Supplementary Information

'Naked' and Hydrated Conformers of the Conserved CorePentasaccharide of N -linked Glycoproteins and its Building Blocks

Conor S. Barry, ${ }^{\dagger}, \#$ Emilio J. Cocinero, ${ }^{\ddagger, 1, \#}$ Pierre Çarçabal, ${ }^{\S, \#}$ David P. Gamblin, ${ }^{\dagger},{ }^{\dagger}$ E. Cristina Stanca-Kaposta, ${ }^{\ddagger, 2}$ Sarah M. Remmert, ${ }^{+}$María C. Fernández-Alonso, ${ }^{\|}$ Svemir Rudić, ${ }^{\dagger, \ddagger}$ John P. Simons** ${ }^{*+\hbar}$ and Benjamin G. Davis*, ${ }^{\dagger}$
${ }^{\dagger}$ Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
${ }^{\dagger}$ Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ UK
§ Institut des Sciences Moléculaire d'Orsay-CNRS, Université Paris Sud, 91405 Orsay Cedex, France.
${ }^{\text {II }}$ Centro de Investigaciones Biológicas. Calle Ramiro de Maeztu, 9, 28040, Madrid, Spain.

John.Simons@chem.ox.ac.uk,Ben.Davis@chem.ox.ac.uk

Table of Contents

Supplementary Results S3
Synthetic Schemes S3
Photoionisation and time of flight mass spectra of 1-4. S5
Lowest energy structures, relative- and free energies of $\mathbf{1}$ and $\mathbf{1} \cdot \mathbf{H}_{\mathbf{2}} \mathbf{O}$. S7
Lowest energy structures, relative- and free energies of $\mathbf{2}, \mathbf{2} \cdot \mathbf{H}_{\mathbf{2}} \mathbf{O}, \mathbf{2}$-B S9
and $\mathbf{2}-\mathbf{B} \cdot \mathbf{H}_{2} \mathbf{O}$.
Lowest energy structures, relative- and free energies of $\mathbf{3}$ and $\mathbf{3}-\mathbf{B}$. S12
Hydrogen bonding distributions of 4, obtained from MM/OPLS2005 calculations. S14
Molecular shape/size distributions of $\mathbf{4}$ obtained from MM/OPLS2005 calculations. S15
Supplementary Methods S17
General Experimental S17
Computational Strategies S20
Conformational Analysis of 4 S21
Supplementary chemistry schemes, synthesis and characterization S23
General Synthetic Considerations S23
Synthesis of Compound 1 S24
Synthesis of Compound 2 S40
Synthesis of Compound $\mathbf{3}$ S50
Synthesis of Compound 4 S60
References S91
NMR spectra S93

Supplementary Results

Synthetic Schemes

Full synthetic scheme detailing the synthesis of compounds $\mathbf{1 , 2}$ and $\mathbf{3}$.

Supplementary Figure S1. Reagents \& conditions: a) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, rt, 67\%; b) EtSH, TMS-OTf, DCM, rt, 80%; c) NaOMe, MeOH, rt, 99%, d) benzaldehyde dimethylacetal, TsOH, MeCN, rt, 94%; e) i: NaH, DMF, rt, ii: BnBr, TBAI, DMF, 91%; f) NBS, acetone $/ \mathrm{H}_{2} \mathrm{O},-10^{\circ} \mathrm{C}$; g) $\mathrm{Cl}_{3} \mathrm{CCN}, \mathrm{DBU}, \mathrm{DCM}, \mathrm{rt}, 84 \%$ over two steps; h) $\mathrm{NaBH}_{3} \mathrm{CN}, \mathrm{HCl} /$ dioxane, THF, $0^{\circ} \mathrm{C}-\mathrm{rt}, 82 \%$; i) TMS-OTf, DCM, $-78^{\circ} \mathrm{C}, 95 \%$; j) $\mathrm{PhOH}, \mathrm{NIS}, \mathrm{TMS}-\mathrm{OTf}, \mathrm{DCM}, 4 \AA \mathrm{MS},-10^{\circ} \mathrm{C}, 37 \%$; k) 1,2-ethylenediamine, BuOH , Δ; 1) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, 66% over two steps; m) $\left.\mathrm{H}_{2}, \mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{EtOH} ; \mathrm{n}\right) \mathrm{Ac}_{2} \mathrm{O}$, pyridine, 92% over two steps; o) $\mathrm{NaOMe}, \mathrm{MeOH}, 94 \%$; p) NIS, TMSOTf, $4 \AA \mathrm{MS}, 88 \%$; q) $\mathrm{H}_{2} \mathrm{NNH}_{2}$. $\mathrm{HOAc}, \mathrm{MeOH}, 55^{\circ} \mathrm{C}, 95 \%$; r) $\mathrm{Tf}_{2} \mathrm{O}$, DCM, pyridine; s) $\mathrm{Bu}_{4} \mathrm{~N} . \mathrm{OAc}$, toluene,))), 84% over two steps; t) $\mathrm{H}_{2}, \mathrm{Pd}(\mathrm{OH})_{2}$, EtOH; u) 1,2-ethylenediamine, BuOH, Δ; v) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, 74% over three steps; w) $\mathrm{NaOMe}, \mathrm{MeOH}, 94 \%$; x) $\mathrm{NaBH}_{3} \mathrm{CN}$, $\mathrm{HCl} /$ dioxane, THF, $0^{\circ} \mathrm{C}-\mathrm{rt}, 80 \%$; y) MeOTf, DCM, $4 \AA \mathrm{MS}, 75 \%$; z) i $\mathrm{H}_{2} \mathrm{NNH}_{2} . \mathrm{HOAc}, \mathrm{MeOH}, 55{ }^{\circ} \mathrm{C}$; ii - $\mathrm{Tf}_{2} \mathrm{O}, \mathrm{DCM}$, pyridine; iii - $\mathrm{Bu}_{4} \mathrm{~N} . \mathrm{OAc}$, toluene,))), 68% over three steps; aa) $\mathrm{H}_{2}, \mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{EtOH}$; bb) 1,2 -ethylenediamine, BuOH, Δ; cc) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, 94% over three steps; dd) $\mathrm{NaOMe}, \mathrm{MeOH}, 86 \%$.

Full synthetic scheme detailing the completion of the synthesis of 4.

Supplementary Figure S2. Reagents \& conditions: a) TMS-OTf, DCM, $-78^{\circ} \mathrm{C}, 76 \%$; b) LevOH, DIC, DCM, 94%; c) $\mathrm{NaBH}_{3} \mathrm{CN}, \mathrm{HCl} /$ dioxane, THF, $0^{\circ} \mathrm{C}-\mathrm{rt}, 91 \%$; d) $\mathrm{Ph}_{2} \mathrm{O}$, $\mathrm{Tf}_{2} \mathrm{O}$, DTBMP, DCM, $-40{ }^{\circ} \mathrm{C}-\mathrm{rt}, 64 \%$; e) $\mathrm{H}_{2} \mathrm{NNH}_{2}$. $\mathrm{HOAc}, \mathrm{MeOH}, 55{ }^{\circ} \mathrm{C}, 64 \%$; f) $\mathrm{Tf}_{2} \mathrm{O}$, DCM, pyridine; g) Bu ${ }_{4}$ N.OAc, toluene,))), 88% over two steps; h)TsOH. $\mathrm{H}_{2} \mathrm{O}$, $\mathrm{MeOH}, ~ 1,4$-Dioxane, $85{ }^{\circ} \mathrm{C}, 92 \%$; i) $\mathbf{1 8}$, TMS-OTf, DCM, $-40{ }^{\circ} \mathrm{C}, 85 \%$; j) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine; k) PhOH, NIS, TMS-OTf, DCM, $4 \AA$ MS, $-10^{\circ} \mathrm{C}, 48 \%$ over two steps; 1) 1,2-ethylenediamine, MeOH, Δ, then $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, 80% over two steps; m) H_{2}, $\left.\mathrm{Pd}(\mathrm{OH})_{2}-\mathrm{C}, \mathrm{MeOH}, 97 \% ; \mathrm{n}\right) \mathrm{NaOMe}, \mathrm{MeOH}, 88 \%$.

Photoionisation and time of flight mass spectra of 1-4.

Resonant 2-photon ionisation (R2PI) spectra of 2, 3 and 4 were recorded in their parent ion channels. The two-colour photo-ionisation spectrum of $\mathbf{1}$ was recorded with $\omega 1$ fixed at $36,232 \mathrm{~cm}^{-1}$ while $\omega 2$ was scanned.

B A
1

Supplementary Figure S3. Two-colour photo-ionisation spectrum of 1, and R2PI spectra of 2,3 and 4.

Supplementary Figure S4. Time of flight photoionisation mass spectra of 1-4.

Lowest energy structures, relative- and free energies of 1 and $\mathbf{1} \cdot \mathbf{H}_{\mathbf{2}} \mathbf{O}$.

Calculated structures of $\mathbf{1}$ (GlcNAc- β-1,4-GlcNAc- β-1-OPh) and it's mono-hydrate $\mathbf{1} \cdot \mathbf{H}_{\mathbf{2}} \mathbf{O}$. Calculated optimised structures were calculated using DFT (B3LYP/6$311+\mathrm{G}^{*}$). Relative energies ($\mathrm{kJ} \mathrm{mol}^{-1}$), calculated using single point B3LYP//MP2/6$311++G^{* *}$, and corrected for zero point and free energy using the frequency calculations performed at the B3LYP level are shown in square brackets. Dihedral angles $\mathrm{H} 1_{\mathrm{B}}-\mathrm{C} 1_{\mathrm{B}}-\mathrm{O} 1_{\mathrm{B}}-\mathrm{C} 4_{\mathrm{A}}$ and $\mathrm{C}_{\mathrm{B}}-\mathrm{O} 1_{\mathrm{B}}-\mathrm{C}_{4}-\mathrm{H} 4_{\mathrm{A}}$ are denoted by φ, ψ respectively.

1

(i)

(ii)

Supplementary Figure S5. (i) The computed lowest energy structures of 1; relativeand free-energies (in brackets) are in $\mathrm{kJ} \mathrm{mol}^{-1}$ and dihedral angles (φ and ψ) are in degrees. (ii) The experimental (IRID) and computed vibrational spectra of the four lowest energy conformers. Note: the first and third structures only differ in the orientation of the phenyl ring.

[0.0; 0.0] $\quad \Phi=34^{\circ} ; \Psi=-50^{\circ}$

[0.7; 1.3] $\quad \Phi=28^{\circ} ; \Psi=-27^{\circ}$

[0.6; 5.3] $\quad \Phi=38^{\circ} ; \Psi=-68^{\circ}$

[1.5; 0.1] $\quad \Phi=32^{\circ} ; \Psi=-19^{\circ}$
(i)

[4.5; 8.0] $\quad \Phi=162^{\circ} ; \Psi=2^{\circ}$
(ii)

Supplementary Figure S6. The computed lowest energy structures of (i), trans $\mathbf{1} \cdot \mathbf{H}_{\mathbf{2}} \mathrm{O}$ and (ii) cis $\mathbf{1} \cdot \mathbf{H}_{\mathbf{2}} \mathbf{O}$. Relative energies and free-energies (in brackets) are in kJ mol^{-1}; dihedral angles (φ and ψ) are in degrees.

Lowest energy structures, relative- and free energies of $\mathbf{2}, \mathbf{2} \cdot \mathbf{H}_{\mathbf{2}} \mathrm{O}, \mathbf{2}-\mathrm{B}$ and $2-\mathrm{B} \cdot \mathrm{H}_{2} \mathrm{O}$.

Calculated structures of $\mathbf{2}$ (Man- $\beta-1,4-\mathrm{GlcNAc}-\beta-1-\mathrm{OPh}$), its mono-hydrate $\mathbf{2} \cdot \mathbf{H}_{\mathbf{2}} \mathbf{O}$, the blocked disaccharide 2-B (Man(6-OMe)- $\beta-1,4-\mathrm{GlcNAc}-\beta-1-\mathrm{OPh})$ and its monohydrate $\mathbf{2 - B} \cdot \mathbf{H}_{\mathbf{2}} \mathbf{O}$. Optimised structures were calculated using DFT (B3LYP/6$311+\mathrm{G}^{*}$). Relative and free energies ($\mathrm{kJ} \mathrm{mol}^{-1}$ shown in square brackets) were calculated using single point B3LYP//MP2/6-311++G**. Dihedral angles $\mathrm{H}_{\mathrm{C}}-\mathrm{C1}_{\mathrm{C}}-$ $\mathrm{O} 1_{C}-\mathrm{C} 4_{\mathrm{B}}$ and $\mathrm{C} 1_{C}-\mathrm{O} 1_{C}-\mathrm{C} 4_{\mathrm{B}}-\mathrm{H} 4_{\mathrm{B}}$ are denoted by φ, ψ respectively.

$[0.0 ; 0.0] \quad \Phi=170^{\circ} ; \Psi=4^{\circ}$

$$
[0.0,0.0] \quad 9-110, \Psi=4
$$

[9.9; 9.0]

$$
\Phi=41^{\circ} ; \Psi=-72^{\circ}
$$

2

Supplementary Figure S7. The computed lowest energy structures of 2; relative- and free-energies (in brackets) are in $\mathrm{kJ} \mathrm{mol}^{-1}$, dihedral angles (φ and ψ) are in degrees.

$[0.0 ; 4.5] \quad \Phi=42^{\circ} ; \Psi=-93^{\circ}$

[0.9; 3.8] $\Phi=40^{\circ} ; \Psi=-90^{\circ}$

[2.9; 3.6] $\Phi=156^{\circ} ; \Psi=3^{\circ}$

Supplementary Figure S8. The computed lowest energy structures of $\mathbf{2} \cdot \mathbf{H}_{\mathbf{2}} \mathbf{O}$ (relative- and free-energies (in brackets) are in $\mathrm{kJ} \mathrm{mol}^{-1}$, dihedral angles (φ and ψ) are in degrees). Note: Calculated for the $-O$-benzyl glycoside.

$[0.0 ; 0.0] \quad \Phi=35^{\circ} ; \Psi=-40^{\circ}$

[1.8; 3.7] $\quad \Phi=36^{\circ} ; \Psi=-44^{\circ}$

$[0.9 ; 0.0] \quad \Phi=38^{\circ} ; \Psi=-33^{\circ}$

[2.0; 2.3] $\quad \Phi=50^{\circ} ; \Psi=-12^{\circ}$

Supplementary Figure S9. The computed lowest energy structures of 2-B (relativeand free-energies (in brackets) are in $\mathrm{kJ} \mathrm{mol}^{-1}$, dihedral angles (φ and ψ) are in degrees).

[0.0; 0.0]
$\Phi=36^{\circ} ; \Psi=-38^{\circ}$

[1.0; 0.9] $\quad \Phi=36^{\circ} ; \Psi=-37^{\circ}$

[2.9; 5.3] $\quad \Phi=54^{\circ} ; \Psi=13^{\circ}$
Supplementary Figure S10. The computed lowest energy structures of $\mathbf{2 - B} \cdot \mathbf{H}_{\mathbf{2}} \mathbf{O}$ (relative- and free-energies (in brackets) are in $\mathrm{kJ} \mathrm{mol}^{-1}$, dihedral angles (φ and ψ) are in degrees).

Lowest energy structures, relative- and free energies of 3 and 3-B.

Calculated structures of 3 (Man- β-1,4-GlcNAc- $\beta-1,4-\mathrm{GlcNAc}-\beta-1-\mathrm{OPh}$) and it's blocked trisaccharide 3-B (Man(6-OMe)- $\beta-1,4-\mathrm{GlcNAc}-\beta-1,4-\mathrm{GlcNAc}-\beta-1-\mathrm{OPh}$). Calculated optimised structures and relative and free energies $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right.$ shown in square brackets) were calculated using DFT (M06-2X/6-31+G*). Free energies were determined at 298 K . Dihedral angles $\mathrm{H} 1_{\mathrm{C}}-\mathrm{C1}_{\mathrm{C}}-\mathrm{O} 1_{\mathrm{C}}-\mathrm{C} 4_{\mathrm{B}}, \mathrm{C} 1_{\mathrm{C}}-\mathrm{O} 1_{\mathrm{C}}-\mathrm{C} 4_{\mathrm{B}}-\mathrm{H} 4_{\mathrm{B}}, \mathrm{H}_{\mathrm{B}}-$ $\mathrm{C}_{\mathrm{B}}-\mathrm{O} 1_{\mathrm{B}}-\mathrm{C} 4_{\mathrm{A}}$ and $\mathrm{C}_{\mathrm{B}}-\mathrm{O} 1_{\mathrm{B}}-\mathrm{C} 4_{\mathrm{C}}-\mathrm{H} 4_{\mathrm{C}}$ are denoted by $\varphi_{1}, \psi_{1}, \varphi_{2}$ and ψ_{2} respectively.

3

$\phi_{1}=157 ; \psi_{1}=6$ and $\phi_{2}=170 ; \psi_{2}=3 \quad[0.0 ; 0.0]$

$\phi_{1}=51 ; \psi_{1}=-5$ and $\phi_{2}=174 ; \psi_{2}=-1$
[12.2; 7.8]
(a)

(b)

Supplementary Figure S11. (a) The computed lowest energy structures of $\mathbf{3}$ (relative- and free-energies (in brackets) are in $\mathrm{kJ} \mathrm{mol}^{-1}$, dihedral angles (φ and ψ) are in degrees). (b) The experimental (IRID) and computed vibrational spectra of the two lowest energy conformers.

$\Phi_{1}=39 ; \psi_{1}=-35$ and $\Phi_{2}=43 ; \psi_{2}=177 \quad[0.0 ; 0.0]$

$\Phi_{1}=36 ; \Psi_{1}=-40$ and $\Phi_{2}=24 ; \Psi 2=-34 \quad[8.8 ; 10.2]$

$\Phi_{1}=38 ; \psi_{1}=-38$ and $\Phi_{2}=43 ; \psi_{2}=177 \quad[4.5 ; 4.0]$

$\Phi_{1}=37 ; \Psi_{1}=-38$ and $\Phi_{2}=30 ; \psi_{2}=-26 \quad[8.8 ; 10.5]$

Supplementary Figure S12. The computed lowest energy structures of 3-B (relative- and free-energies (in brackets) are in $\mathrm{kJ} \mathrm{mol}^{-1}$, dihedral angles (φ and ψ) are in degrees).

Hydrogen bonding distributions of 4, obtained from MM/OPLS2005

 calculations (see pp. S21-S22)An analysis of the number of hydrogen bonds $\left(\mathrm{r}[\mathrm{OH} \cdot \cdot \mathrm{O}]>2.5 \AA, \theta[\mathrm{OH} \cdot \mathrm{O}]>120^{\circ}\right)$ present for each converged structure within $30 \mathrm{~kJ} / \mathrm{mol}$ of the global minimum was conducted for $\mathbf{4}$ in the gas phase, explicitly hydrated with three water molecules, and in bulk water (Supplementary Figure S13). An optimum of 6-8 intra-molecular hydrogen bonds was found in the gas phase structures. The addition of three water molecules was seen to increase the importance of hydrogen bonding in the low energy structures, allowing for an optimal number of 10-13 hydrogen bonds (including bonds to the water molecules). In the bulk simulation intra-molecular hydrogen bonds are replaced with hydrogen bonds to the bulk solvent. The optimum number of intramolecular hydrogen bonds was seen to decrease to just 2-4 in the low energy ensemble.

Supplementary Figure S13. Hydrogen bonding patterns for 4 in (a) gas phase, (b) explicitly hydrated, and (c) bulk water.

Molecular shape/size distributions of 4, obtained from

 MM/OPLS2005 calculations (see pp. S21-S22)In addition to using the longest intramolecular distances as an indicator of the molecular conformations (main text), the molecular length and width of the core pentasaccharide (without the O-phenyl glycoside) were also measured by identifying an approximate length (the distance between $\mathrm{C1}_{\mathrm{A}}$ of GlcNAc and $\mathrm{C} 4_{\mathrm{C}}$ of the bridging mannose) and an approximate width (the distance between C 4 of the C 3 -linked mannose and $\mathrm{C} 3_{\mathrm{E}}$ of the C 6 linked mannose) (Supplementary Figure S14). In the gas phase the shortest molecular length distribution indicates compact structures which become increasingly extended in explicitly hydrated and bulk water simulations. The explicitly hydrated core-pentasaccharide $\mathbf{4}$ shows a bimodal distribution which reflects the potential for mannose-E to fold back to interact with the chitobiose stem, although there is no conserved water insertion structure associated with each distribution.

Supplementary Figure S14: (a) Approximate molecular length and (b) approximate molecular width of the core pentasaccharide 4 in bulk water (black), explicitly hydrated (green) and in the gas phase (red).

The molecular widths provide an approximate estimate of how widely separated the branching mannose groups are from each other, even if this separation is achieved by folding back along the chitobiose stem. The bulk water structures show decreased flexibility and the largest separation of the mannose head groups. The explicitly hydrated width varies with a bimodal distribution; the longer distance
relates to structures where the mannose-E head group folds back in interaction with the chitobiose stem creating a larger perceived width. The gas phase structures, and the majority of the explicitly hydrated structures, favour compact conformations in comparison to those adopted in bulk solution.

Supplementary Methods

General Experimental

Optical rotations were measured on a Perkin-Elmer 241 polarimeter with a path length of 1.0 dm and are reported with implied units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. Concentrations (c) are given in $\mathrm{g} / 100 \mathrm{~mL}$.

Melting points (m.p.) were recorded on a Leica Galen III hot stage microscope equipped with a Testo 720 thermocouple probe and are uncorrected.

Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra were recorded on a Bruker DPX400 (400 MHz), a Bruker AV400 (400 MHz) or a Bruker AVII500 (500 MHz) spectrometer, as indicated. Carbon nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectra were recorded on a Bruker AV400 $(100 \mathrm{MHz})$ spectrometer or on a Bruker AVII500 (125 MHz) spectrometer, as indicated. NMR Spectra were fully assigned using COSY, HSQC, HMBC and DEPT 135. All chemical shifts are quoted on the δ scale in ppm using residual solvent as the internal standard $\left({ }^{1} \mathrm{H}\right.$ NMR: $\mathrm{CDCl}_{3}=7.26$, $\mathrm{CD}_{3} \mathrm{OD}=4.87 ; \mathrm{DMSO}-d_{6}=2.50$ and ${ }^{13} \mathrm{C}$ NMR: $\mathrm{CDCl}_{3}=77.0 ; \mathrm{CD}_{3} \mathrm{OD}=49.0$; DMSO- $d_{6}=39.5$). Coupling constants (J) are reported in Hz with the following splitting abbreviations: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=\operatorname{triple}, \mathrm{q}=$ quartet, quin $=$ quintet, and $\mathrm{a}=$ apparent.

Infrared (IR) spectra were recorded on a Bruker Tensor 27 Fourier Transform spectrophotometer using thin films on NaCl plates for liquids and oils and KBr discs for solids and crystals. Absorption maxima ($v_{\max }$) are reported in wavenumbers $\left(\mathrm{cm}^{-1}\right)$ and classified as strong (s) or broad (br).

Low resolution mass spectra (LRMS) were recorded on a Waters Micromass LCT Premier TOF spectrometer using electrospray ionization (ESI) and high resolution mass spectra (HRMS) were recorded on a Bruker MicroTOF ESI mass spectrometer. Nominal and exact m / z values are reported in Daltons.

Thin layer chromatography (TLC) was carried out using Merck aluminium backed sheets coated with $60 \mathrm{~F}_{254}$ silica gel. Visualization of the silica plates was achieved using a UV lamp ($\lambda \max =254 \mathrm{~nm}$), and/or acid dip $\left(1: 1 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 10 \% \mathrm{H}_{2} \mathrm{SO}_{4}\right)$ and/or ammonium molybdate 5% in $2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$, and/or potassium permanganate (5% KMnO_{4} in 1 M NaOH with 5% potassium carbonate). Column chromatography was carried out using BDH PROLAB ${ }^{\circledR} 40-63 \mathrm{~mm}$ silica gel (VWR). Mobile phases are reported in ratio of solvents (e.g. 4:1 petrol/ ethyl acetate)

Anhydrous solvents were purchased from Fluka or Acros with the exception of dichloromethane and THF, which were dried over alumina cartiges. All other solvents were used as supplied (Analytical or HPLC grade), without prior purification. Distilled water was used for chemical reactions and Milli- $\mathrm{Q}^{\text {TM }}$ purified water for protein manipulations. Reagents were purchased from Sigma Aldrich and used as supplied, unless otherwise indicated. 'Petrol' refers to the fraction of light petroleum ether boiling in the range $40-60^{\circ} \mathrm{C}$. All reactions using anhydrous conditions were performed using flame-dried apparatus under an atmosphere of argon or nitrogen. $3 \AA$ and $4 \AA$ molecular sieves were activated by heating in a $400^{\circ} \mathrm{C}$ furnace and were also employed for anhydrous reactions. Brine refers to a saturated solution of sodium chloride. Anhydrous magnesium sulfate $\left(\mathrm{MgSO}_{4}\right)$ or sodium sulfate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ were used as drying agents after reaction workup, as indicated. DOWEX 50WX8 (H^{+}form) was conditioned as follows: 100 g of the commercial resin was placed in a 500 mL sintered filter funnel and allowed to swell with 200 mL of acetone for 5 minutes. The solvent was removed by suction and the resin was washed successively with 800 mL of acetone, 500 mL methanol, 500 mL 5 M HCl , and then 1 L of water or until the pH of filtrate was ~ 7, as indicated by pH paper. The resin was partially dried on the filter and then stored and used as needed.

Molecular beam spectroscopy of carbohydrates was performed as follows. The carbohydrates were mixed with graphite powder or carbon black, and vaporized into a supersonic jet of argon using a home-built laser desorption system. The expanding jet passed through a 2 mm skimmer to create a collimated molecular beam which intersected tuneable UV and IR laser beams in the extraction region of a linear time-
of-flight mass spectrometer (Jordan). One, or two colour, mass-selected photoionisation spectra, recorded using a frequency-doubled pulsed Nd:YAG-pumped dye laser operating at 10 Hz , were followed by conformer-specific spectroscopy in the UV and IR using UV-UV and IR-UV ion dip (IRID) double resonance spectroscopy. The tuneable IR radiation was provided by a second dye laser using difference frequency generation in a LiNbO_{3} crystal (Continuum Powerlite 8010/ND6000/IRP module) or directly, using an OPO/OPA laser system (LaserVision). The delay between the pump and the probe laser pulses was $\sim 150 \mathrm{~ns}$ in both the IRID and UVUV double resonance experiments.

Computational Strategies

The structural conformational search followed an iterative approach. The spectroscopic calculations began with completely unrestricted and exhaustive surveys of the conformational landscapes of each of the carbohydrate 'building blocks', and their singly hydrated complexes, using a molecular mechanics method (MMFFs-force field) ${ }^{[1]}$ until no additional new structures were obtained. Water molecules were free to find their most favoured binding sites. Their conformers were identified with the advanced hybrid ${ }^{[2]}$ Large-Scale Low-Mode ${ }^{[3]} /$ Monte Carlo algorithm ${ }^{[4]}$ (LM/MC) (see p. S21) implemented in MacroModel, v.9.2, Schrödinger, LLC21. ${ }^{[5]}$ These surveys, generated 2000-5000 structures depending on the system ($<25 \mathrm{~kJ} \mathrm{~mol}^{-1}$). The initial sets of structures were grouped into families. The ~ 50 lowest-lying energy conformers ($<15 \mathrm{~kJ} \mathrm{~mol}^{-1}$) and a representative member of each group that might have a significant population in the cooled adiabatic expansion (typically ~ 100 structures), were re-optimized through density functional theory calculations (B3LYP/6-311+G*) using the Gaussian 09 program package ${ }^{[6]}$ to provide a new energy ranking of the lowest energy structures and their associated harmonic vibrational spectra. Zero-point corrected relative energies were computed through subsequent single point ab initio calculations (MP2/6-311++G**) and final optimizations were based upon comparisons with the experimental spectra themselves, to provide feedback and guide the 'fine-tuning' of the predicted structures. Calculations at the MP2 level were not feasible for the bare and 'blocked' trisaccharides, $\mathbf{3}$ and $\mathbf{3 - B}$, and dispersion was taken into account using the M06-2X functional, to obtain fully optimized structures, frequencies and relative energies. The quantum mechanical calculations used the Gaussian09 package running in two supercomputers employing a maximum of 96 processors per calculation.

Vibrational, structural and conformational assignments were based primarily on the level of correspondence between the experimental and computed OH vibrational spectra, scaled by the 'anharmonicity' factors, $0.9734(\mathrm{OH})$ and 0.9600 (NH), to bring them into better accord with experiment. The best agreement between experiment and theory for the most strongly populated structures corresponded, in all cases, with the calculated minimum energy structures.

