 (crude), 74:26 (isolated). ¹H NMR (400 MHz, CD₃C(O)CD₃) (major diastereoisomer) δ 0.88 (t, *J* = 6.8 Hz, 3 H), 1.27 (s, 3 H), 1.15-1.44 (m, 16 H), 1.50-1.69 (m, 2 H), 3.07 (s, 3 H), 3.21 (s, 3 H), 5.22 (s, 1 H); (minor, diagnostic peaks) δ 0.87 (t, *J* = 6.8 Hz, 3 H), 1.24 (s, 3 H), 1.83-1.93 (m, 1 H), 3.24 (s, 3 H), 5.25 (s, 1 H); ¹³C NMR (100 MHz, CD₃C(O)CD₃) (major diastereoisomer) δ 14.4, 17.9, 23.4, 24.5, 27.9, 29.8, 30.0, 30.2, 30.4, 30.5, 32.7, 36.0, 37.3, 47.9, 81.2, 153.3, 173.1; (minor, diagnostic peaks) δ 20.1, 21.0, 23.1, 23.4, 28.0, 30.9, 33.7, 36.2, 46.4, 80.0, 154.0, 174.1; IR (neat) 760, 902, 949, 1072, 1237, 1295, 1379, 1420, 1466, 1676, 1720, 2102, 2855, 2924; LRMS calcd for C₁₇H₃₁N₅O₂Na (M⁺ + Na) 360.2, found 360.4 (ES). HRMS could not be found due to instability of the title compound.

Methyl 2-(($4R^*$, $5S^*$)-5-isobutyl-1,3,5-trimethyl-2,6-dioxohexahydropyrimidin-4-yl)-2methylpropanoate (2e). According to the general procedure, the reaction of ($5S^*$, $6R^*$)-6hydroxy-5-isobutyl-1,3,5-trimethyldihydropyrimidine-2,4(1*H*,3*H*)-dione (0.044 mmol, 1 equiv), 1-methoxy-2-methyl-1-(trimethylsiloxy)propene (0.44 mmol, 10 equiv), BF₃•OEt₂ (0.22 mmol, 5 equiv) in CH₂Cl₂ for 3 h afforded after purification by column chromatography (30% EtOAc/petroleum ether) the title compound as a colorless oil. Yield 96%. Dr >95:5 (crude), >95:5 (isolated). ¹H NMR (400 MHz, CD₃C(O)CD₃) δ 0.74 (d, *J* = 6.7 Hz, 3 H), 0.92 (d, *J* = 6.7 Hz, 3 H), 0.99 (s, 3 H), 1.06 (s, 3 H), 1.24 (s, 3 H), 1.41-1.46 (m, 2 H), 1.64-1.76 (m, 1 H), 3.02 (s, 3 H), 3.18 (s, 3 H), 3.69 (s, 3 H), 3.75 (s, 1 H); ¹³C NMR (100 MHz, CD₃C(O)CD₃) δ 17.9, 18.6, 24.1, 24.3, 25.7, 27.7, 28.1, 41.6, 45.9, 48.5, 48.9, 52.6, 69.6, 154.0, 175.0, 177.3; IR (neat) 741, 759, 981, 1038, 1089, 1138, 1181, 1220, 1258, 1290, 1391, 1420, 1475, 1666, 1708, 1725, 2870, 2955, 2989; HRMS calcd for C₁₆H₂₈N₂O₄Na (M⁺ + Na) 335.1947, found 335.1931.

(5S*,6S*)-5-Decyl-1,3,5-trimethyl-6-(propa-1,2-dien-1-yl)dihydropyrimidine-2,4(1H,3H)dione (2f). According to the general procedure, the reaction of $(5S^*, 6R^*)$ -5-decyl-6-hydroxy-1,3,5-trimethyldihydropyrimidine-2,4(1H,3H)-dione (0.032)mmol. 1 equiv), trimethyl(propargyl)silane (0.32 mmol, 10 equiv), BF₃•OEt₂ (0.16 mmol, 5 equiv) in CH₂Cl₂ for 3 h afforded the title compound as a colorless oil. Yield 77% (determined by ¹H NMR analysis). Analytical sample was purified for characterization purposes (30% EtOAc/petroleum ether). Dr = 87:13 (crude), 89:11 (isolated). ¹H NMR (500 MHz, CD₃C(O)CD₃) (major diastereoisomer) δ 0.88 (t, J = 6.6 Hz, 3 H), 1.17 (s, 3 H), 1.21-1.35 (m, 14 H), 1.38-1.43 (m, 1 H), 1.53 (ddd, J =4.7, 12.1, 13.4 Hz, 1 H), 1.60-1.71 (m, 2 H), 2.99 (s, 3 H), 3.04 (s, 3 H), 3.71 (dt, J = 2.1, 7.0 Hz, 1 H), 4.82 - 4.94 (m, 2 H), 5.15 (q, J = 6.6 Hz, 1 H); ¹³C NMR (125 MHz, CD₃C(O)CD₃) (major diastereoisomer) § 14.4, 18.7, 23.4, 24.6, 27.8, 28.0, 30.2, 30.3, 30.7, 32.7, 34.6, 35.0, 37.8, 46.6, 63.0, 77.7, 87.6, 153.7, 174.0, 209.1; IR (neat) 722, 757, 847, 1061, 1075, 1096, 1186, 1230,

1287, 1381, 1396, 1416, 1466, 1674, 1709, 1736, 1955, 2853, 2923; HRMS calcd for $C_{20}H_{35}N_2O_2$ (M⁺ + H) 335.2693, found 335.2690.

