Adsorption of Dibenzothiophene and Fluorene on $TiO_2(110)$ and Supported Ag clusters

Elizabeth R. Webster, Aileen Park, Miranda B. Stratton, Victoria C. Park, Amber M. Mosier, Ryan S. Shine, and Lauren Benz*

Department of Chemistry and Biochemistry, University of San Diego, CA 92110

*Tel.: 619-260-4117. Fax: 619-260-2211. E-mail: laurenbenz@sandiego.edu.

Figure S1: Ti 2p XPS spectra of (A) a clean bombarded and annealed $TiO_2(110)$ surface with relative percentages of Ti^{4+} (79%), $Ti^{3+}(15\%)$, and $Ti^{2+}(6\%)$ and (B) the same region on a DBT/TiO₂(110) surface following exposure to 6 ML DBT. The differences seen in the distribution of ionic Ti are within the error of the XPS fitting procedure (no strong interaction indicated here between DBT and Ti surface species).

Figure S2: XPS spectrum of a clean TiO_2 surface (in black), and a spectrum following deposition of Ag (10% relative to Ti, red). The Ag $3d_{3/2}$ and Ag $3d_{5/2}$ peaks appeared at 374 eV and 368 eV, respectively.

Figure S3: XPS spectra of (A) the C 1s region and (B) the S 2p region following deposition of 2.5 ML DBT on a Ag/TiO₂(110) surface. The C 1s peak is located at 284 eV, and the S 2p peak is at 164 eV, similar to that of the surface without Ag.

Figure S4: C 1s XPS spectra of the C 1s region following deposition of 1.5 ML fluorene on a $Ag/TiO_2(110)$ surface. The C 1s peak is located at 284 eV, similar to that of the surface without Ag.