Conformational analysis of the core pentasaccharide, 4.

The gas phase conformational preferences of the core pentasaccharide 4, were investigated using (a) the OPLS2005 force field ${ }^{[7]}$ of Macromodel version 9.5 ${ }^{[5]}$ selected after a series of evaluations of alternative fields ${ }^{1}$ using the known conformational preferences of $\mathbf{1}$ as a reference (Figure 3a, main text), and (b) the GLYCAM06 force field ${ }^{[8]}$, specifically parameterized for carbohydrates. (Note: a recent investigation ${ }^{[9]}$ of a range of alternative force fields found OPLS2005 and GLYCAM (using the 2006 parameters) to be similar in terms of disaccharide characterisation).

The potential energy surface (PES) was exhaustively sampled, again using the 1:1 hybrid Low Mode Monte Carlo (LM/MC) conformational sampling technique. The MC step randomly varied between 2 to 56 of the torsions (Supplementary Figure S15). Each LM step explored the potential in the vicinity of a minimum by taking random steps between 3-6 \AA along the 10 lowest eigenvectors. All chiral centres were preserved in the conformational search, and amide bonds were constrained to trans geometry. The ring-opening method of Still ${ }^{[10]}$ was used to explore additional ring conformations.

Supplementary Figure S15: Conformational search strategy for the corepentasaccharide, 4. Torsions varied in the conformation search indicated by arrows, bond breaking indicated by wavy bonds.

New structures were evaluated via heavy atom and polar hydrogen superposition with previously found conformers. Structures were saved as unique

[^0]provided a minimum distance of $0.25 \AA$ between atom pairs. Each structure was subjected to 500 steps of the Truncated Newton Conjugate Gradient ${ }^{[11]}$ (TNCG) minimization method. LM/MC searching was performed in 5000 step blocks. Exhaustive PES sampling was achieved by monitoring the convergence of the global minimum energy and the number of converged structures found, as well as by an increase in the frequency of global minimum sampling. In each subsequent CS block, the least sampled structure was used as a starting point for additional LM/MC steps. Conformational searches were similarly performed to determine solvent effects. Bulk water simulations were performed using the Generalized Born Surface Area ${ }^{[12]}$ (GBSA) continuum solvation model in conjunction with the OPLS2005s or GLYCAM06 force field. Subsequent calculations, performed to determine the effect of hydration in the gas phase, included explicitly hydrated complexes incorporating three water molecules located at binding sites based upon the lowest energy preferences of singly hydrated trimannose ${ }^{[13]}$, chitobiose 1, and Man- $\beta-1,4-\mathrm{GlcNAc}-$ β-1-OPh 2 (Figure 4, main text). Water molecules were allowed translational freedom of $1 \AA$. For the gas phase CS, 175,000 steps were used to achieve convergence and 1420 minimized structures were obtained within $30 \mathrm{~kJ} / \mathrm{mol}$ of the global minimum. The bulk water and explicitly hydrated conformational searches required 75,000 steps for convergence and resulted in 6146 and 2740 structures within $30 \mathrm{~kJ} \mathrm{~mol}^{-1}$ of the global minimum, respectively.

Supplementary chemistry schemes, synthesis and characterization

General Synthetic Considerations

The hexose rings of all compounds are defined $\mathrm{A}-\mathrm{E}$ as detailed below. These definitions are used throughout to denote the hexose rings in the characterisation of compounds. Compounds $\mathbf{1 1}^{[14]}, \mathbf{3 4}{ }^{[15]}$ and $\mathbf{4 6}^{[16]}$ were synthesized as has been recorded previously and their characterization matched previously reported spectroscopic data.

Synthesis of compound 1.

a

h

Reagents and conditions: a) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, $\mathrm{rt}, 67 \%$; b) EtSH, TMS-OTf, DCM, rt, 74%; c) i- $\mathrm{NaOMe}, \mathrm{MeOH}$, rt, ii- benzaldehyde dimethylacetal, TsOH. $\mathrm{H}_{2} \mathrm{O}, \mathrm{MeCN}$, rt, 87%; d) $\mathrm{NaH}, \mathrm{BnBr}, \mathrm{TBAI}, \mathrm{DMF}$, rt, 91%; e) i- NBS, acetone/water, $-10{ }^{\circ} \mathrm{C}$, ii$\mathrm{Cl}_{3} \mathrm{CCN}, \mathrm{DBU}, \mathrm{DCM}, \mathrm{rt}, 84 \%$; f) $\mathrm{NaCNBH}_{3}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 82 \%$; g) TMS-OTf, $4 \AA \mathrm{MS}$, DCM, $-78{ }^{\circ} \mathrm{C}, 89 \%$; h)) PhOH, NIS, TMS-OTf, $4 \AA$ MS, DCM, $0{ }^{\circ} \mathrm{C}, 37 \%$; i) i- 1,2ethylenediamine, $\mathrm{MeOH}, 80^{\circ} \mathrm{C}$, ii- $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, rt, 66%; j) i- $\mathrm{H}_{2}, \mathrm{Pd}(\mathrm{OH})_{2}$, MeOH , rt, ii- $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, rt, 92%; k) $\mathrm{NaOMe}, \mathrm{MeOH}, \mathrm{rt}, 94 \%$.

Acetyl-3,4,6-tri- O-acetyl-2-deoxy-2- N-phthalamido- β-D-glucopyranoside ${ }^{[17]}$

Acetic anhydride ($147.4 \mathrm{ml}, 1559.8 \mathrm{mmol}$) was added dropwise to a suspension of 2-deoxy-2- N-phthalamido- β-D-glucopyranoside ${ }^{[16]} 46(88.0 \mathrm{~g}, 283.6 \mathrm{mmol})$ in dry pyridine (750 ml) at rt under an atmosphere of nitrogen. The mixture was stirred for 25 hat rt then concentrated in vacuo. The resulting oil was dissolved in DCM (600 ml) and washed successively with water (300 ml), 1M hydrochloric acid (3 x 300 ml), saturated aqueous sodium hydrogencarbonate (300 ml) and brine (2 x 300 ml). The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give acetyl-3,4,6-tri- O-acetyl-2-deoxy-2-N-phthalamido- β-D-glucopyranoside 28 (91.2 g, 67\%) as a pale yellow oil ($\alpha / \beta \sim 2: 1$); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathbf{2 8 - \alpha}: 1.86(3 \mathrm{H}, \mathrm{s}), 2.05(3 \mathrm{H}, \mathrm{s})$, $2.08(3 \mathrm{H}, \mathrm{s}), 2.11(3 \mathrm{H}, \mathrm{s}), 4.12(1 \mathrm{H}, \mathrm{dd}, J 12.3,1.5,6-H \mathrm{H}), 4.30(1 \mathrm{H}, \mathrm{ddd}, J 9.9,4.0$, $1.5,5-\mathrm{H}), 4.35(1 \mathrm{H}, \mathrm{dd}, J 12.3,4.0,6-\mathrm{H} H), 4.71$ (1H, dd, $J 11.6,3.3,2-\mathrm{H}), 5.20(1 \mathrm{H}$, dd, $J 9.9,9.2,4-\mathrm{H}), 6.27$ (1H, d, $J 3.5,1-\mathrm{H}), 6.55$ (1H, dd, $J 11.4,9.2,3-\mathrm{H}), 7.71-7.77$ $(2 \mathrm{H}, \mathrm{m}), 7.81-7.88(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 20.4(-\mathrm{OAc}), 20.6(-\mathrm{OAc}), 20.64$ (2x-OAc), 20.7 ($2 \mathrm{x}-\mathrm{OAc}$), 20.8 (-OAc), 52.8 (C-2 α), 53.47 (C-2 β), 61.5 (C-6 $), 65.8$ (C-6ß), 67.0 (C-3 α), 68.3 (C-4 $), 69.4$ (C-4 α), 70.2 (C-5 α), 70.5 (C-3 $), 72.6(\mathrm{C}-5 \beta)$, 89.7 (C-1 α), 90.5 (C-1 β), 123.7, 123.8, 131.2, 134.5, 168.6, 169.3, 169.46, 169.52, 169.8, 170.0, 170.7; m/z (ES ${ }^{+} 495.17$ ([M.NH $\left.]^{+}, 27 \%\right), 500.11$ ([M.Na] ${ }^{+} 77 \%$), 977.18 ([2M.Na] ${ }^{+} 100 \%$); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathbf{2 8 - \beta}: 1.85(3 \mathrm{H}, \mathrm{s}), 1.99(3 \mathrm{H}, \mathrm{s})$, $2.03(3 \mathrm{H}, \mathrm{s}), 2.10(3 \mathrm{H}, \mathrm{s}), 4.02(1 \mathrm{H}, \mathrm{ddd}, J 10.2,4.0,1.8,5-\mathrm{H}), 4.13(1 \mathrm{H}, \mathrm{dd}, J 12.3$, $1.8,6-H \mathrm{H}), 4.28-4.32(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H} H), 4.46(1 \mathrm{H}, \mathrm{dd}, J 10.3,8.9,2-\mathrm{H}), 5.15(1 \mathrm{H}, \mathrm{dd}, J$ $10.1,9.1), 5.87(1 \mathrm{H}, \mathrm{dd}, J 10.1,9.1), 6.50(1 \mathrm{H}, \mathrm{d}, J 8.9,1-\mathrm{H}), 7.71-7.77(2 \mathrm{H}, \mathrm{m})$, 7.81-7.88 ($2 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 20.4 (-OAc), 20.6 (-OAc), 20.64 ($2 \mathrm{x}-\mathrm{OAc}$), 20.7 (2 x -OAc), 20.8 (-OAc), 52.8 (C-2 α), 53.47 (C-2 β), 61.5 (C-6 α), 65.8 (C-6 $)$, 67.0 (C-3 α), 68.3 (C-4 $), 69.4$ (C-4 α), 70.2 (C-5 α), 70.5 (C-3 3), 72.6 (C-5 $), 89.7$ (C1α), 90.5 (C-1 β), 123.7, 123.8, 131.2, 134.5, 168.6, 169.3, 169.46, 169.52, 169.8, 170.0, 170.7; m/z (ES $\left.{ }^{+}\right) 495.17$ ([M.NH4] ${ }^{+}, 27 \%$), 500.11 ([M.Na] ${ }^{+} 77 \%$), 977.18 ([2M.Na] $^{+} 100 \%$).

Ethyl-3,4,6-tri- O-acetyl-2-deoxy-2- N-phthalamido-1-thio- β-D-glucopyranoside ${ }^{[18]}$

Trimethylsilyl-trifluoromethanesulfonate ($3.33 \mathrm{ml}, 18.4 \mathrm{mmol}$) was added slowly to a solution of acetyl-3,4,6-tri- O-acetyl-2-deoxy-2- N-phthalamido- β-D-glucopyranoside $28(8.00 \mathrm{~g}, 16.7 \mathrm{mmol})$ and ethanethiol ($2.23 \mathrm{ml}, 30.1 \mathrm{mmol}$) in dry DCM (80 ml) at rt under an atmosphere of nitrogen. The mixture was stirred at rt for 24 h whereupon TLC analysis ($50 \% \mathrm{EtOAc} /$ Petrol) indicated complete consumption of starting material and formation of a product $\left(\mathrm{R}_{\mathrm{f}}=0.55\right)$. Triethylamine (5 ml) was added and the mixture was stirred for 20 min . The mixture was added to saturated aqueous sodium hydrogen carbonate solution $(200 \mathrm{ml})$ and $\mathrm{DCM}(100 \mathrm{ml})$. The layers were separated and the aqueous layer was extracted with DCM ($2 x 80 \mathrm{ml}$). The combined organic layers were washed with saturated aqueous sodium hydrogencarbonate solution (100 ml) and brine $(100 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give a pale yellow oil which was purified by flash column chromatography on silica gel eluting with $40 \% \mathrm{EtOAc} /$ petrol to give ethyl-3,4,6-tri-O-acetyl-2-deoxy-2- N-phthalamido-1-thio- β-D-glucopyranoside 29 as a white solid ($5.9 \mathrm{~g}, 74 \%$); m.p. $115-117{ }^{\circ} \mathrm{C} ;\left[\langle]_{\mathrm{D}}{ }^{25}+39.5\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)\left[\mathrm{lit} .\left[\langle]_{\mathrm{D}}{ }^{22}+44.0(\mathrm{c}=0.8\right.\right.\right.$, $\left.\left.\mathrm{CHCl}_{3}\right)\right]^{[18]} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.22\left(3 \mathrm{H}, \mathrm{t}, J 7.4,-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.86(3 \mathrm{H}, \mathrm{s},-\mathrm{OAc})$, $2.03(3 \mathrm{H}, \mathrm{s},-\mathrm{OAc}), 2.10(3 \mathrm{H}, \mathrm{s},-\mathrm{OAc}), 2.66(1 \mathrm{H}, \mathrm{dq}, J 12.6,7.4,-\mathrm{SCHH}-), 2.72(1 \mathrm{H}$, dq, J 12.6, 7.4, -SCH $H-$), 3.90 (1H, ddd, $J 10.1,5.0,1.9,5-H$), 4.17 (1H, dd, $J 12.3$, $1.9,6-H \mathrm{H}), 4.31(1 \mathrm{H}, \mathrm{dd}, J 12.3,5.0,6-\mathrm{H} H), 4.39(1 \mathrm{H}, \mathrm{app} \mathrm{t}, J 10.5,2-H), 5.18(1 \mathrm{H}$, dd, $J 10.1,9.0,4-H), 5.49(1 \mathrm{H}, \mathrm{d}, J 10.5,1-H), 5.83(1 \mathrm{H}, \mathrm{dd}, J 10.5,9.0,3-H), 7.71-$ 7.78 (4H, m, 4x Ar-H), 7.82-7.90 (4H, m, 4x Ar-H); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.9$ ($\left.\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 20.5$ (-OAc), 20.6 (-OAc), 20.8 (-OAc), $24.4\left(-\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 53.7(\mathrm{C}-2)$, 62.3 (C-6), 68.9 (C-4), 71.5 (C-3), 75.9 (C-5), 81.2 (C-1), 123.7, 131.1, 131.6, 134.3, 134.4, 167.2, 167.8, 169.5, 170.1, 170.7; m/z (ES') 478.15 ([M-H]', 100\%).

Ethyl-4,6-O-benzylidene-2-deoxy-2- N-phthalamido-1-thio- β-Dglucopyranoside ${ }^{[19]}$

Sodium methoxide ($138 \mathrm{mg}, 2.4 \mathrm{mmol}$) was added to a solution of ethyl-3,4,6-tri- O -acetyl-2-deoxy-2- N-phthalamido-1-thio- β-D-glucopyranoside 29 ($23.0 \mathrm{~g}, 48.0 \mathrm{mmol}$) in dry methanol (175 ml) at rt under an atmosphere of nitrogen. The mixture was stirred for 16 h then activated Dowex $-\mathrm{H}^{+}(\sim 4 \mathrm{~g})$ was added. The mixture was stirred for 1h then filtered and concentrated in vacuo to give a white foam (16.82 g) which was dissolved in dry acetonitrile (300 ml) at rt under an atmosphere of nitrogen. p Benzaldehyde dimethylacetal ($13.93 \mathrm{ml}, 98.2 \mathrm{mmol}$) and TsOH. $\mathrm{H}_{2} \mathrm{O}$ ($265 \mathrm{mg}, 1.4$ mmol) were added and the mixture was stirred for 65 h whereupon TLC analysis (30% EtOAc/petrol) indicated complete consumption of the starting material and formation of a product $\left(\mathrm{R}_{\mathrm{f}}=0.29\right)$. Triethylamine (3 ml) was added, the mixture was stirred for an additional 1 h and then concentrated in vacuo. The resulting oil was partitioned between DCM (250 ml) and saturated aqueous sodium hydrogencarbonate solution (200 ml). The layers were separated and the aqueous layer was extracted with DCM ($4 \times 75 \mathrm{ml}$). The combined organic layers were washed with brine ($2 \times 150 \mathrm{ml}$), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give a brown oil which was purified by flash column chromatography on silica gel eluting with $2 \% \mathrm{MeOH} / \mathrm{DCM}$ to give a yellow solid which was further purified by recrystallisation from diethyl ether/petrol to give ethyl-4,6- O-benzylidene-2-deoxy-2- N-phthalamido-1-thio- β-Dglucopyranoside 30 as a white solid ($17.8 \mathrm{~g}, 87 \%$); [$\left]_{\mathrm{D}}{ }^{25}-5.3\right.$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}$) [lit. $\left[\left]_{\mathrm{D}}{ }^{25}-5.0\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right)\right]^{[19]} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.20\left(3 \mathrm{H}, \mathrm{t}, J 7.5,-\mathrm{CH}_{3}\right), 2.66\right.$ (1H, dq, $J 12.5,7.5,-\mathrm{SC} H \mathrm{H}-), 2.73$ ($1 \mathrm{H}, \mathrm{dq}, J 12.5,7.5,-\mathrm{SCH} H-$), 3.61 ($1 \mathrm{H}, \mathrm{t}, J 9.1$, $4-\mathrm{H}), 3.70(1 \mathrm{H}, \mathrm{td}, J 9.7,4.8,5-\mathrm{H}), 3.81(1 \mathrm{H}, \mathrm{t}, J 10.2,6-H \mathrm{H}), 4.33(1 \mathrm{H}, \mathrm{t}, J 10.2,2-$ H), 4.40 (1 H , dd, $J 10.2,4.8,6-\mathrm{H} H), 4.66(1 \mathrm{H}, \mathrm{dd}, J 9.7,9.1,3-\mathrm{H}), 5.41$ ($1 \mathrm{H}, \mathrm{d}, J$ 10.6, 1-H), $5.58(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}-\mathrm{CH}-), 7.36-7.41(3 \mathrm{H}, \mathrm{m}), 7.47-7.53(2 \mathrm{H}, \mathrm{m}), 7.70-7.76$ $(2 \mathrm{H}, \mathrm{m}), 7.82-7.91(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 14.9, 24.2, $55.5(\mathrm{C}-2), 68.6(\mathrm{C}-6)$, 69.5 (C-3), 70.4 (C-5), 81.9 (C-1), 82.1 (C-4), 101.9, 126.3, 128.4, 129.0, 129.4, 129.8, 134.2, 134.5; m/z (ES ${ }^{+} 464.12$ ([M.Na] $\left.{ }^{+}, 100 \%\right), 905.27$ ([2M.Na] ${ }^{+}, 92 \%$).

Ethyl-3-O-benzyl-4,6-O-benzylidene-2-deoxy-2- N-phthalamido-1-thio- β-Dglucopyranoside ${ }^{[17]}$

Sodium hydride (1.88 g of $60 \% \mathrm{w} / \mathrm{w}, 46.93 \mathrm{mmol}$) was added in portions to a solution of ethyl-4,6-O-benzylidene-2-deoxy-2- N-phthalamido-1-thio- β-D-glucopyranoside 30 $(17.25 \mathrm{~g}, 39.11 \mathrm{mmol})$ in dry DMF (250 ml) at r.t. under an atmosphere of nitrogen. The mixture was stirred for 30 min then benzyl bromide ($5.58 \mathrm{ml}, 46.93 \mathrm{mmol}$) and tetra- N-butylammonium iodide (100 mg) were added. The reaction mixture was stirred for 3.5 h whereupon TLC analysis (100% DCM) indicated the formation of a single product $(\mathrm{Rf}=0.09)$. Methanol $(2.5 \mathrm{ml})$ was added slowly. The mixture was stirred at r.t. for 15 min then concentrated in vacuo. The resulting residue was partitioned between DCM (300 ml) and water (300 ml). The layers were separated and the aqueous layer was extracted with DCM (2 x 150 ml). The combined organic layers were washed with water (150 ml) brine (2 x 150 ml), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give a yellow oil which was purified by flash column chromatography on silica gel eluting with $0-1 \% \mathrm{MeOH} / \mathrm{DCM}$ to give ethyl-3-O-benzyl-4,6-O-benzylidene-2-deoxy-2- N-phthalamido-1-thio- β-D-glucopyranoside $\mathbf{6}$ as a pale yellow solid ($18.85 \mathrm{~g}, 91 \%$); m.p. $91-96{ }^{\circ} \mathrm{C} ;\left[\langle]_{\mathrm{D}}{ }^{25}+59.9\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)[\mathrm{lit}\right.$. $\left[\left]_{\mathrm{D}}{ }^{20}+53.5\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)\right]^{[17]} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.17\left(3 \mathrm{H}, \mathrm{t}, J 7.5,-\mathrm{CH}_{3}\right), 2.63\right.$ (1H, dq, $J 12.5,7.5,-\mathrm{SC} H \mathrm{H}-), 2.70(1 \mathrm{H}, \mathrm{dq}, J 12.5,7.5,-\mathrm{SCH} H-), 3.72(1 \mathrm{H}, \mathrm{td}, J 9.7$, $4.8,5-\mathrm{H}), 3.84(1 \mathrm{H}, \mathrm{t}, J 9.1,4-\mathrm{H}), 3.85(1 \mathrm{H}, \mathrm{t}, J 10.2,6-H \mathrm{H}), 4.31(1 \mathrm{H}, \mathrm{t}, J 10.3,2-$ H), 4.43 ($1 \mathrm{H}, \mathrm{dd}, J 10.4,4.8,6-\mathrm{H} H), 4.47(1 \mathrm{H}, \mathrm{dd}, J 9.7,9.0,3-\mathrm{H}), 4.52(1 \mathrm{H}, \mathrm{d}, 12.3$, Ph-CHH-), 4.80 (1H, d, 12.3, Ph-CHH-), 5.36 (1H, d, J 10.8, 1-H), 5.64 (1H, s, Ph-$\mathrm{CH}-)$, 6.86-6.96 (3H, m), 6.98-7.03 (2H, m), 7.36-7.45 (3H, m), 7.51-7.56 (2H, m), $7.62(1 \mathrm{H}, \mathrm{d}, J 6.5), 7.68-7.76(2 \mathrm{H}, \mathrm{m}), 7.86(1 \mathrm{H}, \mathrm{d}, J 6.5) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.9$ $\left(-\mathrm{CH}_{3}\right), 24.1\left(-\mathrm{SCH}_{2}-\right), 54.7(\mathrm{C}-2), 68.7(\mathrm{C}-6), 70.4(\mathrm{C}-5), 74.2(-\mathrm{Bn}), 75.4(\mathrm{C}-3), 81.8$ (C-1), 83.0 (C-4), 101.3, 126.1, 127.4, 127.8, 128.1, 128.12, 128.3, 129.0, 129.8, $134.0,134.5,137.3,137.8 ; m / z\left(\mathrm{ES}^{+}\right) 532.19$ ([M.H] $\left.{ }^{+}, 5 \%\right), 549.22\left(\left[\mathrm{M}^{2} \mathrm{NH}_{4}\right]^{+} 19 \%\right)$, 554.15 ([M.Na] ${ }^{+} 100 \%$).

3-O-Benzyl-4,6-O-benzylidene-2-deoxy-2- N -phthalamido- β-D-glucopyranosyl-

$\mathbf{1}^{\prime}, \mathbf{1}^{\prime}, 1$ '-trichloroacetimidate ${ }^{[20]}$

N-Bromosuccinimide ($10.30 \mathrm{~g}, 57.85 \mathrm{mmol}$) was added to a solution of ethyl-3-O-benzyl-4,6- O-benzylidene-2-deoxy-2- N-phthalamido-1-thio- β-D-glucopyranoside $\mathbf{6}$ $(6.15 \mathrm{~g}, 11.57 \mathrm{mmol})$ in $10: 1$ acetone/water $(75 \mathrm{ml})$ at $-10^{\circ} \mathrm{C}$. The reaction mixture was stirred for 10 min whereupon TLC analysis ($33 \% \mathrm{EtOAc} /$ petrol) indicated complete consumption of the starting material $(\mathrm{Rf}=0.54)$ and the formation of a single product ($\mathrm{Rf}=0.13$). The reaction mixture was diluted with $\mathrm{DCM}(300 \mathrm{ml})$ and washed with washed with saturated aqueous sodium hydrogencarbonate solution (100 ml), 10% aqueous sodium thiosulfate solution (2 x 100 ml) and brine (100 ml), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. The resulting white solid (6.21 g) was dissolved in dry DCM (75 ml) at r.t. under a nitrogen atmosphere and trichloroacetonitrile ($11.60 \mathrm{ml}, 115.70 \mathrm{mmol}$) and DBU ($173 \mu \mathrm{l}, 1.16 \mathrm{mmol}$) were added. The reaction mixture was stirred at r.t. for 75 min whereupon TLC analysis ($2 \% \mathrm{EtOAc} / \mathrm{DCM}$) indicated the formation of a single product ($\mathrm{Rf}=0.27$). The mixture was concentrated in vacuo at $30{ }^{\circ} \mathrm{C}$ and purified immediately by flash column chromatography on silica gel eluting with an increasing proportion of EtOAc/DCM from $0-2 \%$ to give 3-O-benzyl-4,6- O-benzylidene-2-deoxy-2- N -phthalamido- β-D-glucopyranosyl-1', $1^{\prime}, 1^{\prime}$-trichloroacetimidate 7 as a white solid ($6.12 \mathrm{~g}, 84 \%$): [$\left]_{\mathrm{D}}{ }^{25}\right.$ $+87.1\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.83-3.98(3 \mathrm{H}, \mathrm{m}, 3-H, 5-H, 6-H \mathrm{H})$, 4.46-4.61 (4H, m, 2-H, 4-H, 6-HH, PhCHH-), 4.83 (1H, d, J 12.4, PhCHH-), 5.66 (1H, s, PhCH-), $6.50(1 \mathrm{H}, \mathrm{d}, J 8.3,1-H), 6.86-6.97$ (3H, m, 3x Ar-H), 7.00-7.05 (2H, m, 2x Ar- H), 7.37-7.45 (3H, m, 3x Ar-H), 7.51-7.57 (2H, m, 2x Ar-H), 7.66-7.81 (4H, $\mathrm{m}, 4 \mathrm{x} \operatorname{Ar}-H), 8.59(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H) ; \delta_{\mathrm{C}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 54.7$ (C-2), $66.9(\mathrm{C}-3), 68.5$ (C6), 74.2 ($-\mathrm{CH}_{2} \mathrm{Ph}$), 74.3 (C-4), $82.6(\mathrm{C}-5), 90.2\left(-\mathrm{CCl}_{3}\right), 94.3(\mathrm{C}-1), 101.5(-\mathrm{CHPh})$, 123.4, 126.1, 127.5, 128.1, 128.3, 129.1, 131.4, 134.0, 137.1, 137.8, 160.8; m/z (ES ${ }^{+}$) 653.11 ([M.Na] ${ }^{+}, 81 \%$), 654.11 ([M.Na] ${ }^{+}, 39 \%$), 655.11 ([M.Na] ${ }^{+}, 100 \%$), 656.11 ([M.Na] ${ }^{+}, 51 \%$).