Table 2, Entry 7

(5*S**,6*S**)-6-(But-2-yn-1-yl)-5-decyl-1,3,5-trimethyldihydropyrimidine-2,4(1*H*,3*H*)-dione (2g). According to the general procedure, the reaction of (5*S**,6*R**)-5-decyl-6-hydroxy-1,3,5trimethyldihydropyrimidine-2,4(1*H*,3*H*)-dione (0.032 mmol, 1 equiv), 3-(trimethylsilyl)-1,2butadiene (0.32 mmol, 10 equiv), BF₃•OEt₂ (0.16 mmol, 5 equiv) in CH₂Cl₂ for 3 h afforded after purification by column chromatography (30% EtOAc/petroleum ether) the title compound as a colorless oil. Yield 96%. Dr = 91:9 (crude), 90:10 (isolated). ¹H NMR (500 MHz, CD₃C(O)CD₃) (major diastereoisomer) δ 0.87 (t, *J* = 6.9 Hz, 3 H), 1.11-1.18 (m, 1 H), 1.19 (s, 3 H), 1.22-1.33 (m, 14 H), 1.33-1.41 (m, 1 H), 1.47 (ddd, *J* = 4.4, 12.0, 13.5 Hz, 1 H), 1.62 (ddd, *J* = 4.7, 12.3, 13.5 Hz, 1 H), 1.67 (t, *J* = 2.5 Hz, 3 H), 2.32 (ddq, *J* = 2.5, 5.1, 17.3 Hz, 1 H), 2.56 (ddq, *J* = 2.5, 4.1, 17.3 Hz, 1 H), 3.04 (s, 3 H), 3.07 (s, 3 H), 3.32 (dd, *J* = 4.1, 5.1 Hz, 1 H); ¹³C NMR (125 MHz, CD₃C(O)CD₃) (major diastereoisomer) δ 3.3, 14.4, 18.2, 19.9, 23.4, 24.4, 27.8, 30.1, 30.2, 30.3, 30.4, 30.7, 32.7, 35.7, 38.9, 45.0, 62.4, 75.0, 79.4, 153.6, 174.3; IR (neat) 722, 756, 1063, 1097, 1191, 1285, 1382, 1398, 1417, 1467, 1665, 1710, 2853, 2922; HRMS calcd for C₂₁H₃₆N₂O₂Na (M⁺ + Na) 371.2669, found 371.2663.

(5S*,6S*)-6-(2-Bromoallyl)-5-isobutyl-1,3,5-trimethyldihydropyrimidine-2,4(1H,3H)-dione (2h). According to the general procedure, the reaction of $(5S^*, 6R^*)$ -6-hydroxy-5-isobutyl-1,3,5trimethyldihydropyrimidine-2,4(1H,3H)-dione (0.044)mmol, 1 equiv), 2-bromoallyl trimethylsilane (0.44 mmol, 10 equiv), BF₃•OEt₂ (0.22 mmol, 5 equiv) in CH₂Cl₂ for 3 h afforded after purification by column chromatography (30% EtOAc/petroleum ether) the title compound as a colorless oil. Yield 86%. Dr = 88:12 (crude), >95:5 (isolated). ¹H NMR (500 MHz, $CD_3C(O)CD_3$) δ 0.76 (d, J = 6.8 Hz, 3 H), 0.93 (d, J = 6.8 Hz, 3 H), 1.18 (s, 3 H), 1.46 (dd, J = 3.8, 14.0 Hz, 1 H), 1.56 (dd, J = 7.3, 14.0 Hz, 1 H), 1.70-1.80 (m, 1 H), 2.62 (dd, J = 9.8, 14.0 Hz, 1 H), 1.56 (dd, J = 7.3, 14.0 Hz, 1 H), 1.70-1.80 (m, 1 H), 2.62 (dd, J = 9.8, 14.0 Hz, 1 H), 1.56 (dd, J = 9.8, 14.0 Hz, 1 H), 1.70-1.80 (m, 1 H), 1.62 (dd, J = 9.8, 14.0 Hz, 1 H), 1.70-1.80 (m, 1 H), 1.62 (dd, J = 9.8, 14.0 Hz, 1 H), 1.70-1.80 (m, 1 H), 1.62 (dd, J = 9.8, 14.0 Hz, 1 H), 1.70-1.80 (m, 1 H), 1.62 (dd, J = 9.8, 14.0 Hz, 1 H), 1.70-1.80 (m, 1 H), 1.62 (dd, J = 9.8, 14.0 Hz, 1 H), 1.61 (dd, J = 9.8, 14.0 Hz, 1 H), 1.70-1.80 (m, 1 H), 1.61 (dd, J = 9.8, 14.0 Hz, 1 H), 1.70-1.80 (m, 1 H), 1.61 (dd, J = 9.8, 14.0 Hz, 1 H), 1.70-1.80 (m, 1 H), 1.61 (dd, J = 9.8, 14.0 Hz, 14.0 Hz, 14.0 Hz), 1.61 (dd, J = 9.8, 1414.2 Hz, 1 H), 2.74 (ddd, J = 0.9, 4.0, 14.2 Hz, 1 H), 3.04 (s, 3 H), 3.10 (s, 3 H), 3.51 (dd, J =4.0, 9.8 Hz, 1 H), 5.55 (d, J = 1.9 Hz, 1 H), 5.82 (m, 1 H); ¹³C NMR (125 MHz, CD₃C(O)CD₃) δ 19.0, 24.0, 24.5, 25.6, 27.9, 37.8, 43.0, 46.1, 47.0, 63.2, 121.8, 131.4, 153.0, 174.5; IR (neat) 758, 895, 1037, 1090, 1178, 1217, 1284, 1398, 1418, 1471, 1631, 1668, 1710, 2866, 2928, 2956; HRMS calcd for $C_{14}H_{24}N_2O_2Br (M^+ + H) 331.1016$, found 331.1017.

