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1. Numerical details

We numerically integrate the DAE system of Eq. 13 and Eq. 14 in MATLAB employing the

DAE-solver ode15s. It is an implicit, variable order solver. Periodic boundary conditions are used.

Spatial derivatives are calculated with first order central differencing. The spacing of grid points

is given by the distance between molecules d⊥. Simulations were performed in systems of length

L = 500 nm (Figs. 4,5,6a) and L = 1000 nm (Fig. 6b).
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2. Oxygen reduction reaction

Here, we explain that the global Butler-Volmer rate in Eq. 4 is based on an elementary kinetics

description of the rate of the oxygen reduction reaction. For first charge transfer step of the oxygen

reduction reaction (ORR) rate limiting, we predict the symmetry factor α = 1
4 . This is in good

agreement with the symmetry factor α = 0.2 for the ORR measured on glassy carbon. We take

into account the activity of dissolved oxygen aO2
and the reaction intermediate aLiO2

. Thus, we

demonstrate the dependence of the rate of the ORR on the oxygen concentration here. In the main

article, however, we work with constant oxygen pressure and assume aO2
= 1. For easy notation,

we continue to assume constant activities for lithium ions and electrons, aLi+ = ae− = 1.

The ORR reaction involves two single-electron transfer steps with lithium dioxide as the inter-

mediate species

Li++ e−+O2 −→ LiO2 (S1)

Li++ e−+LiO2 −→ Li2O2. (S2)

If the first charge transfer step is rate limiting, the second one is in equilibrium. The latter allows

us to write

kBT lna =−∆Φ+ kBT lnaLi2O (S3)

or

aLi2O = ae−
e∆Φ
kBT . (S4)

The rate limiting charge transfer should determine the overall rate [Bazant, M. Accounts of Chem-

ical Research 2013, 46, 1144],

I1 = A · I1
0

[
e−α1eη1/kBT − e(1−α1)eη1/kBT

]
, (S5)

where the superscript 1 denotes the first charge transfer step.
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In the following, we will show that the global Butler-Volmer rate (see Eq. 4) used in the article

is identical to twice the elementary reaction rate (see Eq. S5), i.e., I = 2I1, if we set

α = 0.5α1. (S6)

In our case, we describe the ORR symmetric elementary charge transfers, i.e., α1 = 1
2 , via a global

reaction rate with α = 1
4 . We restate the equilibrium potential (see Eq. 3) taking into account a

varying oxygen activity aO2

∆Φeq =−kBT
2e

ln

(
a

aO2

)
(S7)

and give the equilibrium potential ∆Φ1
eq of the first charge transfer

∆Φ1
eq =−kBT

e
ln

(
aO2

aLi2O

)
−∆Φ

= 2∆Φeq −∆Φ (S8)

making use of Eq. S4 and Eq. S7 [Bazant, M. Accounts of Chemical Research 2013, 46, 1144].

This allows us to write the overpotential of the first charge transfer step in the simple form

η1 = ∆Φ−∆Φ1
eq = 2η . (S9)

Furthermore, the global exchange current (see Eq. 6) [Bazant, M. Accounts of Chemical Research

2013, 46, 1144]

I0 =
2ek0aαa1−α

O2

γ‡
(S10)
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and the one of the first charge transfer step are related by

I1
0 =

ek1
0aα1

Li2Oa1−α1

O2

γ‡

=
ek0aαa1−α

O2

γ‡

aα

aα
O2

e2αe∆Φ/kBT

I1
0 =

1
2

I0eα2eη/kBT . (S11)

Finally, we insert the overpotential η1 (see Eq. S9) and the exchange current I1
0 (see Eq. S11) into

the Butler-Volmer rate of the first charge transfer step (see Eq. S5)

I1 = A · I1
0

[
e−α1eη1/kBT − e(1−α1)eη1/kBT

]
=

1
2

A · I0 · eα2eη/kBT
[
e−4αeη/kBT − e(2−4α)eη/kBT

]
= A · I0

[
e−α2eη/kBT − e(1−α)2eη/kBT

]
I1 =

1
2

I, (S12)

to yield half of the global Butler-Volmer rate stated in Eq. 4.