Ethyl-3,6-di-O-benzyl-2-deoxy-2- N-phthalamido-1-thio- β-D-glucopyranoside ${ }^{[21]}$

A solution of ethyl-3- O-benzyl-4,6- O-benzylidene-2-deoxy-2- N -phthalamido-1-thio-β-D-glucopyranoside $6(5.10 \mathrm{~g}, 9.58 \mathrm{mmol})$ in dry THF ($20 \mathrm{ml}+15 \mathrm{ml}$ washings) was added via cannula to a suspension of sodium cyanoborohydride ($6.02 \mathrm{~g}, 95.80 \mathrm{mmol}$), methyl orange ($\sim 2 \mathrm{mg}$) and freshly activated $3 \AA$ molecular sieves (3.0 g) in dry THF $(85 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere. $\mathrm{HCl}(4 \mathrm{M}$ solution in dioxane) was added slowly (Caution: effervescence) until the yellow colour of the solution changed to a persistent pink ($\sim 20 \mathrm{ml}$). The resulting reaction mixture was stirred 17 h slowly warming to r.t. whereupon TLC analysis ($33 \% \mathrm{EtOAc} /$ petrol) indicated the complete consumption of the starting material $(\mathrm{Rf}=0.53)$ and formation of a single product $(\mathrm{Rf}=0.32)$. The reaction was quenched by the addition of saturated aqueous sodium hydrogencarbonate solution (200 ml). The resulting yellow solution was filtered through celite and diluted with DCM (200 ml). The layers were separated and the aqueous layer was extracted with DCM (2 x 150 ml). The combined organic layers were washed with saturated aqueous sodium hydrogencarbonate solution (150 ml) and brine (150 ml), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo three times from MeOH to give white solid which was stirred with DCM (200 ml) and filtered through celite. The filtrate wasoncentrated in vacuo to give a pale yellow solid which was purified by flash column chromatography on silica gel eluting with an increasing proportion of EtOAc/DCM from 5-10\% to give ethyl-3,6-di- O -benzyl-2-deoxy-2- N -phthalamido-1-thio- β-D-glucopyranoside $\mathbf{8}$ as a white solid (4.18 g, 82%): $\left[\left]_{\mathrm{D}}{ }^{25}\right.\right.$ $+41.1\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)\left[\right.$ lit. $\left[\langle]_{\mathrm{D}}{ }^{25}+42\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right)\right]^{[21]} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.17$ $\left(3 \mathrm{H}, \mathrm{t}, J 7.3,-\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 2.59\left(1 \mathrm{H}, \mathrm{dq}, J 12.5,7,3,-\mathrm{SCHHCH}_{3}\right), 2.67(1 \mathrm{H}, \mathrm{dq}, J 12.5$, $\left.7,3,-\mathrm{SCHHCH}_{3}\right), 3.69(1 \mathrm{H}, \mathrm{dt}, J 9.5,5.2,5-H), 3.78(1 \mathrm{H}, \mathrm{dd}, J 10.1,5.2,6-H \mathrm{H})$, 3.81-3.88 ($2 \mathrm{H}, \mathrm{m}, 4-H, 6-\mathrm{H} H), 4.20-4.31(2 \mathrm{H}, \mathrm{m}, 2-H, 3-H), 4.55(1 \mathrm{H}, \mathrm{d}, J 12.1$, PhCHH-), 4.59 ($1 \mathrm{H}, \mathrm{d}, J 12.0, \mathrm{PhCHH}-), 4.65$ ($1 \mathrm{H}, \mathrm{d}, J 12.0, \mathrm{PhCH} H-), 4.76$ (1H, d, J 12.1, $\mathrm{PhCH} H-$), 5.28 ($1 \mathrm{H}, \mathrm{d}, J 9.9,1-H$), 6.92-7.84 (14H, m, 14x Ar- H); $\delta_{\mathrm{C}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.9\left(-\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 24.0\left(-\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 54.4(\mathrm{C}-2), 70.9$ (C-6), 73.8 $\left(\mathrm{PhCH}_{2}-\right), 74.46\left(\mathrm{PhCH}_{2}-\right), 74.48(\mathrm{C}-4), 77.6(\mathrm{C}-5), 79.5(\mathrm{C}-3), 81.1(\mathrm{C}-1), 123.3$, $123.5,127.4,127.8,127.9,128.2,128.5,131.6,133.8,133.9,137.6,138.1,167.5$, $168.0 ; m / z\left(\mathrm{ES}^{-}\right) 532.21$ ([M-H] $\left.{ }^{-}, 100 \%\right)$.

Ethyl-3-O-benzyl-4,6-O-benzylidene-2-deoxy-2- N-phthalamido- β-D-glucopyranosyl-(1-4)-3,6-di-O-benzyl-2-deoxy-2- N-phthalamido-1-thio- β-Dglucopyranoside

A mixture of 3-O-benzyl-4,6-O-benzylidene-2-deoxy-2- N -phthalamido- β-D-glucopyranosyl-1', l^{\prime}, l^{\prime}-trichloroacetimidate $7(5.51 \mathrm{~g}, 8.72 \mathrm{mmol})$ and ethyl-3,6-di-O-benzyl-2-deoxy-2-N-phthalamido-1-thio- β-D-glucopyranoside 8 (4.23 g, 7.93 mmol) was concentrated from toluene (4 x 50 ml) and dried under vacuum. The dried mixture was dissolved in dry DCM ($25 \mathrm{ml}+25 \mathrm{ml}$ washings) and added via cannula to a flask containing freshly activated $4 \AA$ molecular sieves $(3.1 \mathrm{~g})$ at r.t. under a nitrogen atmosphere. The resulting suspension was stirred at r.t. for 30 min then cooled to $-78{ }^{\circ} \mathrm{C}$. Trimethylsilyltrifluoromethanesulfonate ($143 \mu \mathrm{l}, 0.79 \mathrm{mmol}$) was added and the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 5 min whereupon TLC analysis $(10 \%$ EtOAc/toluene) indicated complete consumption of the donor $7(\mathrm{Rf}=0.42)$ and the acceptor $8(\mathrm{Rf}=12)$ and the formation of a major product ($\mathrm{Rf}=0.30$). Triethylamine $(2.5 \mathrm{ml})$ was added and the mixture was warmed to r.t. and filtered through celite. The filtrate was diluted with $\mathrm{DCM}(100 \mathrm{ml})$ and saturated aqueous sodium hydrogencarbonate solution (150 ml). The layers were separated and the aqueous layer was extracted with DCM (2x 100 ml). The combined organic layers were washed with saturated aqueous sodium hydrogencarbonate solution (100 ml), water $(100 \mathrm{ml})$ and brine $(100 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give a pale yellow foam which was purified by flash column chromatography on silica gel eluting with an increasing proportion of EtOAc/toluene from 2-10\% to give ethyl-3- O-benzyl-4,6- O-benzylidene-2-deoxy-2- N-phthalamido- β-D-glucopyranosyl-(1-4)-3,6-di- O-benzyl-2-deoxy-2-N-phthalamido-1-thio- β-D-glucopyranoside 9 (7.07 g, 89%) as a white solid: $\left[\left]_{\mathrm{D}}{ }^{25}+29.8\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)\left[\right.\right.\right.$ lit. $\left[\langle]_{\mathrm{D}}{ }^{25}\right.$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}$); δ_{H} $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.12\left(3 \mathrm{H}, \mathrm{t}, J 7.3,-\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 2.52(1 \mathrm{H}, \mathrm{dq}, J 12.6,7.3$, $\left.\mathrm{SCHHCH}_{3}\right), 2.61\left(1 \mathrm{H}, \mathrm{dq}, J 12.6,7.3,-\mathrm{SCHHCH}_{3}\right), 3.34-3.45(3 \mathrm{H}, \mathrm{m}, 5-H, 5-H, 6-$ $H \mathrm{H}$), 3.50-3.59, (2H, m, 6-HH, 6-HH), 3.73 (1H, app t, J 8.9, 4-H), 4.18-4.28 (5H, m, 2-H, 2-H, 3-H, 4-H, 6-HH), 4.43 (1H, d, J 11.9, PhCHH-), 4.46 (1H, dd, J 9.9, 8.9, 3-
H), 4.49 ($1 \mathrm{H}, \mathrm{d}, J 11.9, \mathrm{PhCHH}-), 4.50$ ($1 \mathrm{H}, \mathrm{d}, J 12.3, \mathrm{PhCHH}-), 4.53$ (1H, d, $J 12.3$, $\mathrm{PhC} H \mathrm{H}-), 4.81$ (1H, d, $J 12.3, \mathrm{PhC} H \mathrm{H}-), 4.85$ ($1 \mathrm{H}, \mathrm{d}, J 12.3, \mathrm{PhC} H \mathrm{H}-), 5.11$ (1H, d, J 9.1, 1a-H), 5.42 ($1 \mathrm{H}, \mathrm{d}, J 8.5,1 \mathrm{~b}-H$), 5.53 ($1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}-$), 6.88-7.95 ($28 \mathrm{H}, \mathrm{m}, 28 \mathrm{x}$ Ar$H) ; \delta_{\mathrm{C}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.9\left(-\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 23.6\left(-\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 54.7(\mathrm{C}-2 \mathrm{a}), 56.6(\mathrm{C}-$ 2b), 65.8 (C-5), $68.2(\mathrm{C}-6), 68.7(\mathrm{C}-6), 72.7\left(\mathrm{PhCH}_{2}-\right), 74.1\left(\mathrm{PhCH}_{2}-\right), 74.49\left(\mathrm{PhCH}_{2}-\right.$), 74.51 (C-3), 76.1, 77.8, 78.8 (C-5), 80.8 (C-1a), 83.2 ($-\mathrm{CCl}_{3}$), 97.7 (C-1b), 101.2 ($\mathrm{PhCH}-$), 123.2, 123.5, 126.1, 127.1, 127.3, 127.4, 127.5, 127.8, 127.98, 128.04, 128.26, 128.27, 129.00, 129.04, 131.6, 133.7, 133.8, 133.99, 134.03, 137.4, 137.9, 138.3, 138.5, 167.5, 167.9; m/z (ES ${ }^{+}$) $1025.41 \quad\left([\mathrm{M} . \mathrm{Na}]^{+} \quad 100 \%\right) ; \mathrm{ESI}^{+}$ $\left[\mathrm{C}_{58} \mathrm{H}_{54} \mathrm{~N}_{2} \mathrm{NaO}_{12} \mathrm{~S}\right]$ requires 1025.3290, found 1025.3279.

Phenyl-3- O-benzyl-4,6-O-benzylidene-2-deoxy-2- N -phthalamido- β-D-glucopyranosyl-(1-4)-3,6-di-O-benzyl-2-deoxy-2- N-phthalamido- β-Dglucopyranoside

Ethyl-3-O-benzyl-4,6-O-benzylidene-2-deoxy-2- N -phthalamido- β-D-glucopyranosyl-(1-4)-3,6-di-O-benzyl-2-deoxy-2-N-phthalamido-1-thio- β-D-glucopyranoside 9 (1.50 $\mathrm{g}, 1.50 \mathrm{mmol}$) was concentrated in vacuo from toluene ($3 \times 25 \mathrm{ml}$) then dissolved in dry DCM $(20 \mathrm{ml})$ and stirred over freshly activated $4 \AA$ molecular sieves $(0.5 \mathrm{~g})$ at r.t. under a nitrogen atmosphere for 1 h . The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and NIS (422 $\mathrm{mg}, 1.88 \mathrm{mmol}$, dried by stirring over freshly activated $4 \AA$ molecular sieves) was added followed immediately by TMS-OTf ($27 \mu \mathrm{~L}, 0.15 \mathrm{mmol}$). The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min then phenol $(212 \mathrm{mg}, 2.25 \mathrm{mmol}$, concentrated in vacuo from toluene ($3 \times 10 \mathrm{ml}$) and stirred over freshly activated $4 \AA$ molecular sieves) in dry DCM (10 ml) was added. The reaction mixture was stirred for 4 h in the dark, slowly warming to $\mathrm{rt}^{\circ} \mathrm{C}$ then filtered through celite and diluted with DCM (100 ml) and 5\% aqueous sodium thiosulfate solution (100 ml). The layers were separated and the aqueous phase was extracted with DCM (3 x 80 ml). The combined organic extracts were washed with 5% aqueous sodium thiosulfate solution (100 ml) and brine (100 $\mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give a yellow oil which was purified by flash column chromatography (Biotage SNAP 100g) on silica gel eluting with an increasing proportion of EtOAc/petrol from $25-70 \%$ to give phenyl-3-O-benzyl-4,6-O-benzylidene-2-deoxy-2- N-phthalamido- β-D-glucopyranosyl-(1-4)-3,6-di- O-benzyl-2-deoxy-2- N-phthalamido- β-D-glucopyranoside 10 ($570 \mathrm{mg}, 37 \%$) as a white solid: $[\alpha]_{\mathrm{D}}{ }^{21}+27.7\left(\mathrm{c}, 0.65\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; ${ }^{\mathrm{TM}}{ }_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 3.38-3.53 (4H, m, H5a, H5b, H6a, H6'a), 3.57 (1 H , at, $J 10.1 \mathrm{~Hz}, \mathrm{H} 6 \mathrm{~b}$), 3.75 (1 H , at, $J 9.2 \mathrm{~Hz}, \mathrm{H} 4 \mathrm{~b}$), 4.21-4.31 (4H, m, H2b, H3a, H4a, H6'b), 4.37-4.47 (4H m, H2a, H3b, $2 \times \mathrm{PhCH}$), $4.50,4.80\left(2 \mathrm{H}, \mathrm{ABq}, J 12.3 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.54,4.85\left(2 \mathrm{H}, \mathrm{ABq}, J 12.3 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right)$, $5.40\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 8.2 \mathrm{~Hz}, \mathrm{H} 1 \mathrm{~b}\right), 5.54(1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}), 5.61\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 8.5 \mathrm{~Hz}, \mathrm{H} 1 \mathrm{a}\right)$, 6.77-7.92 ($33 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); ${ }^{\mathrm{TM}}{ }_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 55.5$ (d, C2a), 56.5 (d, C2b), 65.8 (d, C5), 67.8 (t, C6), 68.7 (t, C6a), 72.7 (t, PhCH_{2}), 74.1 ($\mathrm{t}, \mathrm{PhCH}_{2}$), 74.4 (d, C5), 74.5 (t,
$\left.\mathrm{PhCH}_{2}\right), 74.6(\mathrm{~d}, \mathrm{C} 3 \mathrm{~b}), 76.7,77.0(2 \mathrm{x} \mathrm{d}, \mathrm{C} 3 \mathrm{a}, \mathrm{C} 4 \mathrm{a}), 83.1$ (d, C4b), 96.2 (d, C1a), 97.8 (d, C1b), 101.2 (d, PhCH), 116.9, 122.6, 123.3, 126.1, 127.1, 127.3, 127.4, 127.5, 127.8, 128.0, 128.2, 128.3, 129.0, 129.2 ($14 \mathrm{x} \mathrm{d}, 33 \mathrm{x} \mathrm{ArH}$), 139.3, 137.8, 137.9, $138.1,138.4,156.7$ ($6 \times \mathrm{s}, 9 \times \mathrm{ArC}$). $m / z\left(\mathrm{ES}^{+}\right) 1093$ ($100 \%, \mathrm{M}+\mathrm{NH}_{4} / \mathrm{MeCN}$).

Phenyl-3-O-benzyl-4,6-O-benzylidene-2-deoxy-2- N -acetyl- β-D-glucopyranosyl-

 (1-4)-3,6-di-O-benzyl-2-deoxy-2- N -acetyl- β-D-glucopyranoside

Phenyl-3- O-benzyl-4,6- O-benzylidene-2-deoxy-2- N-phthalamido- β-D-glucopyranosyl-(1-4)-3,6-di- O-benzyl-2-deoxy-2- N-phthalamido- β-Dglucopyranoside $10(1.0 \mathrm{~g}, 0.97 \mathrm{mmol})$ was dissolved in methanol (50 mL), and 1,2ethylenediamine (10 mL) was added and the reaction was heated to $80^{\circ} \mathrm{C}$. After 16 h , t.l.c. (ethyl acetate) showed the formation of a product $\left(\mathrm{R}_{\mathrm{f}} 0\right)$ with complete consumption of the starting material $\left(\mathrm{R}_{\mathrm{f}} 0.7\right)$. The reaction was co-evaporated with toluene ($3 \times 50 \mathrm{~mL}$). The resulting residue was taken up in acetic anhydride (30 mL) and pyridine (50 mL). After 16 h , t.l.c. (ethyl acetate) showed the formation of a product ($\mathrm{R}_{\mathrm{f}} 0.5$) with complete consumption of the starting material $\left(\mathrm{R}_{\mathrm{f}} 0\right)$. The reaction was partitioned between ethyl acetate $(50 \mathrm{~mL})$ and water $(100 \mathrm{~mL})$ and the phases separated. The aqueous phase was re-extracted with ethyl acetate ($2 \times 50 \mathrm{~mL}$). The combined organic layers were washed with dilute hydrochloric acid ($300 \mathrm{~mL}, 1 \mathrm{M}$ aqueous solution), sodium hydrogen carbonate (50 mL of a saturated aqueous solution), brine (50 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. The resulting residue was precipitated from acetone/petrol to afford phenyl 3-O-benzyl-4,6-O-benzylidene-2-deoxy-2- N -acetyl- β-D-glucopyranosyl-(1-4)-3,6-di- O -benzyl-2-deoxy-2- N-acetyl- β-D-glucopyranoside 31 ($550 \mathrm{mg}, 66 \%$) as a white amorphous solid; $[\alpha]_{\mathrm{D}}{ }^{19}-9.2\left(\mathrm{c}, 0.5\right.$ in $\left.1: 1 \mathrm{MeOH} / \mathrm{CHCl}_{3}\right) ; J_{\max }(\mathrm{KBr}) 3275$ (bs, NH), 1655, 1549 $(\mathrm{s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{1} ; \mathrm{TM}_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.77,1.90(6 \mathrm{H}, 2 \mathrm{x} \mathrm{s}, 2 \times \mathrm{NHAc}), 3.20(1 \mathrm{H}$, dat, $\left.J_{5,6} 4.7 \mathrm{~Hz}, J 9.4 \mathrm{~Hz}, \mathrm{H} 5 \mathrm{~b}\right), 3.49-3.74$ (7H, m, H3a, H3b, H4b, H5a, H6a, H6b, H6’b), $3.82(1 \mathrm{H}$, at, $J 9.2 \mathrm{~Hz}, \mathrm{H} 2 \mathrm{~b}), 3.88(1 \mathrm{H}$, at, $J 5.2 \mathrm{~Hz}, \mathrm{H} 4 \mathrm{a}), 4.13\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6}, 4.9 \mathrm{~Hz}\right.$, $\left.J_{6,6}, 10.6 \mathrm{~Hz}, \mathrm{H} 6 \mathrm{a}\right), 4.24-4.27$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \mathrm{a}, \mathrm{PhCH}$), 4.344.39 (2H, m, H1b, PhCH), $4.56,4.77\left(2 \mathrm{H}, \mathrm{ABq}, J 12.0 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.62,4.68\left(2 \mathrm{H}, \mathrm{ABq}, J 11.6 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right)$, $5.10\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 5.4 \mathrm{~Hz}, \mathrm{H} 1 \mathrm{a}\right), 5.46(1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}), 6.87-7.41(25 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ;{ }^{\mathrm{TM}}{ }_{\mathrm{C}}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 23.9, 24.2 ($2 \mathrm{x} \mathrm{q}, 2 \times \mathrm{NHAc}$), 52.1 (d, C-2a), 56.4 (d, C2b), 67.1 (d, C5b), 69.7 (t, C6a), 70.7 (t, C6b), 73.9, 74.9, 75.3 ($3 \times \mathrm{t}, 3 \times \mathrm{PhCH}_{2}$), 75.5 (d, C4a), 75.8, 78.8 ($2 \times \mathrm{d}, \mathrm{C} 3 \mathrm{a}, \mathrm{C} 3 \mathrm{~b}$), 78.7, 83.3 ($2 \mathrm{x} \mathrm{d}, \mathrm{C} 4 \mathrm{~b}, \mathrm{C} 5 \mathrm{a}$), 99.4 (d, C1a), 101.8
(d, C1b), 102.4 (d, PhCH), 117.6, 123.5, 127.2, 128.8, 129.0, 129.2, 129.3, 129.5, $129.6,129.7,130.3,130.6$ ($12 \mathrm{x} \mathrm{d}, 25 \mathrm{x}$ ArC), 138.3, 138.8, 139.4, 139.6, 158.3 ($5 \mathrm{x} \mathrm{s}, 5 \times \mathrm{ArC}), 172.6,173.1(2 \mathrm{x} \mathrm{s}, 2 \times \mathrm{CO}) . \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 917$ (100%, $\left.\mathrm{M}+\mathrm{NH}_{4} / \mathrm{MeCN}\right)$. HRMS found 881.3627 . calcd 881.3620 for $\mathrm{C}_{50} \mathrm{H}_{54} \mathrm{~N}_{2} \mathrm{NaO}_{11}$.

Phenyl-3,4,6-tri- O-acetyl-2-deoxy-2- N-acetyl- β-D-glucopyranosyl-(1-4)-3,6-di-O-acetyl-2-deoxy-2- N-acetyl- β-D-glucopyranoside

Phenyl 3-O-benzyl-4,6-O-benzylidene-2-deoxy-2- N-acetyl- β-D-glucopyranosyl-(1-4)-3,6-di- O-benzyl-2-deoxy-2- N-acetyl- β-D-glucopyranoside 31 ($500 \mathrm{mg}, 100 \mathrm{mmol}$) and Pearlman's catalyst $\left(\mathrm{Pd}(\mathrm{OH})_{2}\right.$, moist, 400 mg) were suspended in absolute methanol (20 mL). The resulting solution was degassed and purged with hydrogen gas, then left to stir under an atmosphere of hydrogen. After a 24 h period, t.l.c. (ethyl acetate) indicated the formation of a major product ($\mathrm{R}_{\mathrm{f}} 0.0$) with complete consumption of the starting material $\left(\mathrm{R}_{\mathrm{f}} 0.9\right)$. The solution was filtered through celite ${ }^{\circledR}$ and concentrated in vacuo. The resulting residue resuspended in acetic anhydride (10 mL) and pyridine (15 mL) and stirred at RT. After 18 h t.1.c. (petrol:ethyl acetate, 2:3) indicated the formation of a product $\left(\mathrm{R}_{\mathrm{f}} 0.4\right)$ with complete consumption of the starting material $\left(\mathrm{R}_{\mathrm{f}} 0\right)$. The reaction was diluted with water (20 mL) and partitioned with ethyl acetate (20 mL) and the phases separated. The aqueous layer was reextracted with ethyl acetate ($2 \times 20 \mathrm{~mL}$). The combined organic layers were washed with dilute hydrochloric acid ($500 \mathrm{~mL}, 1 \mathrm{M}$), sodium hydrogen carbonate (50 mL of a saturated aqueous solution), brine (30 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to afford phenyl 3,4,6-tri- O-acetyl-2-deoxy-2-N-acetyl- β-D-glucopyranosyl-(1-4)-3,6-di-O-acetyl-2-deoxy-2-N-acetyl- β-D-glucopyranoside 32 ($380 \mathrm{mg}, 92 \%$) as a white amorphous foam; $[\alpha]_{\mathrm{D}}{ }^{21}-31.3$ (c, 0.45 in CHCl_{3}); $J_{\max }(\mathrm{KBr}) 3272$ (bs, NH), $1748,1660,1560(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \mathrm{TM}_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.93,1.99,2.01,2.09(21 \mathrm{H}$, $4 \mathrm{x} \mathrm{s}, 7 \mathrm{x} \mathrm{OAc}), 3.75(1 \mathrm{H}$, at, $J 9.5 \mathrm{~Hz}, \mathrm{H} 2 \mathrm{~b}), 3.78-3.80(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 5 \mathrm{~b}), 3.83-3.89(2 \mathrm{H}$, m, H4a, H5a), 4.05 (1 H , bd, $J_{6,6}, 12.3 \mathrm{~Hz}, \mathrm{H} 6 \mathrm{~b}$), 4.12-4.17 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \mathrm{a}, \mathrm{H} 6 \mathrm{a}$), 4.44 ($\left.1 \mathrm{H}, \mathrm{dd}, J_{5,5}, 4.0 \mathrm{~Hz}, J_{6,6}, 12.4 \mathrm{~Hz}, \mathrm{H} 6^{\prime} \mathrm{b}\right), 4.50\left(1 \mathrm{H}, \mathrm{d}, J_{6,6}, 11.7 \mathrm{~Hz}, \mathrm{H} 6\right.$ 'a), $4.76(1 \mathrm{H}$, d, $\left.J_{1,2} 8.5 \mathrm{~Hz}, \mathrm{H} 1 \mathrm{~b}\right), 5.00(1 \mathrm{H}$, at, $J 9.6 \mathrm{~Hz}, \mathrm{H} 4 \mathrm{~b}), 5.14\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 8.2 \mathrm{~Hz}, \mathrm{H} 1 \mathrm{a}\right), 5.23$ (1H, at, $J 9.0 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{a}), 5.30(1 \mathrm{H}$, at, $J 10.0 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{~b}), 6.98(2 \mathrm{H}, \mathrm{d}, J 8.2 \mathrm{~Hz}, \mathrm{ArH})$, $7.03(1 \mathrm{H}, \mathrm{t}, J 7.4 \mathrm{~Hz}, \mathrm{ArH}), 7.27(2 \mathrm{H}, \mathrm{t}, J 7.4 \mathrm{~Hz}, \mathrm{ArH})$; ${ }^{\mathrm{TM}}{ }_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 21.1$, 21.2, 21.3, 21.4, 23.2, 23.3 (6 x q, $7 \times$ OAc), 55.4 (d, C2a), 56.2 (d, C2b), 63.1 (t,

C6b), 63.9 (t, C6a), 69.8 (d, C4b), 72.9 (d, C5b), 73.7 (d, C3b), 74.1 (d, C5a), 74.6 (d, C3a), 77.7 (d, C4a), 100.0 (d, C1a), 102.1 (d, C1b), 117.9, 124.1, 130.6 (3 x d, $5 \mathrm{x} \operatorname{ArC}$), 158.6 (s, ArC), $171.4,172.0,172.4,172.5,173.6$ ($5 \mathrm{x} \mathrm{s}, 7 \times \mathrm{CO}$). $\mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right)$ $733(100 \%, \mathrm{M}+\mathrm{Na})$. HRMS found 733.2432. calcd 733.2436 for $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{NaO}_{16}$.

Phenyl-2-deoxy-2- N-acetyl- β-D-glucopyranosyl-(1-4)-2-deoxy-2- N-acetyl- β-Dglucopyranoside

Phenyl-3,4,6-tri- O-acetyl-2-deoxy-2-N-acetyl- β-D-glucopyranosyl-(1-4)-3,6-di-O-acetyl-2-deoxy-2- N-acetyl- β-D-glucopyranoside $\mathbf{3 2}$ ($380 \mathrm{mg}, 0.53 \mathrm{mmol}$) and sodium methoxide ($3 \mathrm{mg}, 0.53 \mathrm{mmol}$) were added to a stirred solution of methanol (20 mL). After 1 h , t.l.c. (ethyl acetate/petrol, 1:1) indicated the formation of a product $\left(\mathrm{R}_{\mathrm{f}} 0\right)$ with complete consumption of the starting material $\left(\mathrm{R}_{\mathrm{f}} 0.5\right)$. The reaction was neutralised by the addition of Dowex-50 ion exchange resin ${ }^{\circledR}$ after which point the reaction was filtered and concentrated in vacuo to afford phenyl 2-deoxy-2-N-acetyl-β-D-glucopyranosyl-(1-4)-2-deoxy-2- N-acetyl- β-D-glucopyranoside 1 ($250 \mathrm{mg}, 94 \%$) as a white amorphous solid; $[\alpha]_{\mathrm{D}}{ }^{21}-6.0\left(\mathrm{c}, 0.25\right.$ in $\mathrm{H}_{2} \mathrm{O}$); $\mathrm{J}_{\text {max }}(\mathrm{KBr}) 3384$ (bs, NH, $\mathrm{OH}), 1746,1657,1558(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{\top}{ }^{\mathrm{H}} \mathrm{H}^{\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)} 1.99,1.99(6 \mathrm{H}, 2 \mathrm{x} \mathrm{s}$, 2 x NHAc), 3.26-3.43 (3H, m, H3b, H4b, H5a), 3.57-3.74 (6H, m, H2a, H2b, H3a, H4a, H6a, H6b), 3.79 ($1 \mathrm{H}, \mathrm{d}, J 10.7 \mathrm{~Hz}, \mathrm{H} 6$ 'a), 384 ($1 \mathrm{H}, \mathrm{d}, J 12.3 \mathrm{~Hz}, \mathrm{H} 6 ’$ b), 3.93 (1H, dd, $\left.J_{1,2} 8.9 \mathrm{z}, J_{2,3} 9.9 \mathrm{~Hz}, \mathrm{H} 2 \mathrm{a}\right), 4.53\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 8.2 \mathrm{~Hz}, \mathrm{H} 1 \mathrm{~b}\right), 5.07$ ($1 \mathrm{H}, \mathrm{d}, J_{1,2}$ $8.5 \mathrm{~Hz}, \mathrm{H} 1 \mathrm{a}), 6.96(2 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}, \mathrm{ArH}), 7.06(1 \mathrm{H}, \mathrm{t}, J 7.4 \mathrm{~Hz}, \mathrm{ArH}), 7.30(2 \mathrm{H}, \mathrm{t}, J$ $8.1 \mathrm{~Hz}, \mathrm{ArH}) ;{ }^{\mathrm{TM}} \mathrm{C}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 21.9$, $22.0(2 \mathrm{xq}, 2 \times \mathrm{NHAc}), 54.9$ (d, C2a), 55.5 (d, C2b), 59.9 (t, C6a), 60.5 (t, C6b), 69.7, 73.4 (2 x d, C3b, C4b), 72.2, 74.6, 79.1 (3 x d, C2a, C3a, C4a), 75.9 (d, C5b), 99.3 (d, C1a), 101.4 (d, C1b), 116.5, 123.3, 129.8 ($3 \times \mathrm{d}, 5 \mathrm{x} \mathrm{ArC}$), 156.6 (s, ArC), 174.4, 174.5 ($2 \mathrm{x} \mathrm{s}, 2 \times \mathrm{CO}$). $\mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{-}\right)$ $499\left(100 \%, \mathrm{MH}^{+}\right)$. HRMS found 499.1932. calcd 499.1933 for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{11}$.

