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Computational Details 

We executed the mitosis method for nanodroplets of 2n = 48, 76, 128, 244, and 560 water 

molecules, which, assuming bulk density, correspond to radii of 0.70, 0.81, 0.97, 1.2, and 1.6 

nm, respectively, when the sub-clusters are conjoined. The smallest system size was chosen such 

that the sub-clusters were stable (did not evaporate). Additionally, the smallest cluster is large 

enough that at least one molecule is coordinated to other molecules at all four donor and acceptor 

hydrogen bond sites.  

We performed umbrella sampling90,91 along q. Sampling along r was not biased. Within each 

window, we performed hybrid Monte Carlo molecular dynamicsS1 (MCMD). A MC move 

consists of an NVE MD trajectory. Since a TIP4P/2005 water molecule is a rigid body, it has 6 

velocity degrees of freedom, 3 translational and 3 angular. To conserve energy, the 6 center of 

mass (COM) velocities were sampled from the Boltzmann distribution (T = 300 K). Determining 

the velocity of each atom in a water molecule from the 6 COM velocities is an underdefined 

problem. This issue was overcome by using the geometry and principle axes of rotation for a 

TIP4P/2005 water molecule to construct 6 eigenvectors which related the COM velocities to the 

velocities of each atom. The net velocity of each atom was determined by summing the 

contributions from each of the 6 COM velocities. This procedure, similar to that of Page and 

McIver,S2 is necessary for energy conservation with rigid molecules. Selecting the velocities of 

each atom from the Boltzmann distribution will result in a force along the bond between atoms, 

which cannot be present in a rigid body. The SHAKE algorithmS3 will remove this force upon 

integration which removes energy from the system. More importantly, the equipartition theorem 

is not obeyed if 3N velocities are drawn when there are only 2N degrees of freedom (here N is 

the number of atoms). 
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The MC move from a state 0 to a state 1 is accepted with a probability:  
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where E is the sum of the kinetic energy, potential energy, and bias potential. We implemented 

an infinite square well bias potential in variable q. Therefore, nearly all trajectories which finish 

within the window are accepted. The average q bin size was 0.5 and windows contained 3 bins. 

When the sub-clusters were conjoined, MD trajectories were 50 fs except for 2n = 560, which 

required 20 fs trajectories to attain an ~40% acceptance rate. Longer trajectories (100-1000 fs) 

were necessary when the sub-clusters were not in contact to improve sampling in r. 

NVE dynamics were calculated in LAMMPSS4 with a time step of 1 fs. Bond lengths and bond 

angles were constrained with the SHAKE algorithm.S3 We used a 13 Å cutoff with a switching 

function from 12 to 13 Å for Lennard-Jones interactions. Calculated system properties are altered 

by the choice of the cutoff distance.89,S5 Larger cutoffs yield more accurate results. Tail 

corrections are often applied in an attempt to account for the truncated interactions. In this work, 

we do not apply a tail correction for the surface free energy as its implementation for a spherical 

interface is not straightforward. Moreover, it is unlikely that accounting for the tail correction 

would undermine our key results. Electrostatic interactions were calculated with the particle-

particle particle-mesh solver implemented in LAMMPS with an accuracy of 10-6. High accuracy 

electrostatic energy calculations were necessary to diminish energy fluctuations, which can 

adversely affect detailed balance.  

Simulations were performed with periodic boundary conditions. Box lengths were chosen such 

that each sub-cluster was at least 30 Å away from its nearest periodic image. Periodic box sizes 

ranged from 52x52x96 Å for 2n = 48 molecules to 77x77x135 Å for 2n = 560 molecules. The z-

axis is elongated to allow for separation of the sub-clusters. The sub-clusters are constrained to a 
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separation axis along the z-direction by restricting the x- and y-components of the center of mass 

of each sub-cluster to be at most 0.5 Å from the separation axis.  

Initial configurations with all of the molecules within a spherical region were generated by 

Packmol.S6 The system was then equilibrated under NVT conditions for 1 ns. Next, we 

performed preliminary unconstrained sampling of the free energy well using the MCMD 

algorithm. Based on this unconstrained simulation, we constructed an initial umbrella sampling 

window by including values of q such that the free energy was within 1.5 kBT of the well 

minimum. To ‘pull’ the cluster apart, additional umbrella sampling windows were successively 

created at lower values of q. Windows were also created to sample clusters with larger q, i.e. to 

sample clusters which are more compact than typical clusters. For each window, statistics were 

collected on both the mitosis coordinate q and the distance between the two sub-clusters r.  