Table 2, Entry 9

(5S*,6S*)-6-(2-(Chloromethyl)allyl)-5-isobutyl-1,3,5-trimethyldihydropyrimidine-

2,4(1*H***,3***H***)-dione (2i). According to the general procedure, the reaction of (5S^*,6R^*)-6-hydroxy-5-isobutyl-1,3,5-trimethyldihydropyrimidine-2,4(1***H***,3***H***)-dione (0.044 mmol, 1 equiv), 2-(chloromethyl)allyl-trimethylsilane (0.44 mmol, 10 equiv), BF₃•OEt₂ (0.22 mmol, 5 equiv) in CH₂Cl₂ for 3 h afforded after purification by column chromatography (30% EtOAc/petroleum ether) the title compound as a colorless oil. Yield 85%. Dr >95:5 (crude), >95:5 (isolated). ¹H NMR (500 MHz, CD₃C(O)CD₃) \delta 0.75 (d,** *J* **= 6.5 Hz, 3 H), 0.91 (d,** *J* **= 6.5 Hz, 3 H), 1.20 (s, 3 H), 1.42 (dd,** *J* **= 3.8, 14.2 Hz, 1 H), 1.55 (dd,** *J* **= 7.6, 14.2 Hz, 1 H), 1.71-1.79 (m, 1 H), 2.19 (ddd,** *J* **= 0.9, 10.1, 14.0 Hz, 1 H), 2.59 (ddd,** *J* **= 0.9, 4.2, 14.0 Hz, 1 H), 3.00 (s, 3 H), 3.06 (s, 3 H), 3.48 (dd,** *J* **= 4.2, 10.1 Hz, 1 H), 4.23 (dd,** *J* **= 0.9, 12.3 Hz, 1 H), 4.30 (dd,** *J* **= 0.9, 12.3 Hz, 1**

H), 5.09 (d, J = 0.9 Hz, 1 H), 5.33 (d, J = 0.9 Hz, 1 H); ¹³C NMR (125 MHz, CD₃C(O)CD₃) δ 19.1, 24.0, 24.5, 25.7, 27.9, 34.3, 37.7, 46.6, 47.0, 48.6, 63.4, 119.4, 143.0, 153.1, 174.8; IR (neat) 759, 919, 1037, 1091, 1178, 1200, 1226, 1283, 1398, 1417, 1471, 1663, 1707, 2873, 2926, 2955; HRMS calcd for C₁₅H₂₆N₂O₂Cl (M⁺ + H) 301.1683, found 301.1680.

Table 2, Entry 10

(5*S**,6*S**)-5-Isobutyl-1,3,5,6-tetramethyldihydropyrimidine-2,4(1*H*,3*H*)-dione (2j). To a solution of (5*S**,6*R**)-6-hydroxy-5-isobutyl-1,3,5-trimethyldihydropyrimidine-2,4(1*H*,3*H*)-dione (0.05 mmol) in CH₂Cl₂ (1.0 mL), trimethylaluminum (2.0 M, hexanes, 10 equiv), followed by BF₃•Et₂O (5 equiv) was added dropwise at rt and the reaction was stirred at rt for 2 h. The reaction was diluted with CH₂Cl₂ (20 mL)/NH₄Cl (aq, sat., 20 mL), extracted with CH₂Cl₂ (2 x 20 mL), dried and concentrated. Purification by chromatography (1/1 EtOAc/hexanes) afforded the title compound as a colorless oil. Yield 88%. Dr > 95:5 (crude), >95:5 (purified). Rf (20% EtOAc/hexanes) = 0.74. ¹H NMR (400 MHz, CDCl₃) δ 0.73 (d, *J* = 6.4 Hz, 3 H), 0.85 (d, *J* = 6.4 Hz, 3 H), 1.02 (d, *J* = 6.8 Hz, 3 H), 1.11 (s, 3 H), 1.27 (dd, *J* = 4.0, 13.6 Hz, 1 H), 1.56 (dd, *J* = 7.2, 14.0 Hz, 1 H), 1.61-1.72 (m, 1 H), 2.96 (q, *J* = 6.4 Hz, 1 H), 2.98 (s, 3 H), 3.09 (s, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ 13.9, 18.5, 23.9, 23.9, 25.3, 27.5, 34.7, 45.6, 46.2, 59.8, 152.7, 174.4; IR (neat) 2956, 1709, 1667, 1484, 1416, 1399, 1285, 1209, 1181, 1103, 1051, 1035, 998, 758 cm⁻¹. HRMS calcd for C₁₂H₂₃N₂O₂ (M⁺ + H) 227.1754, found 227.1745.

(5*S**,6*S**)-6-Ethynyl-5-isobutyl-1,3,5-trimethyldihydropyrimidine-2,4(1*H*,3*H*)-dione (2k). According to the general procedure, the reaction of (5*S**,6*R**)-6-hydroxy-5-isobutyl-1,3,5-trimethyldihydropyrimidine-2,4(1*H*,3*H*)-dione (0.044 mmol, 1 equiv), ethynyltributylstannane (0.44 mmol, 10 equiv), BF₃•OEt₂ (0.22 mmol, 5 equiv) in CH₂Cl₂ for 3 h afforded after purification by column chromatography (30% EtOAc/petroleum ether) the title compound as a colorless oil. Yield 99%. Dr >85:15 (crude), 88:12 (isolated). ¹H NMR (400 MHz, CD₃C(O)CD₃) (major diastereoisomer) δ 0.79 (d, *J* = 6.4 Hz, 3 H), 0.92 (d, *J* = 6.4 Hz, 3 H), 1.34 (s, 3 H), 1.46 (dd, *J* = 4.4, 13.9 Hz, 1 H), 1.63-1.70 (m, 1 H), 1.71-1.80 (m, 1 H), 3.04 (d, *J* = 2.0 Hz, 1 H), 3.05 (s, 3 H), 3.08 (s, 3 H), 4.08 (d, *J* = 2.4 Hz, 1 H); ¹³C NMR (100 MHz, CD₃C(O)CD₃) (major diastereoisomer) δ 24.1, 24.7, 25.3, 28.0, 34.8, 45.5, 46.0, 56.7, 76.3, 79.3, 153.7, 173.7; IR (neat) 667, 749, 761, 872, 1038, 1090, 1175, 1286, 1393, 1415, 1464, 1670, 1714, 2852, 2871, 2925, 2956; HRMS calcd for C₁₃H₂₁N₂O₂ (M⁺ + H) 237.1598, found 237.1593.