Synthesis of compound 2.

37

13

Reagents and conditions: a) i- $\mathrm{NaOMe}, \mathrm{MeOH}$, rt, ii- benzaldehyde dimethylacetal, TsOH. $\mathrm{H}_{2} \mathrm{O}$, MeCN, rt, 87%; b) $\mathrm{NaH}, \mathrm{BnBr}, \mathrm{TBAI}, \mathrm{DMF}, \mathrm{rt}, 75 \%$; c) NaCNBH_{3}, THF, $0{ }^{\circ} \mathrm{C}, 81 \%$; d) NIS, TMS-OTf, $4 \AA$ MS, DCM, $0{ }^{\circ} \mathrm{C}, 88 \%$; e) $\mathrm{H}_{2} \mathrm{NNH}_{2} . \mathrm{AcOH}$, $\mathrm{MeOH}, \mathrm{rt}, 95 \%$; f) i- $\mathrm{Tf}_{2} \mathrm{O}$, DCM, pyridine, ii- $\mathrm{Bu}_{4} \mathrm{~N} . \mathrm{OAc}$, toluene,))), 84%; g) i- H_{2}, $\mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{EtOH}$, ii- 1,2-ethylenediamine, BuOH, Δ, iii- $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, 74%; h) NaOMe, MeOH, 94%.

Phenyl-4,6-O-benzylidene-2-deoxy-2- N-phthalamido- β-D-glucopyranoside

Phenyl-3,4,6-tri- O-acetyl-2-deoxy-2- N-phthalamido- β-D-glucopyranoside ${ }^{[15]}$ (15.8 g , 31.1 mmol) and sodium methoxide ($170 \mathrm{mg}, 3.1 \mathrm{mmol}$) were added to a stirred solution of methanol (100 mL). After 30 min , t.l.c. (ethyl acetate) indicated the formation of a product ($\mathrm{R}_{\mathrm{f}} 0$) with complete consumption of the starting material ($\mathrm{R}_{\mathrm{f}} 0.7$). The reaction was concentrated in vacuo. The resulting residue was dissolved in anhydrous dimethylformamide (100 mL) and benzaldehyde dimethyl acetal ($8.9 \mathrm{~mL}, 5.92 \mathrm{mmol}$) and camphor sulfonic acid ($1.49 \mathrm{~g}, 5.92 \mathrm{mmol}$) were added. The resulting solution was heated to $60{ }^{\circ} \mathrm{C}$ at a reduced pressure of 240 mbar . After 4 h , t.l.c. (petrol:ethyl acetate, 1:1) showed the formation of a product $\left(R_{f} 0.5\right)$ with complete consumption of the starting material ($\mathrm{R}_{\mathrm{f}} 0$). The reaction was cooled to RT and quenched by the addition of sodium hydrogen carbonate (400 mL of a saturated aqueous solution). The solution was partitioned between DCM (200 mL) and the phases separated. The aqueous phase was re-extracted with DCM ($2 \times 100 \mathrm{~mL}$). The combined organic layers were washed with brine ($2 \times 200 \mathrm{~mL}$), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. The resulting residue was purified by flash column chromatography (ethyl acetate/petrol) to afford phenyl-4,6-O-benzylidene-2-deoxy-2-N-phthalamido- β-D-glucopyranoside 35 ($10.0 \mathrm{~g}, 68 \%$) as a white amorphous foam; $\left[\left]_{\mathrm{D}}{ }^{22}+11.5\left(\mathrm{c}, 0.65\right.\right.\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; J_{\text {max }}(\mathrm{KBr}) 3476(\mathrm{~s}, \mathrm{OH}), 1777,1714(\mathrm{~s}, \mathrm{NCO}) \mathrm{cm}^{-1}$; ${ }^{\text {тм }_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)} 2.64(1 \mathrm{H}, \mathrm{d}, J 3.6 \mathrm{~Hz}, \mathrm{OH} 3), 3.55(1 \mathrm{H}, \mathrm{at}, J 9.0 \mathrm{~Hz}, \mathrm{H} 4), 3.60$ (1 H , dat, $J_{5,6}, 4.9 \mathrm{~Hz}, J 9.0 \mathrm{~Hz}, \mathrm{H} 5$), $3.71(1 \mathrm{H}$, at, $J 9.8 \mathrm{~Hz}, \mathrm{H} 6), 4.26\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6}\right.$ $4.4 \mathrm{~Hz}, J_{6,6}{ }^{\prime} 10.3 \mathrm{~Hz}, \mathrm{H}^{\prime}$), 4.39 (1 H , dd, $J_{1,2} 8.4 \mathrm{~Hz}, J_{2,3} 10.4 \mathrm{~Hz}, \mathrm{H} 2$), 4.57 (1 H , ddd, $\left.J_{2,3} 10.4 \mathrm{~Hz}, J_{3,4} 8.6 \mathrm{~Hz}, J 3.6 \mathrm{~Hz}, \mathrm{H} 3\right), 5.45(1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}), 5.77\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 8.4 \mathrm{~Hz}\right.$, $\mathrm{H} 1), 6.76-7.70(14 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ;{ }^{\mathrm{TM}}{ }_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 56.8$ (d, C2), 66.7 (d, C5), 68.9, 69.0 (d, t, C3, C6), 82.4 (d, C4), 97.3 (d, C1), 102.4 (d, PhCH), 117.3, 125.5, 126.8, $128.8,129.8,129.9,131.9$ ($7 \mathrm{x} \mathrm{d}, 14 \mathrm{x} \mathrm{ArC}$), 134.6, 137.3, 156.9 ($3 \mathrm{x} \mathrm{s}, 4 \mathrm{x} \mathrm{ArC}$), 168.6, $171.6(2 \mathrm{x} \mathrm{s}, 2 \times \mathrm{CO}) ; m / z\left(\mathrm{ES}^{+}\right) 964\left(\mathrm{M}_{2} \mathrm{NH}_{4}{ }^{+}, 100 \%\right)$. $\mathrm{HRMS}\left(\mathrm{ES}^{+}\right)$Calcd. for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{NO}_{7} \mathrm{Na}\left(\mathrm{MNa}^{+}\right)$496.1367. Found 496.1377.

Phenyl-3-O-benzyl-4,6-O-benzylidene-2-deoxy-2- N -phthalamido- β-D-

 glucopyranoside

Phenyl-4,6-O-benzylidene-2-deoxy-2- N-phthalamido- β-D-glucopyranoside 35 (8.3 g , 16.0 mmol) was suspended in anhydrous dimethylformamide (150 mL) to which benzyl bromide ($2.9 \mathrm{~mL}, 24 \mathrm{mmol}$) was added. The mixture was cooled to $0^{\circ} \mathrm{C}$ and sodium hydride (60% in mineral oil, $950 \mathrm{mg}, 2.4 \mathrm{mmol}$) was added portionwise. After 18 h , t.l.c. (petrol:ethyl acetate, 1:1) showed the formation of a major product $\left(\mathrm{R}_{\mathrm{f}} 0.8\right)$. The reaction was quenched by the careful addition of methanol (ca 50 mL). The mixture was partitioned between diethyl ether $(100 \mathrm{~mL})$ and water $(100 \mathrm{~mL})$ and the phases separated. The aqueous phase was re-extracted with diethyl ether ($2 \times 50 \mathrm{~mL}$). The combined organic layers were washed with brine ($2 \times 250 \mathrm{~mL}$), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. The resulting residue was purified by flash column chromatography (petrol:ethyl acetate, 7:3) and recrystallised from ethylacetate/petrol to afford phenyl-3-O-benzyl-4,6-O-benzylidene-2-deoxy-2- N -phthalamido- β-Dglucopyranoside $36(6.8 \mathrm{~g}, 75 \%)$ as a white foam; m.p. $129130{ }^{\circ} \mathrm{C}$; $\left[\left]_{\mathrm{D}}{ }^{22}+153.8\right.\right.$ (c, 0.65 in $\left.\mathrm{CHCl}_{3}\right) ; J_{\max }(\mathrm{KBr}) 1777,1715(\mathrm{~s}, \mathrm{NCO}) \mathrm{cm}^{-1} ; \mathrm{TM}_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.85$ (1 H , dat, $J_{5,6}, 4.5 \mathrm{~Hz}, J 9.7 \mathrm{~Hz}, \mathrm{H} 5$), 3.92-4.01 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 4, \mathrm{H} 6$), 4.49 ($1 \mathrm{H}, \mathrm{dd}, J_{5,6}$. $4.9 \mathrm{~Hz}, J_{6,6}, 10.3 \mathrm{~Hz}, \mathrm{H}^{\prime}$), 4.58-4.63 (3H, m, H2, H3, PhCHH$), 4.90(1 \mathrm{H}, \mathrm{d}, J$ $12.5 \mathrm{~Hz}, \mathrm{PhCHH}), 5.72(1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}), 5.93-5.95(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 1), 6.93-7.75$ ($19 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}) ;{ }^{\mathrm{TM}}{ }_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 56.1$ (d, C2), 66.7 (d, C5), 69.2 (t, C6), 74.6 (t, PhCH_{2}), 83.3 (d, C4), 97.3 (d, C1), 101.8 (d, PhCH), 117.3, 123.5, 123.9, 126.5, 127.4, 127.9, $128.1,128.5,128.8,129.0,131.9$ ($13 \mathrm{x} \mathrm{d}, 19 \mathrm{x} \mathrm{ArC}$), 134.4, 137.7, 138.2, 156.9 (4 x s, $5 \times \mathrm{ArC}$), 168.1, $171.6(2 \mathrm{x} \mathrm{s}, 2 \times \mathrm{CO}) ; m / z\left(\mathrm{ES}^{+}\right) 581\left(\mathrm{MNH}_{4}^{+}, 100 \%\right)$. HRMS $\left(\mathrm{ES}^{+}\right)$Calcd. for $\mathrm{C}_{34} \mathrm{H}_{29} \mathrm{NO}_{7} \mathrm{Na}\left(\mathrm{MNa}^{+}\right)$586.1836. Found 586.1821.

Phenyl-3,6-di-O-benzyl-2-deoxy-2- N-phthalamido- β-D-glucopyranoside

Phenyl-3- O-benzyl-4,6-O-benzylidene-2-deoxy-2- N -phthalamido-®-Dglucopyranoside 36 ($17.2 \mathrm{~g}, 29.6 \mathrm{mmol}$) was dissolved in anhydrous THF (400 mL) and the resulting solution was cooled to $0^{\circ} \mathrm{C}$, to which methyl orange (speck) and sodium cyanoborohydride ($37 \mathrm{~g}, 593 \mathrm{mmol}$) was added. The resulting solution was acidified by the slow addition of hydrochloric acid in dioxane ($4 \mathrm{M}, \sim 200 \mathrm{~mL}$ to keep the indicator intensely pink). The resulting mixture was stirred under argon at RT. After a 12 h period, t.l.c. (petrol:ethyl acetate, 2:1) indicated the formation of a product ($\mathrm{R}_{\mathrm{f}} 0.3$) with complete consumption of the starting material $\left(\mathrm{R}_{\mathrm{f}} 0.4\right)$. The reaction was diluted with ice water (1L) and filtered through celite. The filtrate was extracted with DCM ($3 \times 300 \mathrm{~mL}$) and the combined organics were stirred in aqueous hydrochloric acid ($2 \mathrm{M}, 400 \mathrm{~mL}$) overnight. The organic layer was then washed with sodium hydrogen carbonate (600 mL , of a saturated aqueous solution), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The resulting residue was purified by flash column chromatography (petrol:ethyl acetate, 2:1) to afford phenyl-3,6-di-O-benzyl-2-deoxy-2- N -phthalamido-®-D-glucopyranoside 12 ($13.5 \mathrm{~g}, 81 \%$) as a white amorphous solid; $\left[\left]_{\mathrm{D}}{ }^{22}+115.1\left(\mathrm{c}, 1.4\right.\right.\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; J_{\text {max }}(\mathrm{KBr}) 3474(\mathrm{bs}, \mathrm{OH}), 1776,1713(\mathrm{~s}, \mathrm{NCO}) \mathrm{cm}^{-1}$; тм $_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.10(1 \mathrm{H}, \mathrm{bs}, \mathrm{OH}), 3.81-3.89(3 \mathrm{H}, \mathrm{m}, \mathrm{H} 5, \mathrm{H} 6, \mathrm{H} 6$ '), $3.96(1 \mathrm{H}$, at, $J 8.8 \mathrm{~Hz}, \mathrm{H} 4), 4.39\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 10.7 \mathrm{~Hz}, J_{3,4} 8.3 \mathrm{~Hz}, \mathrm{H} 3\right), 4.50\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2}\right.$ $\left.8.4 \mathrm{~Hz}, J_{2,3} 10.5 \mathrm{~Hz}, \mathrm{H} 2\right), 4.60-4.70$ ($3 \mathrm{H}, \mathrm{m}, 3 \mathrm{x} \mathrm{PhCH}$), 4.83 ($1 \mathrm{H}, \mathrm{d}, J 12.3 \mathrm{~Hz}$, $\mathrm{PhCH}), 5.84\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 8.2 \mathrm{~Hz}, \mathrm{H} 1\right), 6.91-7.72(19 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; ${ }^{\mathrm{TM}}{ }_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 55.6 (d, C2), 67.5 ($\mathrm{t}, \mathrm{C} 6$), 74.2, 74.3 ($2 \mathrm{xt}, 2 \times \mathrm{PhCH}_{2}$), 74.6, 74.9 ($2 \times \mathrm{d}, \mathrm{C} 4, \mathrm{C} 5$), 79.0 (d, C3), 96.8 (d, C1), 117.0, 117.4, 123.2, 123.9, 127.9, 128.3, 128.4, 128.6, $128.9,129.8,129.9,131.9$ ($12 \times \mathrm{d}$, 19 x ArC), 138.0, 138.4, 157.1 ($3 \mathrm{x} \mathrm{s}, 5 \mathrm{x} \mathrm{ArC);}$ $m / z\left(\mathrm{ES}^{+}\right) 583\left(\mathrm{MNH}_{4}{ }^{+}, 70 \%\right), 1148\left(\mathrm{M}_{2} \mathrm{NH}_{4}{ }^{+}, 100 \%\right)$. HRMS (ES $\left.{ }^{+}\right)$Calcd. for $\mathrm{C}_{34} \mathrm{H}_{31} \mathrm{NO}_{7} \mathrm{Na}\left(\mathrm{MNa}^{+}\right)$588.1993. Found 588.1993.

Phenyl-3-O-benzyl-4-O-benzylidene-2-O-levulinoyl- β-D-glucopyranosyl-(1-4)-

3,6-di- O-benzyl-2-deoxy-2- N-phthalamido- β-D-glucopyranoside

Phenyl-3,6-di- O-benzyl-2-deoxy-2-N-phthalamido-®-D-glucopyranoside 12 (100 mg , 0.17 mmol), ethyl 3-O-benzyl-4,6-O-benzylidene-2-O-levulinoyl-1-thio- $®$ glucopyranoside ${ }^{[14]} 11$ ($93 \mathrm{mg}, \quad 0.19 \mathrm{mmol}$) and N-iodosuccinimide (76 mg , $0.34 \mathrm{mmol})$ were dissolved in anhydrous DCM (20 mL) and stirred over $4 \AA$ MS for 1 h . The reaction was cooled to $0^{\circ} \mathrm{C}$ and trimethylsilyl trifluoromethanesulfonate ($3 \mu \mathrm{~L}, 0.017$) was added. After a 2.5 h period, t.l.c. (petrol:ethyl acetate, 2:1) indicated the formation of a product ($\mathrm{R}_{\mathrm{f}} 0.3$) with complete consumption of the starting material ($\mathrm{R}_{\mathrm{f}} 0.4$). The reaction was filtered through celite and washed with aqueous sodium thiosulfate ($30 \mathrm{~mL}, 10 \% \mathrm{w} / \mathrm{v}$), brine (30 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. The resulting residue was purified by flash column chromatography (petrol:ethyl acetate, 1:1) to afford phenyl 3-O-benzyl-4-O-benzylidene-2-O-levulinoyl-®-D-glucopyranosyl-(1-4)-3,6-di-O-benzyl-2-deoxy-2-N-phthalamido-®-D-glucopyranoside 13 ($225 \mathrm{mg}, 88 \%$) as a white amorphous solid; $\left[\left]_{\mathrm{D}}{ }^{21}+28.0\left(\mathrm{c}, 1.25\right.\right.\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; J_{\text {max }}(\mathrm{KBr})$ 1776, 1777, 1751, 1716, 1591 ($\left.\mathrm{s}, \mathrm{CO}\right) \mathrm{cm}^{-}$ ${ }^{1}$; $\mathrm{TM}_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.27-2.45\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Lev}\right), 2.54-2.76$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Lev}$), 3.13 (1 H , dat, $J_{5,6}, 4.9 \mathrm{~Hz}, J 9.8 \mathrm{~Hz}, \mathrm{H} 5 \mathrm{~b}$), 3.38 (1 H, at, $J 10.2 \mathrm{~Hz}$, H6b), 3.47 (1 H , at, $J 9.3 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{~b}$), 3.55 (1 H , at, $J 9.2 \mathrm{~Hz}, \mathrm{H} 4 \mathrm{~b}$), 3.63-3.66 ($1 \mathrm{H}, \mathrm{m}$, H5a), 3.70-3.73 (1H, m, H6a), $3.80\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6}, 3.2 \mathrm{~Hz}, J_{6,6}, 11.7 \mathrm{~Hz}, \mathrm{H} 6\right.$ 'a), 4.04$4.08(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4 \mathrm{a}), 4.18\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6}{ }^{\prime} 4.9 \mathrm{~Hz}, J_{6,6} 10.5 \mathrm{~Hz}, \mathrm{H} 6{ }^{\prime} \mathrm{b}\right), 4.23\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3}\right.$ 8.6 Hz , dd, $\left.J_{3,4} 9.9 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{a}\right), 4.31-4.37$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \mathrm{a}, 2 \mathrm{x} \mathrm{PhCH}$), 4.49 ($1 \mathrm{H}, \mathrm{d}, J_{1,2}$ $7.9 \mathrm{~Hz}, \mathrm{H} 1 \mathrm{~b}), 4.57,4.76\left(2 \mathrm{H}, \mathrm{ABq}, J 12.2 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.68(1 \mathrm{H}, \mathrm{d}, J 12.0 \mathrm{~Hz}$, $\mathrm{PhCH}), 4.70(1 \mathrm{H}, \mathrm{d}, J 12.2 \mathrm{~Hz}, \mathrm{PhCH}), 4.89(1 \mathrm{H}$, at, $J 8.5 \mathrm{~Hz}, \mathrm{H} 2 \mathrm{~b}), 5.38(1 \mathrm{H}, \mathrm{s}$, $\mathrm{PhCH}), 5.65\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 8.4 \mathrm{~Hz}, \mathrm{H} 1 \mathrm{a}\right), 6.78-7.55(29 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; ${ }^{\text {тм }}{ }_{\mathrm{C}}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 28.2\left(\mathrm{t}, \mathrm{CH}_{2}\right), 30.4\left(\mathrm{q}, \mathrm{CH}_{3}\right), 38.7\left(\mathrm{t}, \mathrm{CH}_{2}\right), 55.9(\mathrm{~d}, \mathrm{C} 2 \mathrm{a}), 66.3(\mathrm{~d}, \mathrm{C} 5 \mathrm{~b}), 67.9$ (t, C6a), 69.0 (t, C6b), $70.0\left(\mathrm{t}, \mathrm{PhCH}_{2}\right), 74.5$ (d, C2b), 75.1, 75.4 ($2 \mathrm{xt}, 2 \times \mathrm{PhCH}_{2}$), 77.0 (d, C5a), 77.1 (d, C3a), 78.2 (d, C4a), 78.9 (d, C3b), 82.1 (d, C4b), 96.7 (d, C1a), 101.1 (d, PhCH), 117.4, 123.1, 123.8, 126.5, 127.5, 128.1, 128.2, 128.3, 128.4, 128.6, $128.9,129.5,129.7,131.9,134.2$ ($15 \times \mathrm{d}, 29 \times \mathrm{ArC}$), 137.6, 138.3, 138.7, 138.9, 157.2 (5 x s, 7 x ArC), 171.7 (s, CO), 206.7 (s, CO); $m / z\left(\mathrm{ES}^{+}\right) 1026\left(\mathrm{MNa}^{+}, 100 \%\right)$.

Phenyl-3-O-benzyl-4-O-benzylidene- β-D-glucopyranosyl-(1-4)-3,6-di-O-benzyl-2-

 deoxy-2- N-phthalamido- β-D-glucopyranoside

Phenyl 3-O-benzyl-4-O-benzylidene-2-O-levulinoyl-®-D-glucopyranosyl-(1-4)-3,6-di- O -benzyl-2-deoxy-2- N -phthalamido-®-D-glucopyranoside 13 ($1.2 \mathrm{~g}, 1.19 \mathrm{mmol}$) and hydrazine acetate ($490 \mathrm{mg}, 5.38 \mathrm{mmol}$) were dissolved in methanol (100 mL). After 16 h the reaction was partitioned between water (100 mL) and DCM (100 mL) and the phases separated. The aqueous phase was re-extracted with DCM (2 x 100 mL). The combined organic layers were washed with brine (100 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. The resulting residue was purified by flash column chromatography (petrol:ethyl acetate, 1:1) to afford phenyl-3-O-benzyl-4-O-benzylidene- β-D-glucopyranosyl-(1-4)-3,6-di- O-benzyl-2-deoxy-2-N-phthalamido- β-D-glucopyranoside 37 ($1.8 \mathrm{~g}, 95 \%$) as a white foam; $\left[\left]_{\mathrm{D}}{ }^{21}+28.0\right.\right.$ (c, 1.25 in CHCl_{3}); J max $(\mathrm{KBr}) 1776,1777,1751,1716,1591(\mathrm{~s}, \mathrm{CO}) \mathrm{cm}^{-1} ;{ }^{\mathrm{T}}{ }_{\mathrm{H}}$ ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $2.94\left(1 \mathrm{H}, \mathrm{d}, J 1.8 \mathrm{~Hz}, \mathrm{OH}\right.$), $3.15\left(1 \mathrm{H}\right.$, dat, $J_{5,6} 5.0 \mathrm{~Hz}, J 10.7 \mathrm{~Hz}$, H5b), 3.43-3.56 (4H, m, H2b, H3b, H4b, H6a), 3.68-3.72 (1H, m, H5a), 3.78 (1 H , dd, $\left.J_{5,6} 1.8 \mathrm{~Hz}, J_{6,6}, 11.4 \mathrm{~Hz}, \mathrm{H} 6 \mathrm{a}\right), 3.96\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6}, 3.6 \mathrm{~Hz}, J_{6,6}, 11.4 \mathrm{~Hz}, \mathrm{H} 6\right.$ 'a), $4.09-$ 4.15 (2H, m, H4a, H6’b), 4.36-4.39 (3H, m, H2a, H3a, PhCH), 4.56, 4.63 (2H, ABq, J $12.0 \mathrm{~Hz}, \mathrm{PhCH}_{2}$), $4.57(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 1 \mathrm{~b}), 4.70-4.83\left(2 \mathrm{H}, \mathrm{ABq}, J 11.8 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 7.73$ ($1 \mathrm{H}, \mathrm{d}, J 12.5 \mathrm{~Hz}, \mathrm{PhCH}_{2}$), 5.41 ($1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}$), 5.65 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 1 \mathrm{a}$), 6.78-7.57 (29 H , $\mathrm{m}, \mathrm{ArH}) ;{ }^{\mathrm{Tm}}{ }_{\mathrm{C}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 56.1$ (d, C2a), 66.7 (d, C5b), 68.4 (t, C6a), 69.1 (t, C6b), 73.9, 75.0, 75.2 ($3 \mathrm{xt}, \mathrm{PhCH}_{2}$), 75.4 (d, C5a), 75.4, 80.8, 81.8 (3 x d, C2b, C3b, C4b), 78.2 (d, C4a), 79.2 (d, C3a), 96.9 (d, C1a), 101.6 (d, PhCH), 103.8 (d, C1b), $123.3,123.8,126.4,127.6,127.9,128.3,128.4,128.5,128.6,128.8,128.9,129.4$, 129.8, 134.3 ($14 \times \mathrm{d}$, 29 x ArC), 137.7, 138.2, 138.8, 157.2 ($4 \mathrm{x} \mathrm{s}, 7 \mathrm{x} \mathrm{ArC)}$,168.2 (s, CO); $m / z\left(\mathrm{ES}^{+}\right) 1026\left(\mathrm{MNa}^{+}, 100 \%\right)$.

Phenyl-2-O-acetyl-3-O-benzyl-4-O-benzylidene- β-D-mannopyranosyl-(1-4)-3,6-

 di- O-benzyl-2-deoxy-2- N-phthalamido- β-D-glucopyranoside

Phenyl-3- O-benzyl-4- O-benzylidene- β-D-glucopyranosyl-(1-4)-3,6-di- O-benzyl-2-deoxy-2- N-phthalamido- β-D-glucopyranoside 37 ($106 \mathrm{mg}, \quad 0.14 \mathrm{mmol}$) and anhydrous pyridine ($325 \mu \mathrm{~L}, 1.71 \mathrm{mmol}$) were dissolved in anhydrous DCM (4 mL). The reaction was cooled to $0^{\circ} \mathrm{C}$ and trifluoromethanesulfonic anhydride ($285 \mu \mathrm{~L}$, 1.71 mmol) was added. The reaction was allowed to warm to RT over a 2 h period, at which point the reaction was partitoned between DCM $(10 \mathrm{~mL})$ and sodium hydrogen carbonate $(20 \mathrm{~mL})$ and the phases separated. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. The resulting orange residue was dried under vacuum for 2 h , at which point it was taken up into anhydrous toluene (10 mL) and tetrabutylammonium acetate ($250 \mathrm{mg}, 0.84 \mathrm{mmol}$) was added. The reaction was placed under sonication for 16 h then concentrated in vacuo. The resulting residue was purified by flash column chromatography (petrol:ethyl acetate, 2:1) to afford phenyl-2- O-acetyl-3- O-benzyl-4- O-benzylidene- β-D-mannopyranosyl-(1-4)-3,6-di- O -benzyl-2-deoxy-2-N-phthalamido- β-D-glucopyranoside 14 ($94 \mathrm{mg}, 84 \%$) as a white foam; $[<]_{\mathrm{D}}{ }^{21}+28.0\left(\mathrm{c}, 1.25\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; J_{\max }(\mathrm{KBr})$ 1776, 1777, 1751, 1716, 1591 (s, $\mathrm{CO}) \mathrm{cm}^{-1} ;{ }^{\mathrm{Tm}}{ }_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.02(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 3.00\left(1 \mathrm{H}\right.$, dat, $J 9.6 \mathrm{~Hz}, J_{5,6}$, $5.0 \mathrm{~Hz}, \mathrm{H} 5 \mathrm{~b}), 3.31\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 3.5 \mathrm{~Hz}, J_{3,4} 9.9 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{~b}\right), 3.43(1 \mathrm{H}, \mathrm{at}, J 9.5 \mathrm{~Hz}$, H6b), $3.55-3.58$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 5 \mathrm{a}$), 3.62 (1 H , dd, $J_{5,6} 1.7 \mathrm{~Hz}, J_{6,6}, 11.2 \mathrm{~Hz}, \mathrm{H} 6 \mathrm{a}$), 3.69 (H, dd, $\left.J_{5,6}, 3.1 \mathrm{~Hz}, J_{6,6} \cdot 11.2 \mathrm{~Hz}, \mathrm{H} \mathbf{b}^{\prime} \mathrm{a}\right), 3.72(1 \mathrm{H}$, at, $J 9.5 \mathrm{~Hz}, \mathrm{H} 4 \mathrm{~b}), 4.02-4.08(2 \mathrm{H}, \mathrm{m}$, H4a, H6b), 4.19 ($1 \mathrm{H}, \mathrm{dd}, J_{2,3} 10.6 \mathrm{~Hz}, J_{3,4} 8.4 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{a}$), 4.26-4.31 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \mathrm{a}$, $2 \times \mathrm{PhCH}), 4.40(1 \mathrm{H}, \mathrm{d}, J 12.5 \mathrm{~Hz}, \mathrm{PhCH}), 4.49-4.53(2 \mathrm{H}, \mathrm{m}, \mathrm{Hlb}, \mathrm{PhCH}), 4.59(1 \mathrm{H}$, d, $J 12.0 \mathrm{~Hz}, \mathrm{PhCH}), 4.71(1 \mathrm{H}, \mathrm{d}, J 12.3 \mathrm{~Hz}, \mathrm{PhCH}), 5.31$ ($1 \mathrm{H}, \mathrm{bd}, J 2.7 \mathrm{~Hz}, \mathrm{H} 2 \mathrm{~b}$), $5.36(1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}), 5.58(1 \mathrm{H}, \mathrm{d}, J 8.4 \mathrm{~Hz}, \mathrm{H} 1 \mathrm{a}), 6.69-7.51(29 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ;{ }^{\mathrm{Tm}}{ }_{\mathrm{C}}$ ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 21.5 (q, OAc), 55.9 (d, C2a), 67.4 (d, C5b), 68.6 (t, C6a), 69.6 (d, $\mathrm{C} 2 \mathrm{~b}), 72.1,73.9\left(2 \mathrm{xt}, 2 \times \mathrm{PhCH}_{2}\right.$), $75.0(\mathrm{~d}, \mathrm{C} 5 \mathrm{a}), 75.1\left(\mathrm{t}, \mathrm{PhCH}_{2}\right), 76.2$ (d, C3b), 77.3 (d, C3a), 78.3 (d, C4b), 79.3 (d, C4a), 96.9 (d, C1a), 99.9 (d, C1b), 101.9 (d, PhCH), 117.4, 123.2, 123.8, 126.5, 127.7, 128.0, 128.2, 128.4, 128.6, 128.8, 129.0, 129.4, $129.8,134.2$ ($14 \times \mathrm{d}, 29 \mathrm{x}$ ArC), 137.8, 138.1, 138.2, 138.9, 157.2 ($5 \mathrm{x} \mathrm{s}, 7 \mathrm{x}$ ArC), 170.7 (s, CO); m/z (ES ${ }^{+}$) 1026 ($\mathrm{MNa}^{+}, 100 \%$).