The bulk density of TIP4P/2005 water at 300 K and 1 bar was determined by equilibrating 903 

water molecules in a periodic, cubic box at NPT conditions for 1 ns before performing a 

collection run of 5 ns. Temperature and pressure was controlled with a Nosé/Hoover thermostat 

and barostat with damping parameters of 100 and 1000 fs, respectively.S7-S9 We calculate the 

bulk density to be 0.9937 ± 0.0001 g/cm3, in agreement with a study conducted by Vega and de 

Miguel with a similar force field.89 The bulk surface free energy of TIP4P/2005 water at 300 K 

has been calculated by Vega and de Miguel.89 We sought to reproduce their result by using the 

same number of water molecules as in the aforementioned simulation, but with one box 

dimension extended (yielding a 30x30x100 Å3 box) and the barostat removed to create a two-

phase canonical (NVT) system. The two-phase system was equilibrated for 0.5 ns prior to a 

collection run of 5 ns. We used the pressure tensor and equation (S2) to calculated the bulk 

surface free energy, 
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where Lz is the box length in the elongated dimension and Np  and Tp  are the average normal 

and tangential components of the pressure tensor, respectively. We find that γ(∞) = 65.7 ± 0.6 

mJ/m2, in agreement with the study of Vega and de Miguel.89  

 

Free Energy Landscape 

The free energy landscape, FL(q,r), for 2n = 128 molecules is shown in Figure S1. The free 

energy is referenced to the landscape minimum, which occurs when the sub-clusters are 

conjoined. Configurations are included as insets in Figure S1 to illustrate the separation process. 

Starting from the state with the sub-clusters united, the bridge between the two sub-clusters 

becomes more constricted as the order parameter decreases. The snapshots visually reinforce a 

reversible separation of the sub-clusters along q. The free energy landscape near (q = 1, r/Å = 

22) shows evidence of potential hysteresis effects that could occur if the sub-clusters are 

separated or combined along r alone.  
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Figure S1. The free energy landscape, FL(q,r), for 2n = 128 molecules. The insets are 

configurations at the indicated points. Oxygen atoms are red and hydrogen atoms muted in off 

white for clarity.  

When q is integrated to obtain FL(r), the lowest free energy state in each r bin makes the most 

significant contribution. In the region of intermediate sub-cluster separation, the lowest free 

energy bin we sampled corresponds to the highest q value. This is apparent from 10 < r/Å < 20 

in Figure S1 by moving from left to right at fixed r. Therefore, we may not have sampled the 

lowest free energy state at fixed r, which means that the potential of mean force we recover is 

likely different from the true FL(r).  

We argue that the FL(r) we obtain produces accurate estimates of ∆Fmit because the sub-cluster 

separation is reversible and we adequately sample states in the free energy well and plateau of 

FL(r). A reversible separation ensures that the free energy change between different states is 

accurate. Since the Helmholtz free energy change is a state function, it is independent of any 

intermediate states. Thus, sampling the minimum free energy state at fixed r between the well 

and plateau of FL(r) is unnecessary so long as the description of the well and plateau is accurate. 

We use 2n = 128 as an example case. For r < 10 Å, we sample the minimum free energy state 

with respect to a fixed r (Figure S1). Thus, the shape of FL(r) near its minimum is accurate. 

Above r = 25 Å, the sub-clusters are fully separated and at fixed r, the free energy increases 

rapidly as q increases, indicating that we have sampled the minimum free energy state for that 

value of r. Therefore, the free energy well and plateau in FL(r) are accurate and since the sub-

clusters are separated reversibly, the depth of the free energy well is also accurate. The 

Helmholtz free energy change is given in eq (5). The only significant contributions to the integral 
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come from the minimum free energy states (Figure S2), which are accurately described by the 

FL(r) we recover. Therefore, the Helmholtz free energy changes we calculate are accurate. 

 

Figure S2. The percent contribution to the integral in eq (5) by each r bin for 2n = 128. 