Table 2, Entry 12

(5*S**,6*S**)-6-Allyl-5-(4-methoxyphenethyl)-1,3,5-trimethyldihydropyrimidine-2,4(1*H*,3*H*)dione (2l). According to the general procedure, the reaction of hemiaminal 1c (0.050 mmol, 1 equiv), allyltrimethylsilane (0.50 mmol, 10 equiv), BF₃•OEt₂ (0.15 mmol, 3 equiv) in CH₂Cl₂ for 2 h at room temperature afforded after purification by chromatography (1/1 EtOAc/hexanes) the title compound as a colorless oil. Yield 75%. Dr > 95:5 (crude), > 95:5 (purified). ¹H NMR (500 MHz, CDCl₃) δ 1.24 (s, 3 H), 1.58-1.64 (m, 1 H), 1.85 (td, *J* = 5.0, 12.0 Hz, 1 H), 2.14-2.21 (m, 1 H), 2.28-2.39 (m, 2 H), 2.53 (td, *J* = 5.5, 13.0 Hz, 1 H), 2.98 (s, 3 H), 3.05 (s, 3 H), 3.05 (dd, *J* = 4.5, 7.0 Hz, 1 H), 3.71 (s, 3 H), 4.99-5.04 (m, 2 H), 5.56-5.65 (m, 1 H), 6.74 (d, *J* = 9.0 Hz, 2 H), 6.95 (d, *J* = 9.0 Hz, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 18.1, 27.7, 29.4, 34.3, 36.6, 39.8, 45.0, 55.3, 63.2, 114.0, 119.3, 129.2, 132.4, 133.0, 153.0, 158.1, 174.0. IR (neat) 2947, 1708, 1667, 1513, 1478, 1417, 1285, 1247, 1050, 757 cm⁻¹. HRMS calcd for $C_{19}H_{26}N_2O_3Na$ (M⁺ + Na) 353.1841, found 353.1825.

Table 2, Entry 13

(5S*,6S*)-6-Allyl-1,3,5-trimethyl-5-(4-(trifluoromethyl)phenethyl)dihydropyrimidine-

2,4(1*H***,3***H***)-dione (2m). According to the general procedure, the reaction of hemiaminal 1d** (0.050 mmol, 1 equiv), allyltrimethylsilane (0.50 mmol, 10 equiv), BF₃•OEt₂ (0.15 mmol, 3 equiv) in CH₂Cl₂ for 2 h at room temperature afforded after purification by chromatography (1/1 EtOAc/hexanes) the title compound as a colorless oil. Yield 92%. Dr > 95:5 (crude), > 95:5 (purified). ¹H NMR (500 MHz, CDCl₃) δ 1.25 (s, 3 H), 1.58-1.66 (m, 1 H), 1.92 (td, *J* = 5.5, 12.5 Hz, 1 H), 2.16-2.22 (m, 1 H), 2.34-2.45 (m, 2 H), 2.65 (td, *J* = 5.0, 12.5 Hz, 1 H), 3.00 (s, 3 H), 3.04-3.07 (m, 1 H), 3.05 (s, 3 H), 5.01-5.05 (m, 2 H), 5.56-5.65 (m, 1 H), 7.15 (d, *J* = 8.0 Hz, 2 H), 7.46 (d, J = 8.5 Hz, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 18.2, 27.8, 30.3, 34.3, 36.6, 39.2, 45.0, 63.5, 119.5, 125.5 (q, *J*³ = 3.8 Hz), 128.5, 128.6, 132.2, 145.0, 152.9, 173.5; ¹⁹F NMR (470.6 MHz, CDCl₃) δ -62.5. IR (neat) 2938, 1708, 1668, 1478, 1418, 1325, 1286, 1163, 1122, 1067, 920, 825 cm⁻¹. HRMS calcd for C₁₉H₂₄N₂O₂F₃ (M⁺ + H) 369.1784, found 369.1785.

title compound as a colorless oil. Yield 77%. Dr > 95:5 (crude), > 95:5 (purified). ¹H NMR (500 MHz, CDCl₃) δ 1.23 (s, 3 H), 1.56-1.63 (m, 1 H), 1.88 (td, *J* = 5.0, 12.5 Hz, 1 H), 2.15-2.21 (m, 1 H), 2.28-2.39 (m, 2 H), 2.54 (td, *J* = 5.0, 12.5 Hz, 1 H), 2.99 (s, 3 H), 3.04 (dd, *J* = 4.0, 7.0 Hz, 1 H), 3.05 (s, 3 H), 5.00-5.04 (m, 2 H), 5.55-5.64 (m, 1 H), 6.91 (d, *J* = 8.5 Hz, 2 H), 7.32 (d, *J* = 8.5 Hz, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 18.2, 27.7, 29.8, 34.3, 36.6, 39.4, 45.0, 63.4, 119.4, 120.0, 130.0, 131.6, 132.3, 139.9, 153.0, 173.7. IR (neat) 2937, 1707, 1667, 1513, 1474, 1418, 1285, 1247, 1179, 1179, 1050, 918, 823 cm⁻¹. HRMS calcd for C₁₈H₂₄N₂O₂Br₁ (M⁺ + H) 379.1016, found 379.1018.

Table 2, Entry 15

(5*S**,6*S**)-6-Allyl-5-isopentyl-1,3,5-trimethyldihydropyrimidine-2,4(1*H*,3*H*)-dione (20). According to the general procedure, the reaction of hemiaminal 1f (0.041 mmol, 1.0 equiv), allyltrimethylsilane (0.41 mmol, 10 equiv) and BF₃•OEt₂ (0.21 mmol, 5.0 equiv) in CH₂Cl₂ (1.0 mL) for 3 h afforded after purification by chromatography (40% EtOAc/petroleum ether) the title compound as a colorless oil. Yield 76%. Dr = 91:9 (crude), 92:8 (isolated). ¹H NMR (400 MHz, CD₃C(O)CD₃) δ 0.84 (d, *J* = 6.6 Hz, 3 H), 0.85 (d, *J* = 6.6 Hz, 3 H), 0.99-1.09 (m, 1 H), 1.16 (s, 3 H), 1.19-1.28 (m, 1 H), 1.39-1.52 (m, 2 H), 1.53-1.63 (m, 1 H), 2.17-2.25 (m, 1 H), 2.47 (dddt, *J* = 1.3, 4.3, 7.3, 14.2 Hz, 1 H), 3.00 (s, 3 H), 3.04 (s, 3 H), 3.35 (dd, *J* = 4.4, 6.9 Hz, 1 H), 4.99-5.09 (m, 2 H), 5.72 (ddt, *J* = 7.4, 9.9, 17.2 Hz, 1 H); ¹³C NMR (100 MHz, CD₃C(O)CD₃) δ 18.4, 22.7, 22.9, 27.7, 29.1, 33.4, 35.1, 36.1, 36.6, 45.6, 63.1, 118.7, 134.6, 153.5, 174.9; IR (neat) 758, 917, 1039, 1093, 1178, 1196, 1217, 1283, 1366, 1383, 1398, 1417, 1469, 1665, 1708, 2870, 2929, 2953; HRMS calcd for C₁₅H₂₇N₂O₂ (M⁺ + H) 267.2073, found 267.2067.