Phenyl-2,3,4,6-tetra-O-acetyl- $\boldsymbol{\beta}$-D-mannopyranosyl-(1-4)-3,6-di- O-acetyl-2-

 deoxy-2- N-acetamido- β-D-glucopyranoside

Phenyl-2- O-acetyl-3-O-benzyl-4-O-benzylidene- β-D-mannopyranosyl-(1-4)-3,6-di-O-benzyl-2-deoxy-2- N-phthalamido- β-D-glucopyranoside 14 ($950 \mathrm{mg}, 1.18 \mathrm{mmol}$) and Pearlman's catalyst $\left(\mathrm{Pd}(\mathrm{OH})_{2}\right.$, moist, 800 mg$)$ were suspended in absolute ethanol $(10 \mathrm{~mL})$. The resulting solution was degassed and purged with hydrogen gas, then left to stir under an atmosphere of hydrogen. After a 48 h period, the solution was filtered through celite ${ }^{\circledR}$ and concentrated in vacuo. The resulting residue was dissolved in 1butanol (5 mL) and 1,2-ethylenediamine (4 mL) and the reaction was heated to $80^{\circ} \mathrm{C}$. After 16 h the reaction was co-evaporated with toluene ($3 \times 50 \mathrm{~mL}$). The resulting residue was taken up in acetic anhydride (10 mL) and pyridine (15 mL). After 16 h , t.l.c. the reaction was quenched by the addition of water (50 mL). The reaction was partitioned with ethyl acetate (30 mL) and the phases separated. The aqueous phase was re-extracted with ethyl acetate ($2 \times 20 \mathrm{~mL}$). The combined organic layers were washed with dilute hydrochloric acid (300 mL of a 1 M aqueous solution), sodium hydrogen carbonate (50 mL of a saturated aqueous solution), brine (50 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. The resulting residue was purified by flash column chromatography (ethyl acetate) to afford phenyl-2,3,4,6-tetra- O-acetyl-β-D-mannopyranosyl-(1-4)-3,6-di- O-acetyl-2-deoxy- 2 - N-acetamido- β-Dglucopyranoside 38 ($623 \mathrm{mg}, 74 \%$) as a white amorphous solid; $\left[\left]_{\mathrm{D}}{ }^{21}+28.0(\mathrm{c}, 1.25\right.\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; J_{\max }(\mathrm{KBr}) 1776,1777,1751,1716,1591(\mathrm{~s}, \mathrm{CO}) \mathrm{cm}^{-1} ; \mathrm{TM}_{\mathrm{H}}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.92,1.96,2.02,2.05,2.07,2.10,2.13\left(21 \mathrm{H}, 7 \mathrm{x} \mathrm{s}, 7 \times \mathrm{COCH}_{3}\right), 3.63-3.66$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 5 \mathrm{~b}$), $3.76-3.79(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 5 \mathrm{a}), 3.90(1 \mathrm{H}$, at, $J 8.9 \mathrm{~Hz}, \mathrm{H} 4 \mathrm{a}), 4.07-4.10(1 \mathrm{H}$, m, H6b), 4.19-4.25 (2H, m, H2a, H6a), 4.30-4.37 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}$ 'a, H6’b), 4.72 ($1 \mathrm{H}, \mathrm{s}$, H1b), $5.03\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 3.1 \mathrm{~Hz}, J_{3,4} 9.8 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{~b}\right), 5.08\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 7.9 \mathrm{~Hz}, \mathrm{H} 1 \mathrm{a}\right), 5.16-$ $5.24(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3 \mathrm{a}, \mathrm{H} 4 \mathrm{a}), 5.40\left(1 \mathrm{H}, \mathrm{d}, J_{2,3} 3.2 \mathrm{~Hz}, \mathrm{H} 2 \mathrm{~b}\right), 5.94(1 \mathrm{H}, \mathrm{d}, J 9.2 \mathrm{~Hz}, \mathrm{NHa})$, 6.94-7.27 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); ${ }^{\mathrm{TM}} \mathrm{C}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 20.6,20.7,20.8,20.9,23.2$ (5 x q , $7 \times \mathrm{COCH}_{3}$), 53.7 (d, C2a), 62.3 (t, C6a), 62.7 (t, C6b), 65.8 (d, C3a), 68.5 (d, C2b), 76.7 (d, C3b), 71.8 (d, C4b), 72.5, 72.6 (2 x d, C5a, C5b), 74.7 (d, C4a), 97.6 (d,

C1b), 99.1 (d, C1a), 116.0, 123.1, 129.6 ($3 \times \mathrm{d}, 5 \mathrm{x} \mathrm{ArC)}$,157.1 (s, ArC), 169.6, $170.0,170.4,170.5,170.6,170.8(6 \mathrm{x} \mathrm{s}, \mathrm{CO}) ; m / z\left(\mathrm{ES}^{+}\right) 770\left(\mathrm{MNH}_{4} \mathrm{MeCN}^{+}, 100 \%\right)$. HRMS (ES ${ }^{+}$) Calcd. for $\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{NO}_{17} \mathrm{Na}\left(\mathrm{MNa}^{+}\right) 734.2272$ Found 734.2272.

Phenyl- β-D-mannopyranosyl-(1-4)-2-deoxy-2-N-acetyl- β-D-glucopyranoside

Phenyl-2,3,4,6-tetra- O-acetyl- β-D-mannopyranosyl-(1-4)-3,6-di- O-acetyl-2-deoxy-2-N-acetamido- β-D-glucopyranoside 38 ($420 \mathrm{mg}, 0.59 \mathrm{mmol}$) and sodium methoxide $(4 \mathrm{mg}, 0.07 \mathrm{mmol})$ were added to a stirred solution of methanol $(10 \mathrm{~mL})$. After 1 h , t.l.c. (ethyl acetate, 1:1) indicated the formation of a product $\left(R_{f} 0\right)$. The reaction was neutralised by the addition of Dowex-50 ion exchange resin ${ }^{\circledR}$ after which point the reaction was filtered and concentrated in vacuo to afford phenyl- β-D-mannopyranosyl-(1-4)-2-deoxy-2-N-acetyl- β-D-glucopyranoside 2 ($268 \mathrm{mg}, 99 \%$) as a white amorphous solid; $[\alpha]_{D}{ }^{21}-6.0\left(\mathrm{c}, 0.25\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right) ; J_{\max }(\mathrm{KBr}) 3289$ (bs, NH, OH), 1656, $1551(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; $\mathrm{TM}_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 1.94(3 \mathrm{H}, \mathrm{s}, \mathrm{NHAc}), 3.35(1 \mathrm{H}$, ddd, $\left.J_{4,5} 9.1 \mathrm{~Hz}, J_{5,6} 2.3 \mathrm{~Hz}, J_{6,6}, 6.7 \mathrm{~Hz}, \mathrm{H} 5 \mathrm{~b}\right), 3.50(1 \mathrm{H}$, at, $J 9.8 \mathrm{~Hz}, \mathrm{H} 4 \mathrm{~b}), 3.57(1 \mathrm{H}, \mathrm{dd}$, $J_{2,3} 3.1 \mathrm{~Hz}, J_{3,4} 9.8 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{~b}$), 3.64-3.67 (2H, m, H6b, H2/3/4a), 3.70 (1 H , dd, $J_{5,6}$ $\left.4.6 \mathrm{~Hz}, J_{6,6}, 12.6 \mathrm{~Hz}, \mathrm{H} 6 \mathrm{a}\right), 3.75-3.79$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 / 3 / 4 \mathrm{a}$), 3.84 ($1 \mathrm{H}, \mathrm{dd}, J_{5,6}, 1.8 \mathrm{~Hz}, J_{6,6}$, $\left.12.7 \mathrm{~Hz}, \mathrm{H} 6^{\prime} \mathrm{a}\right), 3.86\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6}, 2.2 \mathrm{~Hz}, J_{6,6}, 12.2 \mathrm{~Hz}, \mathrm{H} 6^{\prime} \mathrm{b}\right), 3.94(1 \mathrm{H}$, at, $J 9.3 \mathrm{~Hz}$, $\mathrm{H} 2 \mathrm{a}), 4.00\left(1 \mathrm{H}, \mathrm{d}, J_{2,3} 3.1 \mathrm{~Hz}, \mathrm{H} 2 \mathrm{~b}\right), 4.72(1 \mathrm{H}, \mathrm{bs}, \mathrm{H} 1 \mathrm{~b}), 5.09\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 8.5 \mathrm{~Hz}\right.$, H1a), $7.00(2 \mathrm{H}, \mathrm{d}, J 7.8 \mathrm{~Hz}, \mathrm{ArH}), 7.06(1 \mathrm{H}, \mathrm{dd}, J 7.3 \mathrm{~Hz}, \mathrm{ArH}), 7.30(2 \mathrm{H}, \mathrm{t}, J 7.8 \mathrm{~Hz}$, $\mathrm{ArH}) ;{ }^{\mathrm{TM}}{ }_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 22.1$ (q, COCH_{3}), 54.9 (d, C2), 60.0 (t, C6b), 60.9 (t, C6a), 66.6 (d, C4b), 70.5 (d, C2b), 72.0, 74.7, 78.6 (3 x d, C3a, C4a, C5a), 72.7 (d, C3b), 76.4 (d, C5b), 99.5 (d, C1b), 100.1 (d, C1a), 116.6, 123.5, 129.9 ($3 \times \mathrm{d}, 5 \times \mathrm{ArC}$), 156.7 (s, ArC), 174.8 (s, CO). $m / z\left(\mathrm{ES}^{-}\right) 458$ ($100 \% \mathrm{MH}^{+}$). HRMS found 458.1668. calcd 458.1662 for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}_{11}$.

Synthesis of compound 3.

\qquad

10

Reagents and conditions: a) $\mathrm{NaBH}_{3} \mathrm{CN}, \mathrm{HCl} /$ dioxane, $\mathrm{THF}, 0^{\circ} \mathrm{C}-\mathrm{rt}, 80 \%$; b) MeOTf, DCM, $4 \AA$ MS, 75%; c) i - $\mathrm{H}_{2} \mathrm{NNH}_{2}$. $\mathrm{HOAc}, \mathrm{MeOH}, 55^{\circ} \mathrm{C}$; ii - $\mathrm{Tf}_{2} \mathrm{O}$, DCM, pyridine; iii - $\mathrm{Bu}_{4} \mathrm{~N} . \mathrm{OAc}$, toluene,))), 68%; d) i- $\mathrm{H}_{2}, \mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{EtOH}$, ii- 1,2-ethylenediamine, BuOH, Δ, iii- $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, 94%; e) $\mathrm{NaOMe}, \mathrm{MeOH}, 86 \%$.

Phenyl-3,6-di- O-benzyl-2-deoxy-2- N-phthalamido- β-D-glucopyranosyl-(1-4)-3,6-

di- O-benzyl-2-deoxy-2- N-phthalamido- β-D-glucopyranoside

Phenyl-3- O-benzyl-4,6- O-benzylidene-2-deoxy-2- N-phthalamido- β-D-glucopyranosyl-(1-4)-3,6-di- O-benzyl-2-deoxy-2- N-phthalamido- β-Dglucopyranoside 10 ($3.6 \mathrm{~g}, 4.85 \mathrm{mmol}$) was dissolved in anhydrous THF (100 mL) and the resulting solution was cooled to $0{ }^{\circ} \mathrm{C}$, to which methyl orange (speck) and sodium cyanoborohydride ($4.4 \mathrm{~g}, 69.6 \mathrm{mmol}$) was added. The resulting solution was acidified by the slow addition of hydrochloric acid in dioxane ($4 \mathrm{M}, \sim 100 \mathrm{~mL}$ to keep the indicator intensely pink). The resulting mixture was stirred under argon at RT. After a 12 h period, t.l.c. (petrol:ethyl acetate, 1:1) indicated the formation of a product $\left(R_{f} 0.4\right)$ with complete consumption of the starting material $\left(R_{f} 0.6\right)$. The reaction was diluted with ice water (1L) and filtered through celite. The filtrate was extracted with DCM ($3 \times 200 \mathrm{~mL}$) and the combined organics were stirred in aqueous hydrochloric acid ($2 \mathrm{M}, 500 \mathrm{~mL}$) overnight. The organic layer was then washed with sodium hydrogen carbonate (600 mL , of a saturated aqueous solution), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The resulting residue was purified by flash column chromatography (petrol:ethyl acetate, 1:1) to afford phenyl 3,6-di- O-benzyl-2-deoxy-$2-N$-phthalamido- β-D-glucopyranosyl-(1-4)-3,6-di-O-benzyl-2-deoxy-2-N-phthalamido- β-D-glucopyranoside $15(2.88 \mathrm{~g}, 80 \%)$ as a white amorphous foam; m.p. $113-115{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}+25.3\left(\mathrm{c}, 2.2\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{\mathrm{T}}{ }_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.19(1 \mathrm{H}, \mathrm{bs}, \mathrm{OH})$, 3.42-3.50 (3H, m, H5a, H5b, H6b), 3.573.62 (2H, m, H6a, H6’b), 3.74 (1 H, dd, $J_{5,6}$ ' $4.3 \mathrm{~Hz}, J_{6,6}, 9.8 \mathrm{~Hz}, \mathrm{H}{ }^{\prime}$ a), 3.85 (1 H , at, $J 8.8 \mathrm{~Hz}, \mathrm{H} 4 \mathrm{~b}$), 4.19 ($1 \mathrm{H}, \mathrm{dd}, J_{1,2} 8.2 \mathrm{~Hz}, J_{2,3}$ $10.7 \mathrm{~Hz}, \mathrm{H} 2 \mathrm{~b}), 4.23-4.30(3 \mathrm{H}, \mathrm{m}, \mathrm{H} 3 \mathrm{a}, \mathrm{H} 3 \mathrm{~b}, \mathrm{H} 4 \mathrm{a}), 4.40\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2} 8.7 \mathrm{~Hz}, J_{2,3}\right.$ $10.6 \mathrm{~Hz}, \mathrm{H} 2 \mathrm{a}), 4.44(1 \mathrm{H}, \mathrm{d}, J 11.6 \mathrm{~Hz}, \mathrm{PhCH}), 4.50-4.56$ ($5 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{PhCH}$), 4.80$4.85(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{PhCH}), 5.34\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 8.2 \mathrm{~Hz}, \mathrm{H} 1 \mathrm{~b}\right), 5.60\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 8.5 \mathrm{~Hz}, \mathrm{H} 1 \mathrm{a}\right)$, 6.78-7.91 (33H, m, ArH); ${ }^{\mathrm{TM}} \mathrm{C}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 55.5$ (d, C2a), 56.1 (d, C2b), 67.1 (t, C6b), 68.1 (t, C6a), 70.8, 72.7 ($2 \mathrm{xt}, 2 \times \mathrm{PhCH}_{2}$), 73.0 (d, C5b), 73.7 (t, PhCH_{2}), 74.4 (t, PhCH_{2}), 74.7 (d, C5a), 75.2 (d, C4b), 75.7, 76.5, 78.3 (3 x d, C3a, C3b, C4a), 96.2
(d, C1a), 97.1 (d, C1b), 116.9, 122.6, 123.2, 123.3, 123.7, 127.0, 127.3, 127.4, 127.7, $127.8,127.9,128.0,128.1,128.2,128.5,128.6,129.2,131.5,131.8,133.7,133.9$, 134.1 ($22 \times \mathrm{d}$, 33 x ArC), 137.5, 138.2, 138.3, 138.4 ($4 \mathrm{x} \mathrm{s}, 8 \mathrm{x} \mathrm{ArC)}$,156.7 (s, ArC), 167.6, $168.4(2 \mathrm{x} \mathrm{s}, 4 \times \mathrm{CO}) . \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right) 1059\left(100 \%, \mathrm{M}+\mathrm{Na}^{+}\right)$.

Phenyl-2-O-levulinoyl-3-O-benzyl-4,6-benzylidene- β-D-mannopyranosyl-(1-4)-3,6-di-O-benzyl-2-deoxy-2- N-phthalamido- β-D-glucopyranosyl-(1-4)-3,6-di- O -benzyl-2-deoxy-2- N-phthalamido- β-D-glucopyranoside

Ethyl 3-O-benyzl-4,6-O-benzylidene-2-O-levulinyl-1-thio-®-D-glucopyranoside ${ }^{[14]}$ $11(370 \mathrm{mg}, 0.96 \mathrm{mmol})$ in anhydrous $\mathrm{DCM}(20 \mathrm{~mL})$ and phenyl 3,6-di- O-benzyl-2-deoxy-2- N-phthalamido- β-D-glucopyranosyl-(1-4)-3,6-di-O-benzyl-2-deoxy-2-N-phthalamido- β-D-glucopyranoside 15 ($713 \mathrm{mg}, 0.96 \mathrm{mmol}$) in DCM (20 mL) were added to a dried flask containing activated $4 \AA$ molecular sieves (ca 500 mg) via cannula. The resulting solution was stirred for 1 h , after which point methyl trifluromethanesulfonate ($215 \mu \mathrm{~L}, 1.89 \mathrm{mmol}$) was added. After a 20 h period, t.l.c. (toluene:ethyl acetate, 3:1) indicated the formation of a major product ($\mathrm{R}_{\mathrm{f}} 0.6$) with complete consumption of the starting material $\left(\mathrm{R}_{\mathrm{f}} 0.5\right)$. The reaction was quenched with sodium hydrogen carbonate (30 mL of a saturated aqueous solution) and the solution was concentrated in vacuo. The resulting residue was purified by flash column chromatography (toluene:ethyl acetate, 3:1) to afford phenyl-2-O-levulinoyl-3-O-benzyl-4,6-benzylidene- β-D-mannopyranosyl-(1-4)-3,6-di-O-benzyl-2-deoxy-2-N-phthalamido- β-D-glucopyranosyl-(1-4)-3,6-di- O-benzyl-2-deoxy-2- N-phthalamido-β-D-glucopyranoside 16 ($769 \mathrm{mg}, 75 \%$) as a white amorphous foam; $[\alpha]_{\mathrm{D}}{ }^{20}+24.0$ (c, 0.65 in $\left.\mathrm{CHCl}_{3}\right) ; J_{\max }(\mathrm{KBr}) 1778,1747,1712(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \mathrm{TM}_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 2.18, $2.38\left(2 \times 3 H, 2 \times x, 2 \times \mathrm{COCH}_{3}\right), 2.44-2.49\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Lev}\right), 2.72-2.75(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{Lev}$), 3.22 (1 H , dat, $J_{5,6} 5.0 \mathrm{~Hz}, J 9.8 \mathrm{~Hz}, \mathrm{H} 5 \mathrm{c}$), 3.42-3.46 (2H, m, H6b, H6c), 3.47-3.51 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 5 \mathrm{a}, \mathrm{H} 5 \mathrm{~b}$), 3.55-3.57 (1H, m, H6'b), 3.60 (1 H, at, J $8.9 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{c}$), $3.65(1 \mathrm{H}$, at, $J 9.2 \mathrm{~Hz}, \mathrm{H} 4 \mathrm{c}), 3.75-3.81\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 6 \mathrm{a}, \mathrm{H} 6\right.$ 'a) , $4.15\left(1 \mathrm{H}, \mathrm{dd}, J_{3,4} 8.5 \mathrm{~Hz}\right.$, $\left.J_{4,5} 9.8 \mathrm{~Hz}, \mathrm{H} 4 \mathrm{a} / \mathrm{b}\right), 4.22-4.34(5 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \mathrm{~b}, \mathrm{H} 3 \mathrm{a}, \mathrm{H} 3 \mathrm{~b}, \mathrm{H} 4 \mathrm{a} / \mathrm{b}, \mathrm{H} 6$ 'c), 4.39-4.45 (3H, $\mathrm{m}, \mathrm{H} 2 \mathrm{a}, 2 \mathrm{x} \mathrm{PhCH}), 4.48(1 \mathrm{H}, \mathrm{d}, J 11.9 \mathrm{~Hz}, \mathrm{PhCH}), 4.52(1 \mathrm{H}, \mathrm{d}, J 12.0 \mathrm{~Hz}, \mathrm{PhCH})$, $4.56(1 \mathrm{H}, \mathrm{d}, J 12.9 \mathrm{~Hz}, \mathrm{PhCH}), 4.64\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 7.9 \mathrm{~Hz}, \mathrm{H} 1 \mathrm{c}\right), 4.67(1 \mathrm{H}, \mathrm{d}, J 12.0 \mathrm{~Hz}$, $\mathrm{PhCH}), 4.70,4.87\left(2 \mathrm{H}, \mathrm{ABq}, J 12.0 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.81(1 \mathrm{H}, \mathrm{d}, J 12.3 \mathrm{~Hz}, \mathrm{PhCH}), 4.94$ ($1 \mathrm{H}, \mathrm{d}, J 12.5 \mathrm{~Hz}, \mathrm{PhCH}$), 5.01 (1H, at, $J 8.5 \mathrm{~Hz}, \mathrm{H} 2 \mathrm{c}), 5.32\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 8.5 \mathrm{~Hz}, \mathrm{H} 1 \mathrm{~b}\right)$, $5.47(1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}), 5.59\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 8.5 \mathrm{~Hz}, \mathrm{H} 1 \mathrm{a}\right), 6.77-7.69(43 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ;{ }^{\mathrm{TM}}{ }_{\mathrm{C}}$
($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $21.5\left(\mathrm{q}, \mathrm{COCH}_{3}\right), 27.8\left(\mathrm{t}, \mathrm{CH}_{2}\right), 29.8\left(\mathrm{q}, \mathrm{COCH}_{3}\right), 37.8\left(\mathrm{t}, \mathrm{CH}_{2}\right)$, 55.5 (d, C2a), 56.5 (d, C2b), 65.9 (d, C5c), 67.2 (t, C6a), 68.0 (t, C6b), 68.6 (t, C6c), 72.7, 73.8 ($2 \mathrm{xt}, 2 \times \mathrm{PhCH}_{2}$), 73.3 (d, C2a), 73.6, 74.1 ($2 \mathrm{xt}, 3 \times \mathrm{PhCH}_{2}$), 74.7 (2 xd , C5a, C5b), 76.1, 76.7, 76.9, 77.9 (4 x d, C3a, C3c, C4a, C4b), 78.6 (d, C3c), 81.7 (d, C4c), 96.3 (d, C1a), 97.2 (d, C1b), 100.7 (d, C1c), 101.2 (d, PhCH), 116.7, 126.0, $126.9,127.0,127.2,127.3,127.6,127.8,127.9,128.1,128.2,128.6,129.0,129.2$ ($14 \times \mathrm{d}, 43 \times \mathrm{ArC}$), 138.0, 138.2, 138.6, 138.7, 156.8 ($5 \mathrm{x} \mathrm{s}, 11 \times \mathrm{ArC}$), 167.6, 168.4, 171.3 (3 x s, $5 \times \mathrm{CO}$), 205.9 (s, CO). $m / z\left(\mathrm{ES}^{+}\right) 1533\left(100 \%, \mathrm{M}+\mathrm{NH}_{4} / \mathrm{MeCN}^{+}\right)$.

Phenyl-2-O-acetyl-3-O-benzyl-4,6-benzylidene- β-D-mannopyranosyl-(1-4)-3,6-di-O-benzyl-2-deoxy-2- N-phthalamido- β-D-glucopyranosyl-(1-4)-3,6-di-O-benzyl-2-deoxy-2- N-phthalamido- β-D-glucopyranoside

Phenyl-2-O-levulinoyl-3-O-benzyl-4,6-benzylidene- β-D-mannopyranosyl-(1-4)-3,6-di- O -benzyl-2-deoxy-2- N -phthalamido- β-D-glucopyranosyl-(1-4)-3,6-di- O -benzyl-2-deoxy-2- N-phthalamido- β-D-glucopyranoside 16 ($700 \mathrm{mg}, 0.66 \mathrm{mmol}$) and hydrazine acetate ($180 \mathrm{mg}, 1.93 \mathrm{mmol}$) were dissolved in methanol (50 mL) and heated to $55^{\circ} \mathrm{C}$. After 16 h the reaction was partitioned between water (100 mL) and DCM $(100 \mathrm{~mL})$ and the phases separated. The aqueous phase was re-extracted with DCM $(2 \times 100 \mathrm{~mL})$. The combined organic layers were washed with brine $(100 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. The resulting residue was purified by flash column chromatography (petrol:ethyl acetate, 1:1). The purified intermediate and anhydrous pyridine ($1.0 \mathrm{~mL}, 12.2 \mathrm{mmol}$) were dissolved in anhydrous DCM $(15 \mathrm{~mL})$. The reaction was cooled to $0^{\circ} \mathrm{C}$ and trifluoromethanesulfonic anhydride ($860 \mu \mathrm{~L}, 5.17 \mathrm{mmol}$) was added. The reaction was allowed to warm to RT over a 2 h period, at which point the reaction was partitoned between DCM (20 mL) and sodium hydrogen carbonate (20 mL) and the phases separated. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. The resulting orange residue was dried under vacuum for 2 h , at which point it was taken up into anhydrous toluene (20 mL) and tetrabutylammonium acetate ($800 \mathrm{mg}, 2.16 \mathrm{mmol}$) was added. The reaction was placed under sonication for 16 h then concentrated in vacuo. The resulting residue was purified by flash column chromatography (petrol:ethyl acetate, $1: 1$) to afford phenyl-2-O-acetyl-3-O-benzyl-4,6-benzylidene- β-D-mannopyranosyl-(1-4)-3,6-di-O-benzyl-2-deoxy-2-N-phthalamido- β-D-glucopyranosyl-(1-4)-3,6-di-O-benzyl-2-deoxy-2- N-phthalamido- β-D-glucopyranoside 17 ($506 \mathrm{mg}, 68 \%$) as a white amorphous foam; $[\alpha]_{\mathrm{D}}{ }^{22}+17.3$ (c, 0.45 in CHCl_{3}); $\mathrm{J}_{\text {max }}(\mathrm{KBr}) 1778,1747,1714$ (s, $\mathrm{C}=\mathrm{O})_{\mathrm{cm}^{-1}} ; \mathrm{TM}_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.34(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 3.18(1 \mathrm{H}$, dat, $, J 5.1 \mathrm{~Hz}, J$
$9.8 \mathrm{~Hz}, \mathrm{H} 5 \mathrm{c}), 3.32$ ($1 \mathrm{H}, \mathrm{bd}, J 9.8 \mathrm{~Hz}, \mathrm{H} 5 \mathrm{~b}$), 3.48-3.54 (3H, m, H3c, H5a, H6a), 3.573.63 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 6 \mathrm{c}, \mathrm{H}{ }^{\prime}$ 'a), 3.69 (1 H , dd, $J_{5,6} 2.2 \mathrm{~Hz}, J_{6,6}{ }^{\prime} 11.3 \mathrm{~Hz}, \mathrm{H} 6 \mathrm{~b}$), 3.74 (1 H , bd, J $11.3 \mathrm{~Hz}, \mathrm{H} 6$ 'b), 3.92 (1 H , at, $J 9.8 \mathrm{~Hz}, \mathrm{H} 4 \mathrm{c}$), 4.18-4.23 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 4 \mathrm{~b}, \mathrm{H} 6$ 'c), 4.25-4.36 (4H, m, H2b, H3a, H3b, H4b), 4.44-4.73 (9H, m, H2a, $9 \times \mathrm{PhCH}), 4.75(1 \mathrm{H}, \mathrm{bd}$, H1c), $4.92(1 \mathrm{H}, \mathrm{d}, J 11.9 \mathrm{~Hz}, \mathrm{PhCH}), 4.94(1 \mathrm{H}, \mathrm{d}, J 12.7 \mathrm{~Hz}, \mathrm{PhCH}), 5.33\left(1 \mathrm{H}, \mathrm{d}, J_{1,2}\right.$ $8.2 \mathrm{~Hz}, \mathrm{H} 1 \mathrm{~b}), 5.53$ ($1 \mathrm{H}, \mathrm{d}, J_{2,3} 3.1 \mathrm{~Hz}, \mathrm{H} 2 \mathrm{c}$), 5.55 ($1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}$), 5.63 ($1 \mathrm{H}, \mathrm{d}, J_{1,2}$ $8.5 \mathrm{~Hz}, \mathrm{H} 1 \mathrm{a}), 6.81-7.76(43 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ;{ }^{\mathrm{TM}}{ }_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 21.1$ (q, OAc), 55.6 (d, C2a), 56.6 (d, C2b), 66.9 (d, C5c), 67.8 (t, C6b), 68.1 (t, C6c), 68.5 (t, C6a), 69.1 (d, C2c), 71.6, 72.9, $73.2\left(3 \times t, 3 \times \mathrm{PhCH}_{2}\right), 74.3(\mathrm{~d}, \mathrm{C} 5 \mathrm{~b}), 74.5,74.6(2 \mathrm{xt}$, $2 \times \mathrm{PhCH}_{2}$), 74.7 (d, C5a), 75.8 (d, C3c), 75.9 (d, C3a), 76.6 (d, C4a), 76.9 (d, C3b), 77.8 (d, C4c), 78.9 (d, C4b), 96.3 (d, C1a), 97.1 (d, C1b), 99.4 (d, C1c), 101.4 (d, PhCH), 116.9-129.2 ($20 \mathrm{x} \mathrm{d}, 43 \mathrm{x} \mathrm{ArC}$), 137.4, 137.8, 137.9, 138.2, 138.5, 138.6 (6xs, $18 \times \operatorname{ArC}$), 156.8 ($\mathrm{s}, \operatorname{ArC),~} 170.2$ (s, CO). m/z (ES ${ }^{+}$) 1477 (100%, $\left.\mathrm{M}+\mathrm{NH}_{4} / \mathrm{MeCN}^{+}\right)$.