 

Significance of a second order term in the Tolman equation 

We aim to determine if a second order term46,61,82,83 in the Tolman equation (eq (S3)) is needed 

to explain our results. 
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where κ is a temperature dependent constant. Following the analysis put forth in the letter but 

with eq (S3) in place of eq (3), we find the Tolman length is -0.66 Å and κ = -0.010 nm2. The fit 

to our data with the Tolman correction is shown in black in Figure S3. The red line is the fit with 

eq (S3). Within the error of our calculations, we cannot determine if the second order correction 

is significant. 
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Figure S3. Comparison of one and two parameter fits to the data. The black line is a fit with the 

Tolman equation. The red line is a fit utilizing eq (S3). 

 

Broken Bond Model 

A negative Tolman length, which indicates that a droplet will have a higher surface free energy 

than an equally sized bubble, can be explained by the broken bond model.102 A droplet can 

hypothetically be created by removing molecules from the bulk. In Figure S4, this would be the 

removal of the black and interior gray circles. The energy required to accomplish the removal is 

proportional to the number of bonds that are broken with the surrounding environment. 

Removing the droplet leaves behind a bubble. The energy required to remove the droplet is the 

same as that required to form a bubble because the same bonds are broken in each scenario. Note 

that the bubbles we refer to are actually a vacuum, but we assume that gaseous molecules within 

this void, due to a much lower density, would have a negligible effect on the number of broken 

bonds. According to the broken bond model, the surface free energy is proportional to the 
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number of bonds that are broken.102 Clearly, the droplet will have a higher surface free energy 

per surface molecule than the bubble.  

Significant fluctuations and small shell volumes make determining the location of a dividing 

surface extremely difficult for nanoscale droplets by statistical mechanical methods. We suggest 

that likely choices for the droplet and bubble interfaces tend toward the center of mass of the 

surface molecules (green and blue lines in Figure S4, respectively). As a result, the droplet has 

less surface area than the bubble. Therefore, the droplet has a greater surface energy per area 

than the droplet (i.e. δ < 0). In the limit of infinitely large droplets and bubbles, the broken bond 

model predicts the surface energies converge to the bulk value.  

 

Figure S4. Diagram illustrating likely interfaces for a droplet (green line) and bubble (blue line) 

based on removal of the black and interior gray circles. Red circles represent the surface layer of 

a bubble, black circles represent the surface layer of the droplet, and gray circles represent bulk 

character.  

F* and R* in δ-CNT  
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Heermann recognized that CNT can be modified by accounting for the Tolman correction to 

the surface free energy.103 Using the unexpanded form of the Tolman equation, 
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he derived results for the critical cluster size and barrier height without making any 

simplifications. To more readily realize the importance of the Tolman correction in CNT, we 

present the Tolman corrected CNT (δ-CNT) predictions of the critical cluster size and barrier 

height to first-order in δ/R*CNT. We present a slightly different derivation than Heerman as we 

employ eq (3) in lieu of eq (S4) for the Tolman equation. As eq (3) is just an expansion of eq 

(S4), the expressions we present match those of Heermann to first-order in δ/R*CNT. Utilizing 

these first-order expressions will yield different results depending on the choice of eqs (3) or 

(S4) to calculate δ.  

CNT describes the nucleation of spherical clusters from a parent phase as follows,  

 3 2
CNT

4
( ) 4 ( )

3
F R R Rπ ρ µ π γ= − ∆ + ∞  (S5) 

According to CNT, the critical cluster size is, 
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and the height of the free energy barrier is, 
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We insert the Tolman equation into CNT and obtain 
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To calculate the critical size, we set the first derivative (with respect to R) of eq (S8) equal to 

zero and non-dimensionalize to arrive at 
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We solve eq (S9) with the quadratic formula and truncate a Taylor expansion to leading order in 

δ/R*CNT, 
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We solve for the height of the free energy barrier by inserting eq (S10) into eq (S8). We truncate 

Taylor expansions to first order in δ/R*CNT and non-dimensionalize by the barrier height 

predicted by CNT, 
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We find that, for water, the first order expansion in δ/R*CNT is in good agreement with exact 

values obtained from the δ-CNT (Figure S5). By exact values, we are referring to applying eq (3) 

to δ-CNT without truncating the expressions. As the supersaturation, S, increases, eq (S11) 

begins to deviate from the exact values. However, F*CNT decreases rapidly as the supersaturation 

increases. As a result, the first order expression, eq (S11), underestimates the barrier height by 

only ~2 kBT, regardless of supersaturation. 
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Figure S5. Comparison of the exact solution and first order expression, eq (S11), for the barrier 

height in δ-CNT for TIP4P/2005 water. 
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