5-Allyl-2,4-dimethyl-2,4-diazaspiro[**5.6**]**dodec-9-ene-1,3-dione** (**2p**). According to the general procedure, the reaction of 5-hydroxy-2,4-dimethyl-2,4-diazaspiro[**5.6**]dodec-9-ene-1,3-dione (0.042 mmol, 1 equiv), allyltrimethylsilane (0.42 mmol, 10 equiv), BF₃•OEt₂ (0.21 mmol, 5 equiv) in CH₂Cl₂ for 3 h afforded after purification by column chromatography (30% EtOAc/petroleum ether) the title compound as a colorless oil. Yield 83%. ¹H NMR (400 MHz, CD₃C(O)CD₃) δ 1.63-1.72 (m, 1 H), 1.77-1.94 (m, 2 H), 2.10-2.31 (m, 5 H), 2.43-2.55 (m, 2 H), 3.00 (s, 3 H), 3.05 (s, 3 H), 3.60 (dd, *J* = 4.3, 7.3 Hz, 1 H), 5.00-5.11 (m, 2 H), 5.57-5.82 (m, 1 H), 5.57-5.82 (m, 1 H), 5.75 (ddt, *J* = 7.4, 10.0, 17.1 Hz, 1 H); ¹³C NMR (100 MHz, CD₃C(O)CD₃) δ 24.4, 24.8, 27.7, 30.8, 34.8, 35.0, 36.8, 48.3, 61.5, 118.7, 130.9, 132.1, 134.7, 153.4, 175.6; IR (neat) 632, 727, 756, 917, 1001, 1028, 1052, 1093, 1135, 1219, 1282, 1373, 1398, 1416, 1436, 1475, 1663, 1706, 2847, 2929, 3017; HRMS calcd for C₁₅H₂₃N₂O₂ (M⁺ + H) 263.1754, found 263.1753.

Synthesis of $6-D^1$ -Deuterated Uracils

Scheme 1

(5*S**,6*S**)-6-*D*^{*I*}-6-Allyl-5-decyl-1,3,5-trimethyldihydropyrimidine-2,4(1*H*,3*H*)-dione (2a-*D*^{*I*}). According to the general procedure, reaction of (5*S**,6*R**)-6-*D*^{*I*}-5-decyl-6-hydroxy-1,3,5-trimethyldihydropyrimidine-2,4(1*H*,3*H*)-dione (0.032 mmol, 1 equiv), allyltrimethylsilane (0.32 mmol, 10 equiv), BF₃•OEt₂ (0.21 mmol, 5 equiv) in CH₂Cl₂ for 3 h afforded after purification by column chromatography (30% EtOAc/petroleum ether) the title compound as a colorless oil. Yield 99%, >98% *D*^{*I*}. Dr = 91:9 (crude), >95:5 (isolated). ¹H NMR (500 MHz, CD₃C(O)CD₃) δ 0.87 (t, *J* = 6.9 Hz, 3 H), 1.09-1.15 (m, 1 H), 1.16 (s, 3 H), 1.21-1.33 (m, 14 H), 1.34-1.41 (m, 1 H), 1.46 (ddd, *J* = 4.4, 12.2, 13.3 Hz, 1 H), 1.54-1.62 (m, 1 H), 2.21 (dd, *J* = 7.4, 14.2 Hz, 1 H), 2.46 (dd, *J* = 7.4, 14.2 Hz, 1 H), 3.00 (s, 3 H), 3.03 (s, 3 H), 5.01 (dt, *J* = 1.1, 9.9 Hz, 1 H), 5.05 (dq, *J* = 1.6, 17.1 Hz, 1 H), 5.71 (ddt, *J* = 7.4, 9.9, 17.1 Hz, 1 H); ¹³C NMR (125 MHz, CD₃C(O)CD₃) δ 14.4, 18.4, 23.4, 24.5, 27.6, 30.1, 30.2, 30.3, 30.4, 30.7, 32.7, 34.9, 36.5, 38.4, 45.6, 62.8 (t, *J* = 20.9 Hz), 118.7, 134.5, 153.5, 174.8; IR (neat) 758, 917, 1028, 1093, 1336, 1387, 1414, 1456, 1669, 1710, 2853, 2923; HRMS calcd for C₂₀H₃₆D₁N₂O₂ (M⁺ + H) 338.2912, found 338.2899.

 $(5S^*, 6S^*)$ -6- D^I -6-Azido-5-decyl-1,3,5-trimethyldihydropyrimidine-2,4(1H,3H)-dione (2d- D^I). According to the general procedure, reaction of $(5S^*, 6R^*)$ -6- D^I -5-decyl-6-hydroxy-1,3,5-trimethyldihydropyrimidine-2,4(1H,3H)-dione (0.050 mmol, 1 equiv), allyltrimethylsilane (0.50 mmol, 10 equiv), BF₃•OEt₂ (0.15 mmol, 3 equiv) in CH₂Cl₂ for 2 h at room temperature afforded after purification by chromatography (1/1 EtOAc/hexanes) the title compound as a

