## Supporting Information

# Monte Carlo Simulations of Multigraft Homopolymers in Good Solvent 

Daniel G. Angelescu and Per Linse

We here present graphical material on the end-to-end distance corresponding, and qualitatively equal, to those of the radius of gyration presented in Figures 3, 4, 6, 7, and 8 of the main article. Furthermore, selected data of fits to eq 13 of the radius of gyration and end-to-end distance are also provided.


Figure S1. (a) End-to-end distance of side chains as $R_{\mathrm{EE}, \mathrm{sc}}$ as a function of (a) the branching density $\sigma_{\mathrm{b}}$ and (b) the grafting density $\sigma_{\mathrm{g}}$ in a log-log representation for side-chain length $N_{\mathrm{sc}}=24$ and branching multiplicity $m=1(\bullet), m=2(\bullet)$, and $m=4(■)(c f$. Figure 3).


Figure S2. Exponent $v_{\mathrm{sc}}$ as fitted from $R_{\mathrm{EE}, \mathrm{sc}} \sim N_{\mathrm{sc}}^{v_{\mathrm{sc}}}$ as a function of the grafting density $\sigma_{\mathrm{g}}$ in a loglin representation for branching multiplicity $m=1(\bullet), m=2(\bullet)$, and $m=4(\boldsymbol{\square})(c f$. Figure 4).


Figure S3. Root-mean-squared (a) radius of gyration $R_{\mathrm{G}, \mathrm{mc}}$ and (b) end-to-end distance of the main chain $R_{\mathrm{EE}, \mathrm{mc}}$ as a function of side-chain length $N_{\mathrm{sc}}$ in a lin-log representation for branching multiplicity $m=1(\bullet), m=2(\bullet)$, and $m=4(■)$ at branching density $\sigma_{\mathrm{b}}=0.041$ (solid curves), $\sigma_{\mathrm{b}}=0.125$ (dotted curves), and $\sigma_{\mathrm{b}}=0.5$ (dashed curves) and the best fits to eq 13 (curves).


Figure S4. (a) Pre-exponential factor $\kappa$ and (b) the exponential factor $v_{\mathrm{mc}}$ as a function of the grafting density $\sigma_{\mathrm{g}}$ in a $\log -\log$ representation for branching multiplicity $m=1(\bullet), m=2(\bullet)$, and $m=4(■)(c f$. Figure 6).


Figure S5. Normalized rms end-to-end distance of the main chain in a log-log representation as a function of $\sigma_{g}^{0.9} N_{\mathrm{sc}}^{V_{\mathrm{mc}}}$ for side-chain length (■) $N_{\mathrm{sc}}=6,(\bullet) N_{\mathrm{sc}}=12$, and $(\bullet) N_{\mathrm{sc}}=24$ and $\left(m, v_{\mathrm{mc}}\right)$ $=(1,0.60),(2,0.63)$, and $(4,0.65)(c f$. Figure 7$)$.


Figure S6. Radius of gyration of the main chain $R_{\mathrm{G}, \mathrm{mc}}$ as function of the grafting density $\sigma_{\mathrm{g}}$ in a $\log -\log$ representation for branching multiplicity $m=1(\bullet), m=2(\bullet)$, and $m=4(■)$ at indicated side-chain length $N_{\text {sc }}(c f$. Figure 8$)$.