Phenyl-2,3,4,6-tetra-O-acetyl- $\boldsymbol{\beta}$-D-mannopyranosyl-(1-4)-3,6-di- O-acetyl-2-

 deoxy-2- N-acetamido- β-D-glucopyranosyl-(1-4)-3,6-di-O-acetyl-2-deoxy-2- N -acetamido- β-D-glucopyranoside

Phenyl-2-O-acetyl-3- O-benzyl-4,6-benzylidene- β-D-mannopyranosyl-(1-4)-3,6-di- O -benzyl-2-deoxy-2- N-phthalamido- β-D-glucopyranosyl-(1-4)-3,6-di- O-benzyl-2-deoxy-2- N-phthalamido- β-D-glucopyranoside 17 ($450 \mathrm{mg}, 0.40 \mathrm{mmol}$) and Pearlman's catalyst $\left(\mathrm{Pd}(\mathrm{OH})_{2}\right.$, moist, 300 mg) were suspended in absolute methanol $(20 \mathrm{~mL})$. The resulting solution was degassed and purged with hydrogen gas, then left to stir under an atmosphere of hydrogen. After a 24 h period, t.l.c. (ethyl acetate) indicated the formation of a major product $\left(\mathrm{R}_{\mathrm{f}} 0.0\right)$ with complete consumption of the starting material ($\mathrm{R}_{\mathrm{f}} 0.9$). The solution was filtered through celite ${ }^{\circledR}$ and concentrated in vacuo. The resulting residue was resuspended in methanol (20 mL), and 1,2ethylenediamine (5 mL) was added and the reaction was heated to $80^{\circ} \mathrm{C}$. After 16 h the reaction was co-evaporated with toluene ($3 \times 50 \mathrm{~mL}$). The resulting residue was taken up in acetic anhydride (10 mL) and pyridine $(20 \mathrm{~mL})$. After 16 h , t.l.c. (ethyl acetate/methanol, 9:1) showed the formation of a product ($\mathrm{R}_{\mathrm{f}} 0.5$) with complete consumption of the starting material $\left(\mathrm{R}_{\mathrm{f}} 0\right)$. The reaction was partitioned between chloroform (50 mL) and water (100 mL) and the phases separated. The aqueous phase was re-extracted with chloroform (2 x 50 mL). The combined organic layers were washed with dilute hydrochloric acid ($300 \mathrm{~mL}, 1 \mathrm{M}$ aqueous solution), sodium hydrogen carbonate (50 mL of a saturated aqueous solution), brine (50 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. The resulting residue was purified by flash column chromatography to afford phenyl-2,3,4,6-tetra- O-acetyl- β-D-mannopyranosyl-(1-4)-3,6-di- O-acetyl-2-deoxy-2- N-acetamido- β-D-glucopyranosyl-(1-4)-3,6-di-O-acetyl-2-deoxy-2-N-acetamido- β-D-glucopyranoside 39 (376 mg , 94%) as a white amorphous foam; $[\alpha]_{\mathrm{D}}^{22}+17.3$ (c, 0.45 in CHCl_{3}); $J_{\text {max }}(\mathrm{KBr}) 1778$, 1747, $1714(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \mathrm{TM}_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.90,1.94,2.00,2.01,2.02,2.03$, 2.06, 2.07, $2.11\left(30 \mathrm{H}, 9 \mathrm{x} \mathrm{s}, 10 \times \mathrm{COCH}_{3}\right), 3.58-3.62(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 5 \mathrm{~b}, \mathrm{H} 5 \mathrm{c}), 3.79-3.83$ (3H, m, H4a, H4b, H5a), 3.88 ($1 \mathrm{H}, \mathrm{q}, ~ J 9.3 \mathrm{~Hz}, \mathrm{H} 2 \mathrm{~b}$), 4.05-4.11 ($2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{H} 6$),
4.21-4.35 (5H, m, H2a, $4 \times \mathrm{H} 6), 4.53\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 8.2 \mathrm{~Hz}, \mathrm{H} 1 \mathrm{~b}\right), 4.68(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 1 \mathrm{c})$, $4.99\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 3.3 \mathrm{~Hz}, J_{3,4} 9.9 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{c}\right), 5.07-5.11(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 1 \mathrm{a}, \mathrm{H} 3 \mathrm{~b}), 5.17(1 \mathrm{H}$, at, $J 10.0 \mathrm{~Hz}, \mathrm{H} 4 \mathrm{c}), 5.22(1 \mathrm{H}$, at, $J 8.1 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{a}), 5.36\left(1 \mathrm{H}, \mathrm{d}, J_{2,3} 3.1 \mathrm{~Hz}, \mathrm{H} 2 \mathrm{c}\right), 6.42-$ $6.46(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{NH}), 6.93(2 \mathrm{H}, \mathrm{d}, J 7.8 \mathrm{~Hz}, 2 \times \mathrm{ArH}), 6.97(1 \mathrm{H}, \mathrm{t}, J 7.8 \mathrm{~Hz}, \mathrm{ArH})$, $7.20(2 \mathrm{H}, \mathrm{t}, J 7.9 \mathrm{~Hz}, \mathrm{ArH}) ;{ }^{\mathrm{TM}}{ }_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 20.5,20.6,20.7,20.8(4 \mathrm{x} \mathrm{q}$, $8 \times \mathrm{COCH}_{3}$), 23.1 (q, $2 \times \mathrm{NHCOCH}_{3}$), 53.1 (d, C2a), 54.2 (d, C2b), 62.2, 62.6, 62.7 (3 x t, C6a, C6b, C6c), 65.7 (d, C4c), 68.4 (d, C2c), 70.7 (d, C3c), 72.3 ($2 \times \mathrm{d}, \mathrm{C} 5 \mathrm{~b}$, C5c), 72.5 ($2 \times \mathrm{d}, \mathrm{C} 3 \mathrm{a}, \mathrm{C} 3 \mathrm{~b}$), 72.7, 74.5, 75.8 ($3 \mathrm{x} \mathrm{d}, 5 \times \mathrm{ArC}$), 156.9 (s, ArC), 169.5, $169.8,170.3,170.4,170.5,170.6,170.7,170.9,171.1$ ($9 \mathrm{x} \mathrm{s}, 10 \times \mathrm{CO}$). $\mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}\right)$ $1057\left(100 \%, \mathrm{M}+\mathrm{NH}_{4} / \mathrm{MeCN}^{+}\right)$. HRMS found 999.3444. calcd 999.3452 for $\mathrm{C}_{44} \mathrm{H}_{59} \mathrm{O}_{24} \mathrm{~N}_{2}$.

Phenyl- β-D-mannopyranosyl-(1-4)-2-deoxy-2-N-acetyl- β-D-glucopyranosyl-(1-4)-

2-deoxy-2- N-acetyl- β-D-glucopyranoside

Phenyl-2,3,4,6-tetra- O-acetyl- β-D-mannopyranosyl-(1-4)-3,6-di-O-acetyl-2-deoxy-2-N-acetamido- β-D-glucopyranosyl-(1-4)-3,6-di- O-acetyl-2-deoxy-2- N-acetamido- β-Dglucopyranoside 39 ($210 \mathrm{mg}, 0.21 \mathrm{mmol}$) and sodiummethoxide ($3 \mathrm{mg}, 0.04 \mathrm{mmol}$) were added to a stirred solution of methanol (10 mL).After 3 days the reaction was neutralised by the addition of Dowex-50 ion exchangeresin® after which point the reaction was filtered and concentrated in vacuo to afford phenyl- β-D-mannopyranosyl-(1-4)-2-deoxy-2- N-acetyl- β-D-glucopyranosyl-(1-4)-2-deoxy-2- N -acetyl- β-D-glucopyranoside $\mathbf{3}\left(120 \mathrm{mg}, 86 \%\right.$) as a white amorphous solid; $[\alpha]_{D}{ }^{20}-$ 12.0 (c, 0.85 in CHCl 3); $v_{\text {max }}(\mathrm{KBr}) 1753,1713(\mathrm{~s}, \mathrm{C}=\mathrm{O}) \mathrm{cm}-1 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ 1.94, 1.99 ($6 \mathrm{H}, 2 \mathrm{x} \mathrm{s}, 2 \times \mathrm{NHAc}$), 3.32-3.36 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5 \mathrm{c}$), 3.47-3.75 ($12 \mathrm{H}, \mathrm{m}, \mathrm{H}-2 \mathrm{~b}$, H-3a, H-3b, H-3c, H-4a, H-4b, H-4c, H-5a, H-5b, H-6a, H-6b, H-6c), 3.78-3.86(3H, m, H-6'a, H-6'b, H-6'c), 3.93 (1 H , dd, $J_{1,2} 8.8 \mathrm{~Hz}, J_{2,3} 10.2 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{a}$), 3.98 ($1 \mathrm{H}, \mathrm{bd}$, $\left.J_{2,3} 3.1 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{c}\right), 4.54\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 8.0 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}\right), 4.68(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1 \mathrm{c}), 5.06\left(1 \mathrm{H}, \mathrm{d}, J_{1,2}\right.$ $8.6 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}), 6.97(2 \mathrm{H}, \mathrm{d}, J 7.8 \mathrm{~Hz}, \mathrm{ArH}), 7.06(1 \mathrm{H}, \mathrm{t}, J 7.2 \mathrm{~Hz}, \mathrm{ArH}), 7.30(2 \mathrm{H}, \mathrm{m}$, $7.9 \mathrm{~Hz}, \mathrm{ArH}$); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 22.0$, 22.1 ($2 \mathrm{x} \mathrm{q}, 2 \times \mathrm{OAc}$), 54.9 (d, C-2a, $55.0(\mathrm{~d}$, C-2b), 59.9, 60.0, 60.9 (3 x t, C-6a, C-6b, C-6c), 66.6 (d, C-2c), 70.5, 71.9, 72.1,72.7, 74.6, 74.7, 78.6, 78.9 (8 x d, C-3a, C-3b, C-3c, C-4a, C-4b, C-4c, C-5a, C-5b), 76.4 (d, C-5c), 99.4 (d, C-1a), 100.1 (d, C-1c), 101.4 (d, C-1b), 116.6, 123.4, 129.9 (3x d, 5 x ArC), 174.6, 174.8 ($2 \mathrm{x} \mathrm{s}, 2 \mathrm{x} \mathrm{C=O}$). m/z (ES-) 661 ($100 \%, \mathrm{M}-\mathrm{H}+$); ESI^{+} [$\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{NaO}_{16}$] requires 685.2427, found 685.2417.

Synthesis of compound 4.

Reagents \& conditions: a) TMS-OTf, DCM, $-78^{\circ} \mathrm{C}, 76 \%$; b) LevOH, DIC, DCM, 94%; c) $\mathrm{NaBH}_{3} \mathrm{CN}, \mathrm{HCl} /$ dioxane, THF, $0^{\circ} \mathrm{C}-\mathrm{rt}, 91 \%$; d) $\mathrm{Ph}_{2} \mathrm{O}, \mathrm{Tf}_{2} \mathrm{O}$, DTBMP, DCM, $-40^{\circ} \mathrm{C}-\mathrm{rt}, 64 \%$; e) $\mathrm{H}_{2} \mathrm{NNH}_{2} . \mathrm{HOAc}, \mathrm{MeOH}, 55^{\circ} \mathrm{C}, 64 \%$; f) $\mathrm{Tf}_{2} \mathrm{O}$, DCM, pyridine; g) $\mathrm{u}_{4} \mathrm{~N} . \mathrm{OAc}$, toluene,))), 88% over two steps; h) TsOH. $\mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}, 1,4$-Dioxane, $85^{\circ} \mathrm{C}$, 92%; i) 18, TMS-OTf, DCM, $-40^{\circ} \mathrm{C}, 85 \%$; j) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine; k) PhOH, NIS, TMSOTf, DCM, $4 \AA$ MS, $-10^{\circ} \mathrm{C}, 48 \%$ over two steps; 1) 1,2-ethylenediamine, MeOH, Δ, then $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, 80% over two steps; m) $\left.\mathrm{H}_{2}, \mathrm{Pd}(\mathrm{OH})_{2}-\mathrm{C}, \mathrm{MeOH}, 97 \% ; \mathrm{n}\right)$ $\mathrm{NaOMe}, \mathrm{MeOH}, 88 \%$.

Ethyl-2,3,4,6-tetra-O-acetly-1-thio- $\boldsymbol{\beta}$-D-glucopyranoside ${ }^{[22]}$

Tin (IV) chloride ($1.12 \mathrm{ml}, 9.61 \mathrm{mmol}$) was added dropwise to a solution of penta-acetyl-D-glucose ($25.00 \mathrm{~g}, 64.05 \mathrm{mmol}$) and ethanethiol ($5.69 \mathrm{ml}, 76.86 \mathrm{mmol}$) in dry dichloromethane $(250 \mathrm{ml})$ at rt under an atmosphere of nitrogen. The reaction mixture was stirred at rt for 19 h by which time TLC analysis ($2: 1$ petrol/EtOAc) indicated that all starting material was consumed and one major ($\mathrm{Rf}=0.32$) and one minor $(\mathrm{Rf}=0.40)$ product had formed. The reaction mixture was diluted with dichloromethane (150 ml) and washed with saturated aqueous sodium hydrogencarbonate solution (3x 200ml) and brine (200 ml), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give a pale yellow oil. The oil was dissolved in boiling hexane/ethanol (3:1) and upon cooling ethyl-2,3,4,6-tetra- O-acetly-1-thio- β-D-glucopyranoside $\mathbf{3 3}$ precipitated as a white solid (24.73g, 98\%); m.p. $79-83{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{25}-29.3\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)\left[\mathrm{lit} .[\alpha]_{\mathrm{D}}{ }^{25}-28\right.$ (c=1.0, $\left.\left.\mathrm{CHCl}_{3}\right)\right]^{[23]} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.26\left(3 \mathrm{H}, \mathrm{t}, J 7.5,-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.00(3 \mathrm{H}, \mathrm{s},-\mathrm{OAc})$, $2.02(3 \mathrm{H}, \mathrm{s},-\mathrm{OAc}), 2.05(3 \mathrm{H}, \mathrm{s},-\mathrm{OAc}), 2.07(3 \mathrm{H}, \mathrm{s},-\mathrm{OAc}), 2.67(1 \mathrm{H}, \mathrm{dq}, J 12.4,7.5,-$ SCHH-), 2.73 ($1 \mathrm{H}, \mathrm{dq}, J 12.4,7.5,-\mathrm{SCH} H-$), 3.70 (1 H , ddd, $J 9.9,5.0,1.9,5-H$), 4.13 (1 H, dd, $J 12.2,1.9,6-H \mathrm{H}$), 4.24 (1 H , dd, $J 12.2,5.0,6-\mathrm{H} H$), 4.49 ($1 \mathrm{H}, \mathrm{d}, J 10.0$, 1$H), 5.03$ (1H, dd, $J 10.0,9.4,2-H), 5.07$ (1H, dd, $J 9.9,9.4,4-H), 5.21$ (1H, app t, J 9.4, 3-H); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.8\left(-\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 20.57$ (-OAc), 20.60 (-OAc), 20.7 (2x - OAc), $24.2\left(-\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 62.1(\mathrm{C}-6), 68.3$ (C-4), 69.8 (C-2), 73.9 (C-3), 75.8 (C5), 83.5 (C-1), 169.37, 169.39, 170.2, 170.6; m/z (ES ${ }^{+} 415.08$ ([M.Na] $\left.{ }^{+}, 100 \%\right)$.

Ethyl-4,6-O-benzylidene-1-thio- β-D-glucopyranoside ${ }^{[24]}$

Sodium methoxide (4.37 M solution in $\mathrm{MeOH}, 1.86 \mathrm{ml}, 8.15 \mathrm{mmol}$) was added to a solution of ethyl-2,3,4,6-tetra- O-acetly-1-thio- β-D-glucopyranoside 33 (16.00 g , $40.77 \mathrm{mmol})$ in dry $\mathrm{MeOH}(150 \mathrm{ml})$ at rt under an atmosphere of nitrogen. The reaction mixture was stirred at rt for 18 h . Activated Dowex $-\mathrm{H}^{+}$resin (4 g) was added and the mixture stirred at rt for lh then filtered and concentrated in vacuo to give a colourless oil. The oil was dissolved in dry $\mathrm{MeCN}(250 \mathrm{ml})$ at rt under an atmosphere of nitrogen. Benzaldehyde dimethylacetal ($7.29 \mathrm{ml}, 48.6 \mathrm{mmol}$) followed by p toluenesulfonic acid monohydrate ($200 \mathrm{mg}, 1.1 \mathrm{mmol}$) were added. The reaction mixture was stirred at rt for 14 h then triethylamine ($1.5 \mathrm{ml}, 10.1 \mathrm{mmol}$) was added, the mixture was stirred for 15 min then concentrated in vacuo to give a yellow oil which was purified using a Biotage by column chromatography on silica gel eluting with an increasing proportion of $\mathrm{MeOH} / \mathrm{DCM}$ from $2-8 \%$ to afford ethyl-4,6-O-benzylidene-1-thio- β-D-glucopyranoside 19 ($10.86 \mathrm{~g}, 86 \%$) as a white solid; $[\alpha]_{\mathrm{D}}{ }^{25}$ 54.6 ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}$) $\left[\text { lit. }[\alpha]_{\mathrm{D}}{ }^{25}-61\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)\right]^{[19]} ; 1.33\left(3 \mathrm{H}, \mathrm{t}, J 7.4,-\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 2.72-2.79 ($2 \mathrm{H}, \mathrm{m},-\mathrm{SCH}_{2}$) , 3.45-3.53 ($2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 5-H$), $3.56(1 \mathrm{H}$, app t, $J 8.8,3-H)$, $3.75(1 \mathrm{H}$, app t, $J 10.5,6-H \mathrm{H}), 3.81(1 \mathrm{H}$, app t, $J 8.8,4-H), 4.34(1 \mathrm{H}, \mathrm{dd}, J 10.5,4.7$, 6-HH), 4.45 ($1 \mathrm{H}, \mathrm{d}, J 9.9,1-H$), 5.53 ($1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}-$), 7.35-7.41 (3H, m, 3x Ar-H), 7.47-7.52 ($2 \mathrm{H}, \mathrm{m}, 2 \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 15.2\left(-\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 24.7$ ($\mathrm{SCH}_{2} \mathrm{CH}_{3}$), 68.6 (C-6), 70.5 (C-5), 73.2 (C-2), 74.5 (C-4), 80.3 (C-3), $86.5(\mathrm{C}-1)$, 101.5 ($\mathrm{PhCH}-$), 126.3, 128.4, 129.3, 136.9; m/z (ES ${ }^{+}$) 335.10 ([M.Na] ${ }^{+}, 26 \%$), 647.17 ([2M.Na] ${ }^{+}, 100 \%$).

3,4,6-Tri-O-acetyl-1,2-O-(1-R-methoxyethylidene)- β-D-mannopyranose ${ }^{[25]}$

Hydrobromic acid (33% in acetic acid, $173.0 \mathrm{ml}, 986 \mathrm{mmol}$) was added slowly over 1 h to a solution of penta- O-acetyl-mannose $(110.0 \mathrm{~g}, 282 \mathrm{mmol}$) in dry dichloromethane (300 ml) at rt under a nitrogen atmosphere. After 3h TLC analysis ($30 \% \mathrm{EtOAc} /$ petrol $)$ indicated the formation of a single product $(\mathrm{Rf}=0.32)$ and complete consumption of the starting material $(\mathrm{Rf}=0.23)$. Dichloromethane (200 ml) and ice-water (200 ml) were added. The layers were separated and the organic phase was extracted with dichloromethane (3 x 150 ml). The combined organic layers were washed with water until the pH was neutral then washed with brine (200 ml), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. The resulting pale yellow oil was dissolved in dry tetrahydrofuran (500 ml) and dry methanol ($11.3 \mathrm{ml}, 280 \mathrm{mmol}$) at room temperature under a nitrogen atmosphere. 2,6-Lutidine ($130 \mathrm{ml}, 1120 \mathrm{mmol}$) was added and t he mixture was heated at $80{ }^{\circ} \mathrm{C}$ for 5 h then cooled to room temperature and concentrated in vacuo. The residue was diluted with ethyl acetate $(250 \mathrm{ml})$ and water (250 ml). The layers were separated and the aqueous phase was extracted with ethyl acetate ($3 \times 150 \mathrm{ml}$). The combined organic extracts were washed with saturated aqueous sodium hydrogencarbonate solution (150 ml) and brine (150 $\mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give a pale yellow solid which was purified by recrystalisation from 30% methanol/water to give 3,4,6-tri-O-acetyl-1,2- $O-(1-R$-methoxyethylidene)- β-D-mannopyranose 40 as a white solid (77.1 g, 76%); m.p. 99-102 ${ }^{\circ} \mathrm{C}\left[\text { lit. } 114-115{ }^{\circ} \mathrm{C}\right]^{[26]} ;[\alpha]_{\mathrm{D}}{ }^{18}-22.3\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$, $\left[\right.$ lit. $[\alpha]_{\mathrm{D}}{ }^{18}$ $\left.-21.4\left(\mathrm{c}=1.8, \mathrm{CHCl}_{3}\right)\right]^{[26]} ; \quad \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.74(3 \mathrm{H}, \mathrm{s},-\mathrm{Me}), 2.05(3 \mathrm{H}, \mathrm{s},-$ $\mathrm{OAc}), 2.07(3 \mathrm{H}, \mathrm{s},-\mathrm{OAc}), 2.12(3 \mathrm{H}, \mathrm{s},-\mathrm{OAc}), 3.28(3 \mathrm{H}, \mathrm{s},-\mathrm{OMe}), 3.68(1 \mathrm{H}, \mathrm{ddd}, J$ $9.7,5.0,2.6,5-\mathrm{H}), 4.14(1 \mathrm{H}, \mathrm{dd}, J 12.1,2.6,6-H \mathrm{H}), 4.24(1 \mathrm{H}, \mathrm{dd}, J 12.1,5.0,6-\mathrm{H} H)$, 4.61 ($1 \mathrm{H}, \mathrm{dd}, J 3.9,2.5,2-\mathrm{H}), 5.14(1 \mathrm{H}, \mathrm{dd}, J 9.7,3.9,3-\mathrm{H}), 5.30(1 \mathrm{H}$, app t, $J 9.7,4-$ H), $5.49(1 \mathrm{H}, \mathrm{d}, J 2.5,1-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 20.65(-\mathrm{OAc}), 20.69$ (-OAc), 20.73 $(-\mathrm{OAc}), 24.4\left(-\mathrm{CH}_{3}\right), 49.9\left(-\mathrm{OCH}_{3}\right), 62.3(\mathrm{C}-6), 65.5(\mathrm{C}-4), 70.6(\mathrm{C}-3), 71.3(\mathrm{C}-5)$, 76.6 (C-2), 97.3 (C-1), 124.5 (C-7), 169.4 (-OAc), 170.4 (-OAc), 170.6 (-OAc); m / z $\left(\mathrm{ES}^{+}\right) 385.1$ ([MNa] $\left.{ }^{+}, 19 \%\right), 421.2$ ($\left.\left[\mathrm{M}(\mathrm{MeCN}) \mathrm{NH}_{4}\right]^{+}, 100 \%\right)$.

3,4,6-Tri-O-benzyl-1,2-O-(1-R-methoxyethylidene)- β-D-mannopyranose ${ }^{[27]}$

A mixture of 3,4,6-tri- O-acetyl-1,2- $O-(1-R$-methoxyethylidene)- β-D-mannopyranose $40(25.0 \mathrm{~g}, 69.0 \mathrm{mmol})$ and benzyl chloride ($140 \mathrm{ml}, 1173 \mathrm{mmol}$) in dry tetrahydrofuran (40 ml) was heated to reflux under nitrogen. The heat source was removed and freshly crushed potassium hydroxide ($50.0 \mathrm{~g}, 897 \mathrm{mmol}$) was added portion-wise (Care: exotherm!). The mixture was stirred for 36h then water (200 ml) and dichloromethane $(150 \mathrm{ml})$ were added. The layers were separated and the aqueous phase was extracted with dichloromethane (150 ml). The combined organic extracts were washed with saturated aqueous sodium hydrogencarbonate solution (2 x 150 ml) and brine $(150 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give a yellow oil which solidified on standing. The yellow solid was recrystalised from diethyl ether/hexane to give 3,4,6-tri- O-benzyl-1,2-O-(1-R-methox yethylidene)- β-Dmannopyranose 41 as white needles ($26.3 \mathrm{~g}, 75 \%$); m.p. $73-76{ }^{\circ} \mathrm{C}$ [lit. $\left.87-88{ }^{\circ} \mathrm{C}\right]^{[28]}$; $[\alpha]_{\mathrm{D}}{ }^{18}+33.7\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right),\left[\text { lit. }[\alpha]_{\mathrm{D}}{ }^{18}+37.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)\right]^{[\mathrm{xxviii}=23]} ;(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.76(3 \mathrm{H}, \mathrm{s},-\mathrm{Me}), 3.30(3 \mathrm{H}, \mathrm{s},-\mathrm{OMe}), 3.44(1 \mathrm{H}, \mathrm{ddd}, J 9.4,4.2,2.4,5-\mathrm{H})$, 3.70-3.80 (3H, m, 3-H, 6-H2), 3.94 (1H, dd, J 9.4, 8.9, 4-H), 4.41 ($1 \mathrm{H}, \mathrm{dd}, J 4.1,2.6$, $2-\mathrm{H}), 4.57$ ($1 \mathrm{H}, \mathrm{d}, J 11.8, \mathrm{PhCHH}-$), 4.60 ($1 \mathrm{H}, \mathrm{d}, J 11.4$, PhCHH-), 4.63 ($1 \mathrm{H}, \mathrm{d}, J$ 11.8, PhCHH-), 4.78 (1H, d, J 12.1, PhCHH-), 4.82 ($1 \mathrm{H}, \mathrm{d}, J 12.1$, PhCHH-), 4.92 ($1 \mathrm{H}, \mathrm{d}, J 11.4, \mathrm{PhCH} H-), 5.37(1 \mathrm{H}, \mathrm{d}, J 2.6,1-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 24.4\left(-\mathrm{CH}_{3}\right)$, $49.8\left(-\mathrm{OCH}_{3}\right), 69.0(\mathrm{C}-6), 72.4\left(\mathrm{PhCH}_{2}-\right), 73.4\left(\mathrm{PhCH}_{2}-\right), 74.15(\mathrm{C}-5), 74.20(\mathrm{C}-4)$, 75.3 (PhCH_{2}) , 77.1 (C-2), 97.6 (C-1), 124.0 (C-7), 127.5, 127.8, 128.0, 128.1, 128.3, 128.4, 128.5, 137.8, 138.2; \%); m/z (ES $\left.{ }^{+}\right) 529.2$ ([M.Na] ${ }^{+}, 8 \%$), 545.2 (34\%), 565.3 ([M.NH4.MeCN] ${ }^{+}, 100 \%$).