colorless oil. Yield 91%, >98% D^{1} . Dr = 75:25 (crude), 74:26 (purified). Minor diastereoisomer was partially separable by careful chromatography. Rf (20% EtOAc/hexanes) = 0.65. ¹H NMR (400 MHz, CD₃C(O)CD₃) (major diastereoisomer) δ 0.89 (t, J = 6.8 Hz, 3 H), 1.21-1.34 (m, 15 H), 1.30 (s, 3 H), 1.36-1.45 (m, 1 H), 1.53-1.67 (m, 2 H), 3.10 (s, 3 H), 3.23 (s, 3 H); (minor) 0.89 (t, J = 6.4 Hz, 3 H), 1.25 (s, 3 H), 1.27-1.42 (m, 15 H), 1.44-1.55 (m, 1 H), 1.66 (td, J = 4.0, 12.4 Hz, 1 H), 1.85-1.95 (m, 1 H), 3.09 (s, 3 H), 3.25 (s, 3 H); ¹³C NMR (100 MHz, CD₃C(O)CD₃) (major diastereoisomer) δ 14.4, 17.8, 23.4, 24.5, 27.9, 28.6, 29.9, 30.2, 30.3, 30.5, 32.6, 36.0, 37.2, 47.7, 80.7 (t, $J^{1} = 24.1$ Hz), 153.2, 173.1; (minor) 14.2, 21.0, 23.1, 23.2, 27.8, 30.2, 30.3, 30.9, 32.6, 33.7, 36.0, 46.4, 79.8 (t, $J^{1} = 24.0$ Hz), 153.2, 174.0. IR (neat) 2924, 2854, 2098, 1720, 1674, 1461, 1418, 1384, 1325, 1241, 1076, 1038, 1002, 885, 763 cm⁻¹. HRMS calcd for C₁₇H₃₁N₅O₂D₁ (M⁺ + H) 339.2613, found 339.2617.

Rearrangement of N,N-Dimethylphenobarbital

Scheme 2

(5*S**,6*R**)-5-Ethyl-1,3-dimethyl-6-phenyldihydropyrimidine-2,4(1*H*,3*H*)-dione (4). According to the general procedure for reactions involving SmI₂,¹⁻³ cyclic 1,3-diimide **3** (0.10 mmol) was reacted with SmI₂ (0.80 mmol, 8 equiv, 10.0 mL, 0.080 M) and H₂O (1.8 mL, 1000 equiv) for 30 min at rt, followed by work-up with CH₂Cl₂/HCl (1.0 *N*) to afford after purification by chromatography (1/1 EtOAc/hexanes) the title compound as a colorless oil. Yield 84%. Dr = 72:28 (crude), 71:29 (purified. Rf (50% EtOAc/hexanes) = 0.44. Stereochemistry of the major diastereoisomer was determined by 2 D NMR experiments. ¹H NMR (500 MHz, CDCl₃) δ (major diastereoisomer) 0.85 (t, *J* = 8.0 Hz, 3 H), 1.82-1.91 (m, 1 H), 2.11-2.20 (m, 1 H), 2.72 (s, 3 H), 2.85 (s, 3 H), 2.99-3.03 (m, 1 H), 3.92 (d, *J* = 3.5 Hz, 1 H), 7.05 (dd, *J* = 1.5, 7.0 Hz, 2 H), 7.13-7.24 (m, 3 H); (minor) 0.82 (t, *J* = 7.0 Hz, 3 H), 1.82-1.91 (m, 2 H), 2.68 (s, 3 H), 2.96 (s, 3 H), 3.05-3.09 (m, 1 H), 3.93 (d, *J* = 3.0 Hz, 1 H), 7.10 (dd, *J* = 1.0, 7.0 Hz, 2 H), 7.13-7.23 (m, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ (major diastereoisomer) 12.5, 22.6, 24.5, 28.3, 47.4, 66.0, 127.5, 128.2, 128.5, 137.9, 156.6, 172.0; (minor) 12.5, 24.6, 25.0, 30.6, 49.5, 66.5, 127.5, 128.4, 128.6, 137.6, 157.2, 172.2. IR (neat) 2965, 2876, 1767, 1705, 1452, 1421, 1396, 1273, 1216, 1023, 757, 703 cm⁻¹. HRMS calcd for $C_{14}H_{18}N_2O_2Na$ (M⁺ + Na) 269.1260, found 269.1255.

Reactivity of 6-DH-Uracils – Rapid Generation of Diversity

Scheme 3

(5S*,6S*)-5-Decyl-1,3,5-trimethyl-6-(4-phenyl-1H-1,2,3-triazol-1-yl)dihydropyrimidine-

2,4(1H,3H)-dione (5a). A 10 mL vial was charged with uracil 2d (0.030 mmol, 1.0 equiv, dr = 74:26), phenylacetylene (0.033 mmol, 1.1 equiv), sodium ascorbate (10 mol%), CuSO₄•5H₂O (1 mol%), H₂O (0.25 mL) and t-BuOH (0.25 mL) and stirred for 24 h at room temperature. The reaction mixture was diluted with water and extracted with CH₂Cl₂ to give the title compound as an oil after purification by chromatography. Yield 59%. Dr = 72:28 (crude), 77:23 (isolated). ¹H NMR (500 MHz, CD₃C(O)CD₃) δ (major diastereoisomer) 0.88 (t, J = 6.8 Hz, 3 H), 1.18 (s, 3 H), 1.21-1.36 (m, 15 H), 1.45-1.51 (m, 1 H), 1.76-1.86 (m, 1 H), 1.87-1.95 (m, 1 H), 3.05 (s, 3 H), 3.22 (s, 3 H), 6.01 (s, 1 H), 7.31-7.37 (m, 1 H), 7.41-7.46 (m, 2 H), 7.86-7.90 (m, 2 H), 8.46 (s, 1 H); (minor, diagnostic peaks) 0.84 (t, J = 7.2 Hz, 3 H), 0.91 (s, 3 H), 0.93-1.00 (m, 1 H), 1.39-1.45 (m, 1 H), 3.05 (s, 3 H), 3.22 (s, 3 H), 6.07 (s, 1 H), 8.48 (s, 1 H); ¹³C NMR (125 MHz, CD₃C(O)CD₃) δ (major diastereoisomer) 14.4, 23.4, 24.6, 28.2, 30.0, 30.1, 30.2, 30.3, 30.5, 31.7, 32.7, 34.7, 38.9, 47.3, 78.0, 121.8, 126.5, 129.1, 129.8, 131.7, 147.9, 153.6, 172.7; (minor, diagnostic peaks) 17.5, 23.1, 23.4, 28.3, 32.7, 33.1, 34.8, 46.1, 77.2, 121.5, 126.5, 129.1, 131.6, 147.9, 153.4, 173.8; IR (neat) 694, 764, 810, 942, 972, 1026, 1036, 1073, 1159, 1273, 1299, 1395, 1419, 1467, 1481, 1674, 1720, 2853, 2923; HRMS calcd for $C_{25}H_{37}N_5O_2Na$ (M⁺ + Na) 462.2839, found 462.2850.