Let us finally rewrite the global Butler-Volmer rate in order to make clear its dependence on

oxygen activity

I = A
2ek0

γ‡

[
aO2

e−α2e∆Φ/kBT −aO2
e(1−α)2e∆Φ/kBT

]
. (S13)

Thus, the pressure of O2 drives the forward rate and the activity of Li2O2 drives the backward rate.

To summarize, we demonstrated that the global Butler-Volmer rate stated in Eq. 4 is an accu-

rate describtion of the ORR. Its derivation takes into account reaction intermediates as well as the

oxygen pressure. The latter is encoded in the overpotential η1 (see Eq. S9) and the exchange cur-

rent I1
0 (see Eq. S11). Because transport of molecular oxygen O2 is fast in the standard electrolytes

for Li−O2 batteries and oxygen partial pressure is kept constant during experiments, we do not

expect a significant impact of oxygen activity on the electrodeposition of Li2O2.
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3. Stability analysis

In this section, we provide additional mathematical details on the stability analysis. First, we

derive the exponential growth rate for linear instability in Eq. 17. We decompose total surface

height h̃ = h̃0 + δ h̃k̃ into height of the uniform film h̃0 and of fluctuations δ h̃k̃ of wavenumber k̃.

Their second derivative is ∂ 2δ h̃
∂ x̃2 = −k̃2δ h̃. δA = 0 vanishes because A depends on h through the

square of ∂h
∂x only. In order to determine δ (∆Φ̃)k̃, we study the effect of fluctuations in surface

height on the mean discharge current in Eq. 14

0 = δ ˜̄I =
1
L

∫ L

0
δ Ĩdx (S14)

= −δ (∆Φ̃)k̃

[
αe−α∆Φ̃0 +(1−α)a(h̃0)e(1−α)∆Φ̃0

]
− (1−α)a(h̃0)e(1−α)∆Φ̃0

L

∫ L

0
δ µ̃k̃dx,

where ∆Φ̃0 is the voltage step required for uniform growth, which solves Ĩ(h̃0, η̃0) =
˜̄I. The integral

∫ L

0
δ µ̃k̃dx =

[
∂ µ̃
∂ h̃

− k̃2 ∂ µ̃
∂ ∂ 2h̃

∂ x̃2

]∫ L

0
δ h̃k̃dx = 0 (S15)

vanishes for all k̃ > 0. Therefore, according to Eq. S14, δ (∆Φ̃)k̃ = 0 vanishes, too. We can now

calculate the dynamics of the fluctuations δ h̃k̃ from Eq. 13

∂δ h̃k̃
∂ t̃

=−δ h̃k̃a(h̃0)e(1−α)∆Φ̃0

[
∂ µ̃hom

∂ h̃
− k̃2 ∂ µ̃

∂ ∂ 2h̃
∂ x̃2

]
. (S16)

We want to substitute ˜̄I and η̃0 for a(h̃0) and ∆Φ̃0. To this aim, we write for the homogeneous base

state

˜̄I = e−α∆Φ̃0 −a(h̃0)e(1−α)∆Φ̃0

= a(h̃0)e(1−α)∆Φ̃0
[
e−∆Φ̃0−Ẽ0−µ̃(h̃0)−1

]
˜̄I = a(h̃0)e(1−α)∆Φ̃0

[
e−η̃0 −1

]
(S17)
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and rewrite Eq. S16
∂δ h̃k̃

∂ t̃
=

− ˜̄Iδ h̃k̃
exp(−η̃0)−1

[
∂ µ̃hom

∂ h̃
− k̃2 ∂ µ̃

∂ ∂ 2h̃
∂ x̃2

]
. (S18)

The exponential growth rate in Eq. 17 is

s̃(k̃; ˜̄I) =
∂δ h̃k̃

∂ t̃

δ h̃k̃
. (S19)

The marginal stability curve in Fig. 4 is determined by solving s̃ = ˜̄I for exp(−η̃0) and substituting

into Eq. 4.

In Fig. 4, we determine surface roughness ∆[h] as normalized standard deviation of h(x) ac-

cording to

∆[h] =

√
1
L

∫ L

0

(
h(x)− h̄

)2

h̄2 dx (S20)

with the mean height

h̄ =
1
L

∫ L

0
h(x)dx. (S21)
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