2-O-Acetyl-3,4,6-tri-O-benzyl-D-mannopyranose ${ }^{[29]}$

A solution of 3,4,6-tri- O-benzyl-1,2-O-(1-R-methoxyethylidene)- β-D-mannopyranose $41(38.0 \mathrm{~g}, 75.0 \mathrm{mmol})$ in acetic acid $(300 \mathrm{ml})$ and water $(200 \mathrm{ml})$ was stirred at r.t. for 4h whereupon TLC analysis ($50 \% \mathrm{EtOAc} /$ petrol) indicated the complete consumption of the starting material $(\mathrm{Rf}=0.62)$ and formation of a three products $(\operatorname{Rf}=0.24,0.36,0.51)$. The mixture was concentrated in vacuo and partitioned between water (400 ml) and ethyl acetate (400 ml). The layers were separated and the aqueous phase was extracted with ethyl acetate (2 x 175 ml). The combined organic extracts were washed with saturated aqueous sodium hydrogencarbonate solution (2x 200 ml) and brine (200 ml), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give a yellow oil which was dissolved in dry pyridine (250 ml) under an atmosphere of nitrogen. The resulting solution was cooled to $0{ }^{\circ} \mathrm{C}$ and acetic anhydride (100 ml) was added dropwise over 30 min . The mixture was stirred for 16 h , slowly warming to r.t. whereupon TLC analysis ($50 \% \mathrm{EtOAc} /$ petrol) indicated the complete consumption of the starting materials $(\mathrm{Rf}=0.24,0.36,0.51)$ and formation of a single product $(\mathrm{Rf}=0.88)$. The mixture was concentrated in vacuo to give a pale yellow oil (39.0 g) which was dissolved in dry THF (400 ml) at r.t. under an atmosphere of nitrogen. Benzylamine ($12.0 \mathrm{ml}, 109.5 \mathrm{mmol}$) was added slowly and the resulting solution was stirred at r.t. for 22 h whereupon TLC analysis ($50 \% \mathrm{EtOAc} /$ petrol) indicated the complete consumption of the starting material $(\mathrm{Rf}=0.88)$ and formation of a major product ($\mathrm{Rf}=0.66$). The mixture was concentrated in vacuo and dissolved in ethyl acetate (500 ml). The organic phase was washed with cold aqueous 1M HCl (2x 175 ml), saturated aqueous sodium hydrogencarbonate solution (200 ml) and brine (200 ml), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give a pale yellow oil (45.6 g) which was purified by flash column chromatography on silica gel (Biotage SNAP 340 g) eluting with an increasing proportion of ethyl acetate/petrol from 8-66\% to give 2-O-acetyl-3,4,6-tri-O-benzyl-D-mannopyranose 42 ($34.34 \mathrm{~g}, 98 \%$) as a pale yellow oil (predominantly α-anomer): Data for $\mathbf{4 2 - \alpha}:[\alpha]_{\mathrm{D}}{ }^{25}+17.8$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}$), $\left[\mathrm{lit} .[\alpha]_{\mathrm{D}}{ }^{25}\right.$ $\left.+16.7\left(\mathrm{c}=0.8, \mathrm{CHCl}_{3}\right)\right]^{[30]} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.18(3 \mathrm{H}, \mathrm{s},-\mathrm{OAc}), 3.68-3.74(2 \mathrm{H}$,
$\left.\mathrm{m}, 6-H_{2}\right), 3.75(1 \mathrm{H}, \mathrm{t}, J 9.5,4-H), 4.07(1 \mathrm{H}, \mathrm{dd}, J 9.5,3.1,3-H), 4.08-4.14(2 \mathrm{H}, \mathrm{m}, 5-$ H and -OH$), 4.49(1 \mathrm{H}, \mathrm{d}, J 10.9,-\mathrm{C} H \mathrm{HPh}), 4.53(1 \mathrm{H}, \mathrm{d}, J 12.1,-\mathrm{C} H \mathrm{HPh}), 4.55(1 \mathrm{H}$, d, $J 11.1,-\mathrm{C} H \mathrm{HPh}), 4.63(1 \mathrm{H}, \mathrm{d}, J 12.1,-\mathrm{CH} H \mathrm{Ph}), 4.73(1 \mathrm{H}, \mathrm{d}, J 11.1,-\mathrm{CH} H \mathrm{Ph})$, $4.89(1 \mathrm{H}, \mathrm{d}, J 10.9,-\mathrm{CH} H \mathrm{Ph}), 5.22(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-H), 5.39(1 \mathrm{H}, \mathrm{m}, 2-H), 7.28-7.38$ (15H, m, 15x Ar-H); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 21.2\left(-\mathrm{OC}(\mathrm{O}) \mathrm{CH}_{3}\right), 69.2(\mathrm{C}-2), 69.3(\mathrm{C}-$ 6), 71.0 (C-5), 71.8 ($-\mathrm{CH}_{2} \mathrm{Ph}$), 73.4 ($-\mathrm{CH}_{2} \mathrm{Ph}$), $74.7(\mathrm{C}-4), 75.1\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 77.7(\mathrm{C}-3)$, 92.4 (C-1), 127.7, 127.8, 127.9, 128.10, 128.12, 128.35, 128.41, 128.42, 137.8, 137.9, 138.3, $170.6\left(-\mathrm{OC}(\mathrm{O}) \mathrm{CH}_{3}\right)$.

2-O-Acetyl-3,4,6-tri- O-benzyl- α-D-mannopyranosyl-1', $\mathbf{1}^{\prime}, \mathbf{1}^{\prime}$ trichloroacetimidate ${ }^{[31]}$

DBU ($897 \mu \mathrm{l}, 6.0 \mathrm{mmol}$) was added to a solution of 2-O-acetyl-3,4,6-tri- O-benzyl-Dmannopyranose $42(28.7 \mathrm{~g}, 60.0 \mathrm{mmol})$ and trichloroacetonitrile ($30.1 \mathrm{ml}, 300.0$ $\mathrm{mmol})$ in dry $\mathrm{DCM}(500 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h whereupon TLC analysis ($33 \% \mathrm{EtOAc} /$ petrol) indicated complete consumption of the starting material $(\mathrm{Rf}=0.18)$ and formation of a single product $(\mathrm{Rf}=0.45)$. The mixture was concentrated in vacuo and purified immediately by flash column chromatography on silica gel eluting with an increasing proportion of EtOAc/petrol from 17.5-25\% to give 2-O-acetyl-3,4,6-tri- O-benzyl- α -D-mannopyranosyl-1', $1^{\prime}, 1^{\prime}$-trichloroacetimidate $\mathbf{1 8}$ as a pale yellow oil (35.44 g , $94 \%):[\alpha]_{\mathrm{D}}{ }^{25}+38.1\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\left[\text { lit. }[\alpha]_{\mathrm{D}}{ }^{25}+36.3\left(\mathrm{c}=0.9, \mathrm{CHCl}_{3}\right)\right]^{[31]}\right.$; $\delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 2.21(3 \mathrm{H}, \mathrm{s},-\mathrm{OAc}), 3.73(1 \mathrm{H}, \mathrm{dd}, J 11.3,1.1,6-H \mathrm{H}), 3.86(1 \mathrm{H}, \mathrm{dd}, J 11.3$, $3.5,6-\mathrm{H} H$), 3.97-4.12 (3H, m, 3-H, 4-H, $5-\mathrm{H}$), 4.52 ($1 \mathrm{H}, \mathrm{d}, J 10.9$, PhCHH-), 4.54 (1H, d, $J 12.1, \mathrm{PhC} H \mathrm{H}-), 4.60$ ($1 \mathrm{H}, \mathrm{d}, J 11.3, \mathrm{PhC} H \mathrm{H}-), 4.70(1 \mathrm{H}, \mathrm{d}, J 12.1, \mathrm{PhCH} H-$), 4.75 ($1 \mathrm{H}, \mathrm{d}, J 11.3, \mathrm{PhCH} H-$), 4.89 ($1 \mathrm{H}, \mathrm{d}, J 10.9$, $\mathrm{PhCH} H-$), 5.52 (1 H , dd, $J 2.4$, 1.5, H-2), 6.32 ($1 \mathrm{H}, \mathrm{d}, J 1.5,1-\mathrm{H}$), 7.26-7.40 ($15 \mathrm{H}, \mathrm{m}, 15 \mathrm{x}$ Ar- H), 8.70 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$); $\delta_{\mathrm{C}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 21.0(-\mathrm{OAc}), 67.3(\mathrm{C}-2), 68.4(\mathrm{C}-6), 72.1\left(\mathrm{PhCH}_{2}-\right), 73.4$ $\left(\mathrm{PhCH}_{2}-\right), 73.7,74.4,75.5\left(\mathrm{PhCH}_{2}-\right), 77.4,90.8\left(-\mathrm{CCl}_{3}\right), 95.4(\mathrm{C}-1), 127.6,127.8$, 127.9,128.1, 128.30, 128.33, 128.4, 128.5, 137.5, 138.1, 138.2, 160.0, 170.1 (-OAc); $m / z\left(\mathrm{ES}^{+}\right) 636.37$ ([M.Na] $\left.{ }^{+}, 10 \%\right), 557.21$ (74\%), 529.19 (100\%).

Ethyl-2-O-acetyl-3,4,6-tri-O-benzyl- α-D-mannopyranoside-(1-3)-4,6-O-

 benzylidene-1-thio- β-D-glucopyranoside ${ }^{[14]}$

A mixture of 2-O-acetyl-3,4,6-tri- O-benzyl- α-D-mannopyranosyl-1', $1^{\prime}, 1^{\prime}-$ trichloroacetimidate 18 ($600 \mathrm{mg}, 0.94 \mathrm{mmol}$) and ethyl-4,6- O-benzylidene-1-thio- β -D-glucopyranoside 19 ($245 \mathrm{mg}, 0.79 \mathrm{mmol}$) were concentrated in vacuo from toluene (2 x 30 ml), dried under vacuum, dissolved in dry DCM (20 ml) and added via cannula to a flask containing freshly activated $4 \AA$ molecular sieves $(0.5 \mathrm{~g})$ at r.t. under a nitrogen atmosphere. The resulting suspension was stirred at r.t. for 1 h then cooled to $-78{ }^{\circ} \mathrm{C}$ and trimethylsilyltrifluoromethanesulfonate ($14 \mu \mathrm{l}, 0.08 \mathrm{mmol}$) was added. The reaction mixture was stirred for 19 h slowly warming to $10^{\circ} \mathrm{C}$, whereupon TLC analysis ($33 \% \mathrm{EtOAc} /$ petrol) indicated complete consumption of $\mathbf{1 8}(\mathrm{Rf}=0.60)$ and 19 $(\mathrm{Rf}=0.11)$ and the formation of a major product $(\mathrm{Rf}=0.48)$. Triethylamine $(50 \mu \mathrm{l})$ was added and the mixture was filtered through celite and diluted with DCM (40 ml) and saturated aqueous sodium hydrogencarbonate solution (30 ml). The layers were separated and the aqueous layer was extracted with DCM (3x 20 ml). The combined organic layers were washed with saturated aqueous sodium hydrogencarbonate solution (30 ml) water (30 ml) and brine (30 ml), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give a residue which was recrystallised form EtOAc/petrol to give ethyl-2-O-acetyl-3,4,6-tri- O-benzyl- α-D-mannopyranoside-(1-3)-4,6-O-benzylidene-1-thio- β-D-glucopyranoside 21 as a white solid (CB322-2, $341 \mathrm{mg}, 55$ \%): m.p. $130-135{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}-24.1\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)\left[\mathrm{lit} .[\alpha]_{\mathrm{D}}{ }^{25}-24\left(\mathrm{c}=0.6, \mathrm{CHCl}_{3}\right)\right]^{[14]}$; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.32\left(3 \mathrm{H}, \mathrm{t}, J 7.5,-\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 2.12(3 \mathrm{H}, \mathrm{s},-\mathrm{OAc}), 2.74(1 \mathrm{H}$, dq, J 12.6, $7.5,-\mathrm{SC}_{\mathrm{C}} \mathrm{HCH}_{3}$), $2.75\left(1 \mathrm{H}, \mathrm{dq}, J 12.6,7.5,-\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 3.01(1 \mathrm{H}, \mathrm{d}, J$ $3.2,-\mathrm{OH}), 3.44-3.54(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{c}-H, 5 \mathrm{c}-H), 3.66(1 \mathrm{H}, \mathrm{t}, J 9.1,4 \mathrm{c}-H), 3.73$ (1H, dd, J $10.4,1.9,6 \mathrm{~d}-H \mathrm{H}), 3.77(1 \mathrm{H}, \mathrm{t}, J 10.4,6 \mathrm{c}-H \mathrm{H}), 3.79(1 \mathrm{H}, \mathrm{dd}, J 10.4,4.7,6 \mathrm{~d}-\mathrm{H} H), 3.89$ (1H, t, $J 9.5,4 \mathrm{~d}-H), 3.89(1 \mathrm{H}, \mathrm{t}, J 9.1,3 \mathrm{c}-H), 4.03$ (1H, dd, $J 9.5,3.5,3 \mathrm{~d}-H), 4.25$ (1H, ddd, $J 9.5,4.4,1.9,5 \mathrm{~d}-H), 4.37$ (1 H , dd, $J 10.4,5.0,6 \mathrm{c}-\mathrm{H} H$), 4.42 ($1 \mathrm{H}, \mathrm{d}, J 9.8$, $1 \mathrm{c}-H), 4.49$ (1H, d, J 10.7, -CHHPh), 4.51 (1H, d, J12.0, -CHHPh), 4.53 (1H, d, J
11.0, -CHHPh), $4.70(1 \mathrm{H}, \mathrm{d}, J 12.0,-\mathrm{CH} H \mathrm{Ph}), 4.71(1 \mathrm{H}, \mathrm{d}, J 11.0,-\mathrm{CH} H \mathrm{Ph}), 4.86$ (1H, d, J 10.7, -CHHPh), 5.28 (1H, d, $J 1.6,1 \mathrm{~d}-H), 5.55(1 \mathrm{H}, \mathrm{dd}, J 3.5,1.6,2 \mathrm{~d}-H)$, $5.58(1 \mathrm{H}, \mathrm{s},-\mathrm{CHPh}), 7.16-7.19(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{x} \mathrm{Ar}-H), 7.25-7.39$ (16H, m, 16x Ar-H), $7.45-7.49(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{x} \mathrm{Ar}-H) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 15.2\left(-\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 21.0(-\mathrm{OAc})$, $24.7\left(-\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 68.5$ (2C, C-6c, C-6d), 68.8 (C-2d), 70.4 (C-5c), 71.6 (C-5d), 71.8 $\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 72.1(\mathrm{C}-2 \mathrm{c}), 73.4\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 74.3(\mathrm{C}-4 \mathrm{~d}), 75.1\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 78.1(\mathrm{C}-3 \mathrm{~d}), 79.9$ (C-3c), 80.6 (C-4c), 87.0 (C-1c), 98.7 (C-1d), 101.0 (C-7d), 125.9 ($2 x \mathrm{C}-\mathrm{Ar}$), 127.60 (C-Ar), 127.62 (C-Ar), 127.7 (C-Ar), 127.89 (2x C-Ar), 127.93 (2x C-Ar), 128.0 ($2 x$ C-Ar), 128.2 (2x C-Ar), 128.29 (2x C-Ar), 128.32 (2x C-Ar), 128.4 (2x C-Ar), 128.9 (C-Ar), 136.9 (C-Ar), 138.0 (C-Ar), 138.1 (C-Ar), 138.4 (C-Ar), 170.1 (-OAc); m/z (ES ${ }^{+}$) 809.28 ([M.Na] ${ }^{+}, 100 \%$); $\mathrm{ESI}^{+}\left[\mathrm{C}_{44} \mathrm{H}_{50} \mathrm{NaO}_{11} \mathrm{~S}\right]$ requires 809.2966, found 809.2976.

Ethyl-2-O-acetyl-3,4,6-tri-O-benzyl- α-D-mannopyranosyl-(1-3)-4,6-O-benzylidene-2-levulinoyl-1-thio- β-D-glucopyranoside ${ }^{[14]}$

N, N-DIC ($6.45 \mathrm{ml}, 41.4 \mathrm{mmol}$) was added to a solution of ethyl-2-O-acetyl-3,4,6-tri-O-benzyl- α-D-mannopyranoside-(1-3)-4,6-O-benzylidene-1-thio- β-Dglucopyranoside $21(16.3 \mathrm{~g}, 20.7 \mathrm{mmol})$, levulinic acid ($5.30 \mathrm{ml}, 51.8 \mathrm{mmol}$) and DMAP $(114 \mathrm{mg}, 2.0 \mathrm{mmol})$ in dry DCM $(400 \mathrm{ml})$ at r.t. under a nitrogen atmosphere. The resulting solution was stirred at r.t. for 26 h whereupon TLC analysis (33% $\mathrm{EtOAc} /$ petrol $)$ indicated the complete consumption of the starting material $(\mathrm{Rf}=0.44)$ and formation of a major product $(\mathrm{Rf}=0.40)$. The mixture was diluted with DCM (300 $\mathrm{ml})$ and water (300 ml). The layers were separated and the aqueous layer was extracted with DCM (3 x 150 ml). The combined organic layers were washed with saturated aqueous sodium hydrogencarbonate solution (2x 200 ml) and brine (2×200 $\mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give a brown oil which was purified by flash column chromatography on silica gel (Biotage SNAP 340g) eluting with an increasing proportion of diethyl ether/petrol from 20-100\% to give ethyl-2-O-acetyl-3,4,6-tri- O-benzyl- α-D-mannopyranosyl-(1-3)-4,6-O-benzylidene-2-
levulinoyl-1-thio- β-D-glucopyranoside 22 as a colourless oil (17.21 g, 94\%): $[\alpha]_{D}{ }^{25}-$ $11.1\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)\left[\mathrm{lit} .[\alpha]_{\mathrm{D}}{ }^{25}-35.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)\right]^{[14]} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.28$ (3H, t, $\left.J 7.4,-\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 1.90\left(3 \mathrm{H}, \mathrm{s},-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 2.10(3 \mathrm{H}, \mathrm{s},-\mathrm{OAc}), 2.32-2.78(6 \mathrm{H}$, $\mathrm{m},-\mathrm{SCH}_{2} \mathrm{CH}_{3}, 1^{\prime}-\mathrm{H}_{2}$ and $\left.2^{\prime}-H_{2}\right), 3.51(1 \mathrm{H}, \mathrm{td}, J 9.6,5.1,5 \mathrm{c}-H), 3.71-3.90(7 \mathrm{H}, \mathrm{m}, 4 \mathrm{c}-$ $H, 6 \mathrm{c}-H \mathrm{H}, 3 \mathrm{~d}-H, 4 \mathrm{~d}-H, 5 \mathrm{~d}-H$ and $\left.6 \mathrm{~d}-H_{2}\right), 4.10(1 \mathrm{H}, \mathrm{t}, J 9.6,3 \mathrm{c}-H), 4.39(1 \mathrm{H}, \mathrm{dd}, J$ 10.6, 5.1, 6c-HH), 4.50 (1H, d, $J 11.1,-\mathrm{CHHPh}), 4.54$ (1H, d, J 12.3, -CHHPh), 4.68 ($1 \mathrm{H}, \mathrm{d}, J 11.1,-\mathrm{C} H \mathrm{HPh}$), 4.69 ($1 \mathrm{H}, \mathrm{d}, J 12.3,-\mathrm{C} H \mathrm{HPh}$), 4.83 ($1 \mathrm{H}, \mathrm{d}, J 11.1,-$ CHHPh), $5.06(1 \mathrm{H}, \mathrm{t}, J 9.6,2 \mathrm{c}-H), 5.42(1 \mathrm{H}, \mathrm{d}, J 1.3,1 \mathrm{~d}-H), 5.48(1 \mathrm{H}, \mathrm{dd}, J 2.0,1.3$, $2 \mathrm{~d}-H$), 5.59 ($1 \mathrm{H}, \mathrm{s}, 7-H$), 7.07-7.13 ($2 \mathrm{H}, \mathrm{m}, 2 \mathrm{x}$ Ar- H), 7.23-7.39 (16H, m, 16x Ar-H), 7.43-7.47 (2H, m, 2x Ar- H); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.9\left(-\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 21.1$ ($\left.\mathrm{OC}(\mathrm{O}) \mathrm{CH}_{3}\right), 24.2\left(-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 27.9\left(-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 29.6\left(-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 37.5\left(-\mathrm{SCH}_{2} \mathrm{CH}_{3}\right)$, 68.1 (C-2d), 68.5 (C-6c), 68.8 (C-6d), 70.3 (C-2c), 70.4 (C-5c), 71.7 (- $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 71.8$
(C-5d), 73.4 ($-\mathrm{CH}_{2} \mathrm{Ph}$), 73.9 (C-4d), 74.8 (C-3c), 75.0 ($-\mathrm{CH}_{2} \mathrm{Ph}$), 77.9 (C-3d), 81.6 (C$4 \mathrm{c}), 84.3$ (C-1c), 97.4 (C-1d), 101.2 (-CHPh), 126.1, 127.5, 127.6, 127.7, 127.8, $128.18,128.22,128.28,128.34,128.4,129.0,136.7,137.9,138.2,138.6,170.2$, 171.5, 206.0; $\mathrm{ESI}^{+}\left[\mathrm{C}_{49} \mathrm{H}_{56} \mathrm{NaO}_{13} \mathrm{~S}\right]$ requires 907.3334, found 907.3333.

Ethyl-3,6-di- O-benzyl-2-deoxy-2- N-phthalamido- β-D-glucopyranosyl-(1-4)-3,6-

 di- O-benzyl-2-deoxy-2- N-phthalamido-1-thio- β-D-glucopyranoside

A solution of ethyl-3- O-benzyl-4,6- O-benzylidene-2-deoxy-2- N -phthalamido- β-D-glucopyranosyl-(1-4)-3,6-di- O-benzyl-2-deoxy-2- N-phthalamido-1-thio- β-Dglucopyranoside $9(14.20 \mathrm{~g}, 14.16 \mathrm{mmol})$ in dry THF ($60 \mathrm{ml}+60 \mathrm{ml}$ washings) was added via cannula to a suspension of sodium cyanoborohydride ($8.90 \mathrm{~g}, 141.16$ mmol), methyl orange ($\sim 2 \mathrm{mg}$) and freshly activated $3 \AA$ molecular sieves (3.0 g) in dry THF (280 ml) at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere. HCl (4 M solution in dioxane) was added slowly (Caution: effervescence) until the yellow colour of the solution changed to a persistent pink. The resulting reaction mixture was stirred 21 h slowly warming to r.t. whereupon TLC analysis ($40 \% \mathrm{EtOAc} /$ petrol) indicated the complete consumption of the starting material $(\mathrm{Rf}=0.49)$ and formation of a single product $(\mathrm{Rf}=0.35)$. The reaction was quenched by addition to saturated aqueous sodium hydrogencarbonate solution (500 ml). The resulting yellow solution was filtered through celite and the layers were separated. The aqueous layer was extracted with DCM (3 x 200 ml). The combined organic layers were washed with saturated aqueous sodium hydrogencarbonate solution (2x 200 ml) and brine (200 ml), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give a pale yellow oil which was dissolved in methanol (1000 ml) and heated at $55{ }^{\circ} \mathrm{C}$ for 6 h then concentrated in vacuo to give a yellow foam which was purified by flash column chromatography on silica gel eluting with $6 \% \mathrm{Et}_{2} \mathrm{O} / \mathrm{DCM}$ to give ethyl-3,6-di- O -benzyl-2-deoxy-2- N -phthalamido- β-D-glucopyranosyl-(1-4)-3,6-di-O-benzyl-2-deoxy-2-N-phthalamido-1-thio- β-Dglucopyranoside 20 as a white solid ($12.91 \mathrm{~g}, 91 \%$): $[\alpha]_{\mathrm{D}}{ }^{18}+18.8\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $1.11\left(3 \mathrm{H}, \mathrm{t}, J 7.6,-\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 2.51(1 \mathrm{H}, \mathrm{dq}, J 12.6,7.6$, ${\left.\mathrm{SC} H \mathrm{HCH}_{3}\right), 2.59\left(1 \mathrm{H}, \mathrm{dq}, J 12.6,7.6,-\mathrm{SCH} H \mathrm{CH}_{3}\right), 3.13(1 \mathrm{H}, \mathrm{d}, J 1.9,-\mathrm{OH}), 3.33-1 .}^{2}$ 3.41 ($2 \mathrm{H}, \mathrm{m}, 5 \mathrm{a}-H, 5 \mathrm{~b}-H$), 3.43 ($1 \mathrm{H}, \mathrm{dd}, J 11.2,3.9,6 \mathrm{a}-H \mathrm{H}$), 3.53-3.59 ($2 \mathrm{H}, \mathrm{m}, 6 \mathrm{a}-$ $\mathrm{H} H, 6 \mathrm{~b}-H \mathrm{H}), 3.71$ ($1 \mathrm{H}, \mathrm{dd}, J 9.9,4.3,6 \mathrm{~b}-\mathrm{H} H$), 3.82 (1H, td, $J 8.6,1.9,4 \mathrm{~b}-H), 4.15-$ 4.22 (4H, m, 2a-H, 2b-H, 3a-H, 4a-H), 4.26 (1H, dd, J 10.7, 8.6, 3b-H), 4.46-4.55 ($6 \mathrm{H}, \mathrm{m}, 6 \mathrm{x}-\mathrm{CHPh}-$), 4.80 ($1 \mathrm{H}, \mathrm{d}, J 12.3,-\mathrm{C} H \mathrm{HPh}), 4.81(1 \mathrm{H}, \mathrm{d}, J 12.3,-\mathrm{C} H \mathrm{HPh})$,
$5.08(1 \mathrm{H}, \mathrm{d}, J 9.2,1 \mathrm{a}-H), 5.32(1 \mathrm{H}, \mathrm{d}, J 8.2,1 \mathrm{~b}-H), 6.83-6.87(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{x}$ Ar- H), 6.936.97 (3H, m, 3x Ar-H), 6.98-7.01 ($2 \mathrm{H}, \mathrm{m}, 2 \mathrm{x}$ Ar- H), 7.03-7.06 ($2 \mathrm{H}, \mathrm{m}, 2 \mathrm{x} \mathrm{Ar}-H$), 7.25-7.39 (1H, m, Ar-H), 7.57-7.80 (6H, m, 6x Ar-H), 7.86-7.91 (1H, m, Ar-H); δ_{C} $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.9\left(-\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 23.6\left(-\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 54.7(\mathrm{C}-2 \mathrm{a}), 56.1(\mathrm{C}-2 \mathrm{~b})$, 68.3 (C-6a), 70.9 (C-6b), $72.6\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 72.8(\mathrm{C}-5 \mathrm{~b}), 73.7\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 74.3\left(-\mathrm{CH}_{2} \mathrm{Ph}\right)$, 75.4 (C-4b), 75.5 (C-3a), 77.6 (C-4a), 78.3 (C-3b), 78.8 (C-5a), 80.7 (C-1a), 96.9 (C1b), 123.2, 123.4, 123.6, 126.9, 127.3, 127.4, 127.7, 127.75, 127.84, 127.9, 128.1, $128.2,128.5,131.6,133.6,133.7,133.9,134.0,137.5,138.3,138.4,138.5,167.5$, 167.7, 167.8, 168.4; $\mathrm{ESI}^{+}\left[\mathrm{C}_{58} \mathrm{H}_{56} \mathrm{~N}_{2} \mathrm{NaO}_{12} \mathrm{~S}\right]$ requires 1027.3446, found 1027.3463.