(*E*)-Methyl 4-((4*S**,5*S**)-5-decyl-1,3,5-trimethyl-2,6-dioxohexahydropyrimidin-4-yl)but-2enoate (5b). A 10 mL vial was charged with uracil 1a (0.030 mmol, 1.0 equiv, dr = 90:10), methyl acrylate (0.300 mmol, 10 equiv), Hoveyda-Grubbs II catalyst (5 mol%) and CH₂Cl₂ (0.5 mL) and stirred overnight at room temperature to afford after column chromatography (30% EtOAc/petroleum ether) the title compound as a colorless oil. Yield 79%. Dr = 92:8 (crude), 89:11 (isolated). ¹H NMR (400 MHz, CD₃C(O)CD₃) δ (major diastereoisomer) 0.86 (s, 3 H), 1.08-1.16 (m, 1 H), 1.19 (s, 3 H), 1.22-1.33 (m, 14 H), 1.34-1.42 (m, 1 H), 1.48 (ddd, *J* = 4.2, 12.1, 13.4 Hz, 1 H), 1.59 (ddd, *J* = 4.8, 12.1, 13.4 Hz, 1 H), 2.43 (dddd, *J* = 1.5, 6.7, 8.3, 14.2 Hz, 1 H), 2.67 (dddd, *J* = 1.5, 4.5, 7.3, 14.2 Hz, 1 H), 3.00 (s, 3 H), 3.04 (s, 3 H), 3.51 (dd, *J* = 4.5, 6.7 Hz, 1 H), 3.66 (s, 3 H), 5.90 (dt, *J* = 1.3, 15.6 Hz, 1 H), 6.81 (dt, *J* = 7.8, 15.6 Hz, 1 H); ¹³C NMR (100 MHz, CD₃C(O)CD₃) δ (major diastereoisomer) 14.4, 18.4, 23.4, 24.5, 27.7, 30.1, 30.2, 30.3, 30.4, 30.6, 32.7, 33.3, 36.3, 38.2, 45.7, 51.7, 62.8, 124.8, 144.7, 153.4, 166.6, 174.5; IR (neat) 722, 758, 855, 981, 1041, 1096, 1168, 1219, 1270, 1324, 1399, 1418, 1436, 1467, 1667, 1710, 1726, 2853, 2924; HRMS calcd for C₂₂H₃₈N₂O₄Na (M⁺ + Na) 417.2724, found 417.2728.

dione (5c). A 10 mL vial was charged with uracil **2k** (0.042 mmol, 1 equiv, dr = 88:12), iodobenzene (0.084 mmol, 2.0 equiv), tetrakis(triphenylphosphine)palladium (2 mol%), CuI (1 mol%), diisopropylamine (0.2 mL) and THF (1.0 mL) and stirred overnight at 60 °C. The reaction mixture was filtered through a plug of celite and purified by chromatography (20% EtOAc/petroleum ether) to afford the title compound as a colorless oil. Yield 65%. dr = 89:11

(crude), 88:12 (isolated). ¹H NMR (400 MHz, CD₃C(O)CD₃) δ (major diastereoisomer) 0.81 (d, J = 6.7 Hz, 3 H), 0.94 (d, J = 6.7 Hz, 3 H), 1.41 (s, 3 H), 1.52 (dd, J = 4.3, 13.9 Hz, 1 H), 1.64-1.75 (m, 1 H), 1.75-1.83 (m, 1 H), 3.11 (s, 3 H), 3.12 (s, 3 H), 4.31 (s, 1 H), 7.34-7.44 (m, 5 H); ¹³C NMR (100 MHz, CD₃C(O)CD₃) δ (major diastereoisomer) 20.0, 24.2, 24.8, 25.4, 28.2, 35.0, 45.7, 46.5, 57.4, 84.7, 86.9, 122.9, 129.5, 129.9, 132.6, 153.9, 174.0; IR (neat) 691, 757, 1037, 1070, 1090, 1174, 1285, 1392, 1414, 1443, 1465, 1670, 1713, 2869, 2928, 2956; HRMS calcd for C₁₉H₂₅N₂O₂ (M⁺ + H) 313.1911, found 313.1914.

(5S*,6S*)-5-Isobutyl-1,3,5-trimethyl-6-(2-phenylallyl)dihydropyrimidine-2,4(1H,3H)-dione (5d). Literature procedure was followed: G. A. Molander and T. Fumagalli, J. Org. Chem., 2006, 71, 5743. A 10 mL vial was charged with uracil **2h** (0.030 mmol, 1.0 equiv), potassium phenyltrifluoroborate (0.037 mmol, 1.1 equiv), K₂CO₃ (0.100 mmol, 3.0 equiv), tetrakis(triphenylphosphine)palladium (2 mol%), toluene (0.5 mL) and H₂O (0.2 mL) and stirred for 3 h at 90 °C. The reaction mixture was cooled to room temperature, MgSO₄ was added and the reaction mixture filtered through a short plug of silica. Purification by chromatography (20% EtOAc/petroleum ether) afforded the title compound as a colorless oil. Yield 75%. Dr >95:5 (crude), >95:5 (isolated). ¹H NMR (400 MHz, CD₃C(O)CD₃) δ 0.71 (d, J = 6.7 Hz, 3 H), 0.85 (d, J = 6.7 Hz, 3 H), 1.26 (s, 3 H), 1.34 (dd, J = 3.8, 14.1 Hz, 1 H), 1.48 (dd, J = 7.6, 14.1 Hz, 1 H), 1.64-1.77 (m, 1 H), 2.46 (ddd, J = 0.5, 10.5, 14.1 Hz, 1 H), 2.77 (s, 3 H), 3.05 (s, 3 H), 3.06-3.12 (m, 1 H), 3.21 (dd, J = 3.9, 10.5 Hz, 1 H), 5.14 (m, 1 H), 5.44 (d, J = 1.3 Hz, 1 H), 7.29-7.35 (m, 1 H), 7.36-7.43 (m, 2 H), 7.48-7.54 (m, 2 H); ¹³C NMR (100 MHz, CD₃C(O)CD₃) δ 19.1, 24.0, 24.5, 25.6, 27.9, 36.5, 37.9, 46.6, 46.9, 63.9, 116.8, 127.0, 128.8, 129.6, 140.7, 146.0, 152.9, 174.8; IR (neat) 707, 758, 779, 902, 1037, 1090, 1178, 1282, 1397, 1416, 1467, 1667, 1708, 2866, 2929, 2955; HRMS calcd for $C_{20}H_{29}N_2O_2$ (M⁺ + H) 329.2224, found 329.2214.

