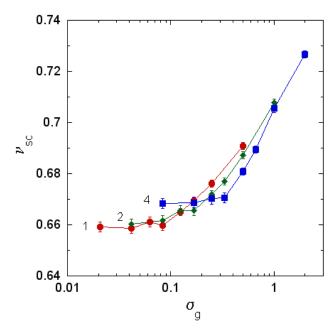
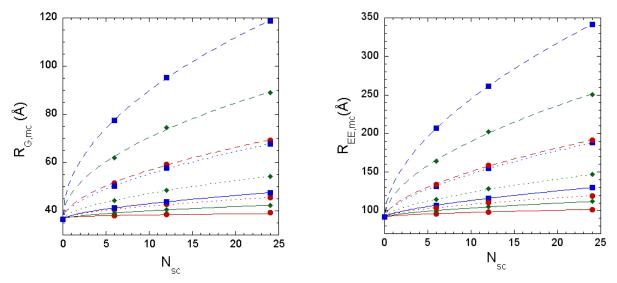
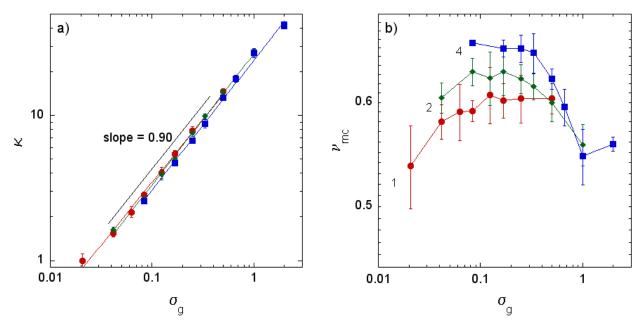
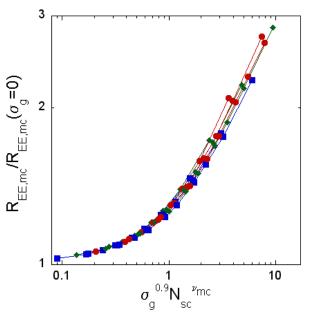

Supporting Information


Monte Carlo Simulations of Multigraft Homopolymers in Good Solvent

Daniel G. Angelescu and Per Linse


We here present graphical material on the end-to-end distance corresponding, and qualitatively equal, to those of the radius of gyration presented in Figures 3, 4, 6, 7, and 8 of the main article. Furthermore, selected data of fits to eq 13 of the radius of gyration and end-to-end distance are also provided.


Figure S1. (a) End-to-end distance of side chains as $R_{\text{EE,sc}}$ as a function of (a) the branching density $\sigma_{\rm b}$ and (b) the grafting density $\sigma_{\rm g}$ in a log-log representation for side-chain length $N_{\rm sc} = 24$ and branching multiplicity m = 1 (\bullet), m = 2 (\bullet), and m = 4 (\blacksquare) (*cf.* Figure 3).


Figure S2. Exponent v_{sc} as fitted from $R_{EE,sc} \sim N_{sc}^{v_{sc}}$ as a function of the grafting density σ_g in a loglin representation for branching multiplicity m = 1 (\bullet), m = 2 (\bullet), and m = 4 (\blacksquare) (*cf.* Figure 4).

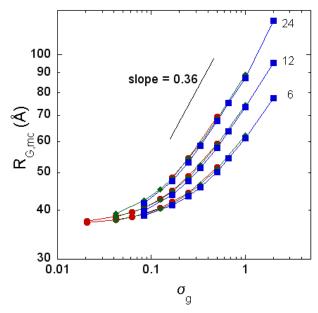

Figure S3. Root-mean-squared (a) radius of gyration $R_{G,mc}$ and (b) end-to-end distance of the main chain $R_{EE,mc}$ as a function of side-chain length N_{sc} in a lin-log representation for branching multiplicity m = 1 (\bullet), m = 2 (\bullet), and m = 4 (\blacksquare) at branching density $\sigma_b = 0.041$ (solid curves), $\sigma_b = 0.125$ (dotted curves), and $\sigma_b = 0.5$ (dashed curves) and the best fits to eq 13 (curves).

Figure S4. (a) Pre-exponential factor κ and (b) the exponential factor v_{mc} as a function of the grafting density σ_g in a log-log representation for branching multiplicity m = 1 (\bullet), m = 2 (\bullet), and m = 4 (\blacksquare) (*cf.* Figure 6).

Figure S5. Normalized rms end-to-end distance of the main chain in a log-log representation as a function of $\sigma_g^{0.9} N_{sc}^{\nu_{mc}}$ for side-chain length (**I**) $N_{sc} = 6$, (\blacklozenge) $N_{sc} = 12$, and (\blacklozenge) $N_{sc} = 24$ and (m, ν_{mc}) = (1, 0.60), (2, 0.63), and (4, 0.65) (*cf.* Figure 7).

Figure S6. Radius of gyration of the main chain $R_{G,mc}$ as function of the grafting density σ_g in a log-log representation for branching multiplicity m = 1 (\bullet), m = 2 (\bullet), and m = 4 (\blacksquare) at indicated side-chain length N_{sc} (*cf.* Figure 8).