H₂¹⁸O Incorporation Experiments/Stability Studies

Scheme 4

<u>*H*</u>₂¹⁸*O Incorporation.* According to the general procedure for generation of N-acyliminiums, an oven-dried vial was charged with (5*S*,6*R*)-5-decyl-6-hydroxy-1,3,5-trimethyldihydropyrimidine-2,4(1*H*,3*H*)-dione (0.060 mmol, 1.0 equiv) and CD₂Cl₂ (0.50 mL), and BF₃•Et₂O (3 equiv) was added under a strong flow of argon with vigorous stirring. After 30 s, the reaction mixture was quenched by rapid addition of $H_2^{18}O$ (97 atom %, 0.10 mL). $H_2^{18}O$ incorporation = 37% (determined by HRMS analysis). HRMS calcd for C₁₇H₃₂N₂O₃Na (M⁺ + Na) 335.2305, found 335.2300. HRMS calcd for C₁₇H₃₂N₂O₂¹⁸O₁Na (M⁺ + Na) 337.2348, found 337.2342.

<u>Acidic Conditions.</u> In a separate experiment, an oven-dried vial was charged with (5S,6R)-5decyl-6-hydroxy-1,3,5-trimethyldihydropyrimidine-2,4(1*H*,3*H*)-dione (0.032 mmol, 1.0 equiv) and CD₃CN (0.50 mL), and DCl (0.10 mL, 35% wt in D₂O) was added under strong flow of argon with vigorous stirring. Analysis of the reaction mixture by ¹H NMR (500 MHz) indicated disappearance of the hemiaminal peaks, CD₃CN, 4.49 ppm (d, J = 5.4 Hz, minor) and 4.54 ppm (d, J = 5.4 Hz, major), and presence of a new broad peak at 8.89 ppm, consistent with the formation of an N-acyliminium ion.⁹ Rapid decomposition of the reaction mixture was observed by NMR analysis.

<u>Basic Conditions.</u> In a separate experiment, an oven-dried vial was charged with (5S,6R)-5decyl-6-hydroxy-1,3,5-trimethyldihydropyrimidine-2,4(1*H*,3*H*)-dione (0.032 mmol, 1.0 equiv) and CD₃CN (0.50 mL), and NaOD (0.10 mL, 40% wt in D₂O) was added under strong flow of argon with vigorous stirring. Analysis of the reaction mixture by ¹H NMR (500 MHz) indicated decomposition of the reaction mixture.

We thank Malcolm Spain (University of Manchester) for assistance with stability studies.

Additional Discussion. The stability studies are consistent with a rapid formation of Nacyliminiums upon exposure of the corresponding alpha-hydroxy-N-acylcarbamides to acidic conditions. In the presence of external nucleophiles opening of hemiaminals and/or Nacyliminiums to form alicyclic ureids is not observed as the nucleophilic capture outcompetes the N-acyliminium degradation. However, in the absence of external nucleophiles, these Nacyliminium ions undergo slow decomposition (several unidentified products are formed). Additionally, under basic conditions a rapid decomposition of alpha-hydroxy-N-acylcarbamides is observed. Overall, these studies are consistent with the presence of equilibria between the open and closed form of cyclic hemiaminals and/or N-acyliminiums as previously suggested by the Xray crystallographic analysis.¹ These studies suggest that the equilibrium favors cyclic Nacyliminiums under mildly Lewis acidic conditions, which allows for the efficient, highly stereoselective nucleophilic addition.

We postulate that the excellent stereoselectivity of the nucleophilic capture arises from a rigid planar structure of the cyclic N-acyliminium intermediate, in which the steric influence of substituents at the 5-position is enhanced due to non-bonding interactions compared to the traditional chair-conformation of six-membered rings.¹⁰ Further studies on the application of N-acyliminium ions are ongoing in our laboratories and these results will be reported shortly.

References

- M. Szostak, B. Sautier, M. Spain, M. Behlendorf and D. J. Procter, *Angew. Chem. Int. Ed.*, 2013, 52, 12559-12563.
- D. Parmar, L. A. Duffy, D. V. Sadasivam, H. Matsubara, P. A. Bradley, R. A. Flowers, II,
 D. J. Procter, J. Am. Chem. Soc., 2009, 131, 15467.
- 3. L. A. Duffy, H. Matsubara, D. J. Procter, J. Am. Chem. Soc., 2008, 130, 1136.
- 4. P. Girard, J. L. Namy and H. B. Kagan, J. Am. Chem. Soc., 1980, 102, 2693.
- 5. T. Imamoto and M. Ono, Chem. Lett., 1987, 501.
- 6. A. Dáhlen and G. Hilmersson, Eur. J. Inorg. Chem., 2004, 3020.
- J. A. Teprovich, Jr., P. K. S. Antharjanam, E. Prasad, E. N. Pesciotta and R. A. Flowers, II, *Eur. J. Inorg. Chem.*, 2008, 5015.
- 8. M. Szostak, M. Spain and D. J. Procter, J. Org. Chem., 2012, 77, 3049.
- 9. Y. Yamamoto, T. Nakada and H. Nemoto, J. Am. Chem. Soc., 1992, 114, 121.
- 10. E. L. Eliel and S. H. Wilen, Stereochemistry of Organic Compounds, 1994, Wiley.

SI-36

SI-39

SI-40

SI-42

SI-44

SI-45

SI-46

SI-48

SI-50

SI-51

SI-54

SI-56

SI-58