Ethyl-2-O-acetyl-3,4,6-tri-O-benzyl- α-D-mannopyranosyl-(1-3)-4,6-O-
benzylidene-2-levulinoyl- β-D-glucopyranosyl-(1-4) -3,6-di-O-benzyl-2-deoxy-2- N -phthalamido- β-D-glucopyranosyl-(1-4)-3,6-di-O-benzyl-2-deoxy-2- N -phthalamido-1-thio- β-D-glucopyranoside

A mixture of ethyl-2- O-acetyl-3,4,6-tri- O-benzyl- α-D-mannopyranosyl-(1-3)-4,6-O-benzylidene-2-levulinoyl-1-thio- β-D-glucopyranoside 22 ($89 \mathrm{mg}, 0.10 \mathrm{mmol}$), 2,6-di-tert-butyl-4-methylpyridine ($51 \mathrm{mg}, 0.25 \mathrm{mmol}$) and diphenylsulfoxide ($40 \mathrm{mg}, 0.20$ mmol) were concentrated from toluene (3 x 20 ml), dissolved in dry DCM (10 ml) under a nitrogen atmosphere and added via cannula to a flask containing freshly activated $4 \AA$ molecular sieves (150 mg) at r.t. under a nitrogen atmosphere. The suspension was stirred at r.t. for 30 min then cooled to $-40^{\circ} \mathrm{C}$. Triflic anhydride (17 $\mu \mathrm{l}, 0.10 \mathrm{mmol}$) was added and the mixture was stirred for 40 min . A solution of ethyl-3,6-di-O-benzyl-2-deoxy-2-N-phthalamido- β-D-glucopyranosyl-(1-4)-3,6-di-O-benzyl-2-deoxy-2- N-phthalamido-1-thio- β-D-glucopyranoside 20 (100 mg, 0.10 mmol) in dry DCM (5 ml) was added dropwise via cannula. The resulting solution was stirred at $-40{ }^{\circ} \mathrm{C}$ for 45 min then warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 22 h slowly warming to r.t. whereupon TLC analysis ($20 \% \mathrm{EtOAc} /$ toluene) indicated the complete consumption of the starting material $20(\mathrm{Rf}=0.40)$ and formation of a major product $(\mathrm{Rf}=0.53)$. Saturated aqueous sodium hydrogencarbonate solution (20 ml) was added and the layers were separated. The aqueous layer was extracted with DCM (2x 15 $\mathrm{ml})$. The combined organic layers were washed with saturated aqueous sodium hydrogencarbonate solution (20 ml) and brine (20 ml), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give a pale yellow oil which was purified by flash column chromatography on silica gel (Biotage SNAP 25g) eluting with an increasing proportion of ethyl acetate/toluene from 3-25\% to give ethyl-2-O-acetyl-3,4,6-tri-O-benzyl- α-D-mannopyranosyl-(1-3)-4,6-O-benzylidene-2-levulinoyl- β-D-glucopyranosyl-(1-4)-3,6-di- O-benzyl-2-deoxy-2- N-phthalamido- β-D-glucopyranosyl-(1-4)-3,6-di- O-benzyl-2-deoxy-2- N-phthalamido-1-thio- β-D-
glucopyranoside 23 as a colourless oil (117 mg, 64\%): $[\alpha]_{\mathrm{D}}{ }^{18}+7.7\left(\mathrm{c}=0.7, \mathrm{CHCl}_{3}\right)$, Lit. $[\alpha]_{\mathrm{D}}{ }^{18}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.10\left(3 \mathrm{H}, \mathrm{t}, J 7.6,-\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 1.88$ $\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 2.07\left(3 \mathrm{H}, \mathrm{s},-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 2.30(1 \mathrm{H}, \mathrm{dt}, J 18.3,6.0,9 \mathrm{c}-\mathrm{HH}), 2.46-2.51$ $\left(2 \mathrm{H}, \mathrm{m}, 8 \mathrm{c}-\mathrm{H}_{2}\right), 2.50\left(1 \mathrm{H}, \mathrm{dq}, J 12.6,7.6,-\mathrm{SCHHCH}_{3}\right), 2.58(1 \mathrm{H}, \mathrm{dq}, J 12.6,7.6$, $\mathrm{SCH}_{\mathrm{HCH}}^{3}$), $3.10(1 \mathrm{H}, \mathrm{td}, J 9.5,4.9,5 \mathrm{c}-H), 3.32-3.40(3 \mathrm{H}, \mathrm{m}, 5 \mathrm{a}-H, 6 \mathrm{~b}-H \mathrm{H}, 6 \mathrm{c}-H \mathrm{H})$, 3.47-3.54 ($2 \mathrm{H}, \mathrm{m}, 4 \mathrm{a}-H, 6 \mathrm{~b}-\mathrm{H} H), 3.62$ ($1 \mathrm{H}, \mathrm{t}, J 9.3,4 \mathrm{c}-H$), 3.69-3.74 ($1 \mathrm{H}, \mathrm{m}, 5 \mathrm{~d}-H$), 3.72 (1 H, br d, $J 9.8,6 \mathrm{~d}-H \mathrm{H}$), 3.77 (1H, dd, $J 9.8,3.8,6 \mathrm{~d}-\mathrm{H} H), 3.78-3.86$ (4H, m, 3d$\left.H, 4 \mathrm{~d}-H, 6 \mathrm{a}-\mathrm{H}_{2}\right), 3.91$ (1H, t, $\left.J 9.3,3 \mathrm{c}-H\right), 4.13$ (1H, t, $\left.J 9.2,4 \mathrm{~b}-H\right), 4.15-4.24$ (5H, m, $2 \mathrm{a}-H, 2 \mathrm{~b}-H, 3 \mathrm{a}-H, 5 \mathrm{~b}-H, 6 \mathrm{c}-\mathrm{H} H), 4.29$ (1H, dd, $J 10.5,9.2,3 \mathrm{~b}-H), 4.39$ (1H, d, J 12.7, $-\mathrm{C} H \mathrm{HPh}), 4.40(1 \mathrm{H}, \mathrm{d}, J 11.3,-\mathrm{C} H \mathrm{HPh}), 4.41$ ($1 \mathrm{H}, \mathrm{d}, J 12.3,-\mathrm{C} H \mathrm{HPh}$), 4.43 (1H, d, J 12.0, -CHHPh), 4.46 ($1 \mathrm{H}, \mathrm{d}, J 11.3,-\mathrm{C} H \mathrm{HPh}), 4.51(1 \mathrm{H}, \mathrm{d}, J 11.3,-\mathrm{CHHPh}), 4.52$ ($1 \mathrm{H}, \mathrm{d}, J 11.3,-\mathrm{C} H \mathrm{HPh}), 4.53(1 \mathrm{H}, \mathrm{d}, J 11.4,-\mathrm{C} H \mathrm{HPh}), 4.62(1 \mathrm{H}, \mathrm{d}, J 12.0$, CHHPh), 4.63 (1H, d, $J 8.5,1 \mathrm{c}-H), 4.65$ ($1 \mathrm{H}, \mathrm{d}, J 11.4,-\mathrm{CHHPh}), 4.68$ (1H, d, J 12.3, -CHHPh), 4.79 (1H, d, J 12.3, -CHHPh), 4.81 ($1 \mathrm{H}, \mathrm{d}, J 12.3,-\mathrm{CHHPh}$), 4.91 (1H, d, J 12.7, - $\mathrm{C} H \mathrm{HPh}$), $4.96(1 \mathrm{H}, \mathrm{dd}, J 9.3,8.5,2 \mathrm{c}-H), 5.08(1 \mathrm{H}, \mathrm{d}, J 9.1,1 \mathrm{a}-H), 5.31(1 \mathrm{H}, \mathrm{d}$, $J 8.2,1 \mathrm{~b}-H), 5.37(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1 \mathrm{~d}-H), 5.42(1 \mathrm{H}, \mathrm{s}, 7 \mathrm{c}-H), 5.44(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \mathrm{~d}-H), 6.74-$ 6.78 (3H, m, 3x ArH), 6.87-7.03 (7H, m, 7x ArH), 7.06-7.11 (2H, m, 2x ArH), 7.207.41 (23H, m, 23x ArH), 7.43-7.49 (4H, m, 4x ArH), 7.52-7.56 (1H, m, ArH), 7.617.78 ($8 \mathrm{H}, \mathrm{m}, 8 \mathrm{x} \operatorname{Ar} H$), $7.83-7.88(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H)$; $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 14.9$ ($\left.\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 21.0\left(-\mathrm{OC}(\mathrm{O}) \mathrm{CH}_{3}\right), 23.7\left(-\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 27.7(\mathrm{C}-8 \mathrm{c}), 29.5\left(-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 37.4$ (C-9c), 54.8 (C-2a), 56.6 (C-2b), 65.4 (C-5c), 67.3 (C-6a), 68.0 (C-2d), 68.2 (C-6b), 68.4 (C-6c), 68.8 (C-6d), 71.7 ($-\mathrm{CH}_{2} \mathrm{Ph}$), 71.8 (C-5d), $72.4(\mathrm{C}-2 \mathrm{c}), 72.6\left(-\mathrm{CH}_{2} \mathrm{Ph}\right)$, $73.2\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 73.5\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 73.8(\mathrm{C}-4 \mathrm{~d}), 74.0(\mathrm{C}-3 \mathrm{c}), 74.6\left(\mathrm{C}-4 \mathrm{a}\right.$ and $\left.2 \mathrm{x}-\mathrm{CH}_{2} \mathrm{Ph}\right)$, $75.0\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 75.9(\mathrm{C}-5 \mathrm{~b}), 76.6(\mathrm{C}-3 \mathrm{~b}), 77.9(\mathrm{C}-3 \mathrm{a}, 3 \mathrm{~d}$ and 4b), $78.8(\mathrm{C}-5 \mathrm{a}), 80.7$ (C-1a), 81.7 (C-4c), 97.0 (C-1b), 97.3 (C-1d), 100.4 (C-1c), 101.1 (C-7c), 123.1, 123.3, 123.6, 124.8, 126.1, 126.8, 127.0, 127.2, 127.3, 127.5, 127.6, 127.65, 127.69, 127.72, 127.76, 127.80, 127.86, 127.89, 127.93, 128.0, 128.1, 128.2, 128.3, 128.4, $128.5,128.9,129.3,131.0,131.4,131.7,131.8,133.5,133.7,133.9,136.8,137.9$, $138.0,138.1,138.4,138.6,138.7,145.6,167.5,167.6,167.7,168.3,170.1$ ($\left.\mathrm{OC}(\mathrm{O}) \mathrm{CH}_{3}\right), 171.3\left(-\mathrm{OC}(\mathrm{O}) \mathrm{CH}_{2}-\right)$, $205.7(-\mathrm{C}(\mathrm{O})-) ; \mathrm{ESI}^{+}\left[\mathrm{C}_{105} \mathrm{H}_{106} \mathrm{~N}_{2} \mathrm{NaO}_{25} \mathrm{~S}\right]$ requires 1849.6698, found 1849.6718 .

Ethyl-2-O-acetyl-3,4,6-tri-O-benzyl- α-D-mannopyranosyl-(1-3)-4,6-O-benzylidene- β-D-glucopyranosyl-(1-4)-3,6-di-O-benzyl-2-deoxy-2-N-phthalamido- β-D-glucopyranosyl-(1-4)-3,6-di-O-benzyl-2-deoxy-2- N -phthalamido-1-thio- β-D-glucopyranoside

Hydrazine acetate ($148 \mathrm{mg}, 1.64 \mathrm{mmol}$) was added to a suspension of ethyl-2-O-acetyl-3,4,6-tri- O-benzyl- α-D-mannopyranosyl-(1-3)-4,6-O-benzylidene-2-levulinoyl- β-D-glucopyranosyl-(1-4)-3,6-di-O-benzyl-2-deoxy-2- N-phthalamido- β-D-glucopyranosyl-(1-4)-3,6-di-O-benzyl-2-deoxy-2- N-phthalamido-1-thio- β-Dglucopyranoside $23(1.00 \mathrm{~g}, 0.55 \mathrm{mmol})$ in methanol (40 ml). The mixture was heated to $55{ }^{\circ} \mathrm{C}$ under reflux for 20 h whereupo n TLC analysis (40\% EtOAc/petrol) indicated the complete consumption of the starting material $(\mathrm{Rf}=0.31)$ and formation of a major product $(\mathrm{Rf}=0.35)$. The mixture was diluted with water $(150 \mathrm{ml})$ and DCM $(150 \mathrm{ml})$. The layers were separated and the aqueous layer was extracted with DCM ($3 \times 100 \mathrm{ml}$). The combined organic layers were washed with water (100 ml) and brine (100 ml), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give a pale yellow foam which was purified by flash column chromatography on silica gel (Biotage SNAP 100 g) eluting with an increasing proportion of ethyl acetate/petrol from 8-50\% to give ethyl-2- O-acetyl-3,4,6-tri- O-benzyl- α-D-mannopyranosyl-(1-3)-4,6-O-benzylidene- β-D-glucopyranosyl-(1-4)-3,6-di- O-benzyl-2-deoxy-2- N-phthalamido- β -D-glucopyranosyl-(1-4)-3,6-di-O-benzyl-2-deoxy-2-N-phthalamido-1-thio- β-Dglucopyranoside 3as a white powder ($641 \mathrm{mg}, 68 \%$): $[\alpha]_{\mathrm{D}}{ }^{18}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$, Lit. $[\alpha]_{\mathrm{D}}{ }^{18}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.11\left(3 \mathrm{H}, \mathrm{t}, J 7.3,-\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 2.52$ $\left(1 \mathrm{H}, \mathrm{dq}, J 12.6,7.3,-\mathrm{SCHHCH}_{3}\right), 2.60\left(1 \mathrm{H}, \mathrm{dq}, J 12.6,7.3,-\mathrm{SCH}_{\mathrm{HCH}}^{3}\right), 3.13(1 \mathrm{H}$, td, J 9.5, 5.0, 5c-H), 3.31-3.35 (2H, m, 5a- $H, 5 \mathrm{~b}-H$), 3.39-3.56 (4H, m, 2c-H, 4c- H, $6 \mathrm{a}-H \mathrm{H}, 6 \mathrm{c}-H \mathrm{H}), 3.58(1 \mathrm{H}$, br d, $J 11.0,6 \mathrm{a}-\mathrm{H} H), 3.68(1 \mathrm{H}$, br d, $J 10.8,6 \mathrm{~b}-H \mathrm{H}), 3.70$ (1H, br d, $J 11.7,6 \mathrm{~d}-H \mathrm{H}), 3.75$ (1H, t, $J 9.1,3 \mathrm{c}-H), 3.79$ ($1 \mathrm{H}, \mathrm{dd}, J 10.8,4.4,6 \mathrm{~d}-\mathrm{H} H)$, $3.86(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 11.3,6 \mathrm{~b}-\mathrm{H} H), 3.91(1 \mathrm{H}, \mathrm{t}, J 9.3,4 \mathrm{~d}-H), 4.02(1 \mathrm{H}, \mathrm{dd}, J 9.3,3.0,3 \mathrm{~d}-$ $H), 4.11(1 \mathrm{H}, \mathrm{dd}, J 10.2,5.0,6 \mathrm{c}-\mathrm{H} H), 4.13(1 \mathrm{H}$, app t, $J 9.2,4 \mathrm{~b}-H), 4.16(1 \mathrm{H}$, app t, J
9.2, 3a-H), 4.20-4.24 (3H, m, 2a-H, 2b-H, 5d-H), 4.25 ($1 \mathrm{H}, \mathrm{dd}, J 10.5,9.2,4 \mathrm{a}-H$), 4.40 ($1 \mathrm{H}, \mathrm{dd}, J 10.5,9.2,3 \mathrm{~b}-H$), 4.41 ($1 \mathrm{H}, \mathrm{d}, J 12.6,-\mathrm{C} H \mathrm{HPh}$), 4.48-4.53 (5H, m, 5x $-\mathrm{C} H \mathrm{HPh}), 4.53(1 \mathrm{H}, \mathrm{d}, J 11.7,-\mathrm{C} H \mathrm{HPh}), 4.54(1 \mathrm{H}, \mathrm{d}, J 12.6,-\mathrm{C} H \mathrm{HPh}), 4.57(1 \mathrm{H}, \mathrm{d}, J$ 12.0, -CHHPh), $4.62(1 \mathrm{H}, \mathrm{d}, J 7.6,1 \mathrm{c}-H), 4.70(1 \mathrm{H}, \mathrm{d}, J 12.0,-\mathrm{C} H \mathrm{HPh}), 4.71(1 \mathrm{H}, \mathrm{d}$, $J 11.0,-\mathrm{C} H \mathrm{HPh}), 4.81(1 \mathrm{H}, \mathrm{d}, J 12.3,-\mathrm{C} H \mathrm{HPh}), 4.86(1 \mathrm{H}, \mathrm{d}, J 12.3,-\mathrm{C} H \mathrm{HPh}), 4.87$ (1H, d, J 11.0, -CHHPh), 5.08 (1H, d, J 10.1, 1a-H), $5.24(1 \mathrm{H}, \mathrm{br}$ s, 1d-H), $5.28(1 \mathrm{H}$, d, $J 8.5,1 \mathrm{~b}-H), 5.45(1 \mathrm{H}, \mathrm{s}, 7 \mathrm{c}-H), 5.53(1 \mathrm{H}, \mathrm{dd}, J 3.0,0.7,2 \mathrm{~d}-H), 6.73-6.81(3 \mathrm{H}, \mathrm{m}$, 3x $\mathrm{Ar} H$), 6.87-7.06 ($8 \mathrm{H}, \mathrm{m}, 8 \mathrm{x} \operatorname{ArH}$), 7.15-7.44 (28H, m, 28x $\mathrm{Ar} H), 7.52-7.57$ ($1 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$, 7.62-7.89 ($8 \mathrm{H}, \mathrm{m}, 8 \mathrm{x} \mathrm{ArH}$); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 14.9\left(-\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 21.0(-$ $\left.\mathrm{OC}(\mathrm{O}) \mathrm{CH}_{3}\right), 23.6\left(-\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 54.7(\mathrm{C}-2 \mathrm{a}), 56.6(\mathrm{C}-2 \mathrm{~b}), 65.9(\mathrm{C}-5 \mathrm{c}), 67.6(\mathrm{C}-6 \mathrm{~b})$, 68.3 (C-6a), 68.47 (C-6c), 68.53 (C-2d), $68.8(\mathrm{C}-6 \mathrm{~d}), 71.5(\mathrm{C}-5 \mathrm{~d}), 71.8\left(-\mathrm{CH}_{2} \mathrm{Ph}\right)$, $72.6\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 73.3\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 73.4\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 74.1(\mathrm{C}-2 \mathrm{c}), 74.3(\mathrm{C}-4 \mathrm{~d}), 74.51(\mathrm{C}-5 \mathrm{~d}$ or $\left.-\mathrm{CH}_{2} \mathrm{Ph}\right)$, $74.53\left(\mathrm{C}-5 \mathrm{~d}\right.$ or $\left.-\mathrm{CH}_{2} \mathrm{Ph}\right), 74.7\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 75.1\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 75.4(\mathrm{C}-4 \mathrm{a}), 77.5$ (C-3a), 78.08 (C-3b), 78.12 (C-3d), 78.75 (C-4b), 78.78 (C-5a), 78.9 (C-3c), 80.7 (C$4 \mathrm{c}), 80.8$ (C-1a), 96.9 (C-1b), 98.6 (C-1d), 100.9 (C-7c), 103.8 (C-1c), 123.2, 123.3, 123.7, 125.9, 126.9, 127.1, 127.23, 127.25, 127.4, 127.6, 127.65, 127.66, 127.76, 127.82, 127.9, 127.99, 128.01, 128.08, 128.10, 128.2, 128.29, 128.34, 128.5, 128.8, $131.4,131.66,131.74,133.6,133.7,133.9,134.0,137.0,137.6,138.0,138.1,138.4$, $138.45,138.49,167.5,167.7,168.5,170.1\left(-\mathrm{OC}(\mathrm{O}) \mathrm{CH}_{3}\right) ; \mathrm{ESI}^{+}\left[\mathrm{C}_{100} \mathrm{H}_{100} \mathrm{~N}_{2} \mathrm{NaO}_{23} \mathrm{~S}\right]$ requires 1751.6330, found 1751.6310 .

Ethyl-2-O-acetyl-3,4,6-tri-O-benzyl- α-D-mannopyranosyl-(1-3)-2-O-acetyl-4,6-O-benzylidene- β-D-mannopyranosyl-(1-4)-3,6-di- O-benzyl-2-deoxy-2- N -phthalamido- β-D-glucopyranosyl-(1-4)-3,6-di-O-benzyl-2-deoxy-2- N -phthalamido-1-thio- β-D-glucopyranoside

Triflic anhydride ($838 \mu \mathrm{l}, 4.980 \mathrm{mmol}$) was added dropwise to a solution of ethyl-2-O-acetyl-3,4,6-tri- O-benzyl- α-D-mannopyranosyl-(1-3)-4,6- O-benzylidene- β-D-glucopyranosyl-(1-4)-3,6-di- O-benzyl-2-deoxy-2- N-phthalamido- β-D-glucopyranosyl-(1-4)-3,6-di- O-benzyl-2-deoxy-2- N-phthalamido-1-thio- β-Dglucopyranoside 44 ($575 \mathrm{mg}, 0.332 \mathrm{mmol}$) in dry $\mathrm{DCM}(40 \mathrm{ml})$ at $-5{ }^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The resulting mixture was stirred for 3 h slowly warming to r.t. whereupon TLC analysis ($15 \% \mathrm{EtOAc} /$ petrol) indicated the complete consumption of the starting material $(\mathrm{Rf}=0.36)$ and formation of a single product $(\mathrm{Rf}=0.53)$. The reaction mixture was diluted with $\operatorname{DCM}(50 \mathrm{ml})$ and washed with saturated aqueous sodium hydrogencarbonate solution (2 x 40 ml) and brine (40 ml), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give an orange oil which was purified by flash column chromatography on silica gel eluting with 35% ethyl acetate/petrol to give the intermediate triflate as a white solid ($543 \mathrm{mg}, 88 \%$). The triflate (543 mg) and tetra- n butylammonium acetate ($751 \mathrm{mg}, 2.49 \mathrm{mmol}$) were dissolved in dry toluene under a nitrogen atmosphere and sonicated at r.t. for 4 h . The mixture was diluted with water $(500 \mathrm{ml})$ and $\mathrm{DCM}(200 \mathrm{ml})$. The layers were separated and the aqueous layer was extracted with DCM (3x 150 ml). The combined organic extracts were washed with brine (150 ml), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give a yellow oil which was purified by flash column chromatography on silica gel (Biotage SNAP 25 g) eluting with an increasing proportion of ethyl acetate/toluene from $10-80 \%$ to give ethyl-2-O-acetyl-3,4,6-tri-O-benzyl- α-D-mannopyranosyl-(1-3)-2-O-acetyl-4,6-O-benzylidene- β-D-mannopyranosyl-(1-4)-3,6-di- O-benzyl-2-deoxy-2-N-phthalamido- β-D-glucopyranosyl-(1-4)-3,6-di- O-benzyl-2-deoxy-2- N -phthalamido-1-thio- β-D-glucopyranoside 24 ($516 \mathrm{mg}, 88 \%$) as a pale yellow oil: $[\alpha]_{\mathrm{D}}{ }^{18}+7.6$ (c=1.0,
CHCl_{3}), Lit. $[\alpha]_{\mathrm{D}}{ }^{18}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.13(3 \mathrm{H}, \mathrm{t}, J 7.6,-$ $\left.\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 2.11(3 \mathrm{H}, \mathrm{s},-\mathrm{OAc}), 2.12(3 \mathrm{H}, \mathrm{s},-\mathrm{OAc}), 2.54(1 \mathrm{H}, \mathrm{dq}, J 12.5,7.6,-$ ${\mathrm{SC} H \mathrm{HCH}_{3}}^{2}$, $2.62\left(1 \mathrm{H}, \mathrm{dq}, J 12.5,7.6,-\mathrm{SCH}_{\mathrm{CH}}^{3}\right), 3.12(1 \mathrm{H}, \mathrm{td}, J 9.0,4.6,5 \mathrm{c}-H)$, $3.25(1 \mathrm{H}, \mathrm{br}$ d, $J 9.6,5 \mathrm{~b}-H), 3.37(1 \mathrm{H}, \mathrm{dd}, J 9.6,2.3,5 \mathrm{a}-H), 3.45$ (1 H , dd, $J 11.0$, $3.5,6 \mathrm{a}-H \mathrm{H}), 3.54$ ($1 \mathrm{H}, \mathrm{d}, J 10.4,6 \mathrm{c}-H \mathrm{H}$), 3.60 ($1 \mathrm{H}, \mathrm{d}, J 11.0,6 \mathrm{a}-\mathrm{H} H), 3.61$ ($1 \mathrm{H}, \mathrm{d}, J$ 11.1, 6b-HH), 3.68 (1H, d, $J 11.1,6 \mathrm{~b}-\mathrm{H} H), 3.73$ (1H, d, $J 10.6,6 \mathrm{~d}-H \mathrm{H}), 3.83$ (1H, dd, J 10.6, 3.6, $6 \mathrm{~d}-\mathrm{H} H$), 3.86-3.98 (5H, m, 3c-H, 4c-H, 3d-H, 4d-H and 5d-H), 4.16-4.34 (7H, m, 2a- H, 3a- H, 4a- $H, 2 \mathrm{~b}-H, 3 \mathrm{~b}-H, 4 \mathrm{~b}-H$ and $6 \mathrm{c}-\mathrm{H} H$), 4.42-4.61 (9H, m, 9x $\mathrm{C} H \mathrm{HPh}), 4.69(1 \mathrm{H}, \mathrm{d}, J 12.1,-\mathrm{C} H \mathrm{HPh}), 4.71(1 \mathrm{H}, \mathrm{d}, J 12.1,-\mathrm{C} H \mathrm{HPh}), 4.76(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $1 \mathrm{c}-H), 4.89-4.92(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{x}-\mathrm{C} H \mathrm{HPh}), 5.11(1 \mathrm{H}, \mathrm{d}, J 10.4,1 \mathrm{a}-H), 5.27(1 \mathrm{H}, \mathrm{br}$ s, 1d$H), 5.30(1 \mathrm{H}, \mathrm{d}, J 8.1,1 \mathrm{~b}-H), 5.44(1 \mathrm{H}, \mathrm{d}, J 2.5,2 \mathrm{c}-H), 5.51(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \mathrm{~d}-H), 5.53$ ($1 \mathrm{H}, \mathrm{s}, 7 \mathrm{c}-H$), 6.78-6.82 (3H, m, 3x Ar-H), 6.94-7.07 (7H, m, 7x Ar-H), 7.24-7.40 (28H, m, 28x Ar-H), 7.43-7.47 (2H, m, 2x Ar-H), 7.55-7.90 (8H, m, 8x Ar-H); δ_{C} ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $14.9\left(-\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 20.9\left(-\mathrm{OC}(\mathrm{O}) \mathrm{CH}_{3}\right), 21.0\left(-\mathrm{OC}(\mathrm{O}) \mathrm{CH}_{3}\right), 23.7$ ($\mathrm{SCH}_{2} \mathrm{CH}_{3}$), $54.8(\mathrm{C}-2 \mathrm{a}), 56.6(\mathrm{C}-2 \mathrm{~b}), 66.5(\mathrm{C}-5 \mathrm{c}), 67.6(\mathrm{C}-6 \mathrm{~b}), 68.3$ (C-6a and C-6c), $68.6(\mathrm{C}-2 \mathrm{~d}), 68.9(\mathrm{C}-6 \mathrm{~d}), 70.8(\mathrm{C}-2 \mathrm{c}), 71.7\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 72.8\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 73.1(\mathrm{C}-5 \mathrm{~d}$ and $\left.-\mathrm{CH}_{2} \mathrm{Ph}\right), 73.4\left(2 \mathrm{x}-\mathrm{CH}_{2} \mathrm{Ph}\right), 74.2\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 74.4,74.5,74.6\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 74.8\left(-\mathrm{CH}_{2} \mathrm{Ph}\right)$, 75.5 (C-4a), 76.9 (C-3b), 77.6 (C-3a), 77.7, 78.6 (C-4b), 78.8, 78.9 (C-5a), 80.8 (C1a), 97.0 (C-1b), 98.6 (C-1d), 99.2 (C-1c), 101.2 (C-7c), 123.2, 123.3, 123.7, 126.9, 127.2, 127.5, 127.55, 127.58, 127.66, 127.72, 127.80, 127.84, 127.95, 128.0, 128.1, 128.26, 128.30, 128.4, 128.6, 128.9, 131.7, 133.6, 133.7, 133.9, 134.1, 137.1, 137.97, $138.02,138.2,138.3,138.6,138.7,167.5,167.7,169.6\left(-\mathrm{OC}(\mathrm{O}) \mathrm{CH}_{3}\right)$, 170.1 ($\left.\mathrm{OC}(\mathrm{O}) \mathrm{CH}_{3}\right) ; \mathrm{ESI}^{+}\left[\mathrm{C}_{102} \mathrm{H}_{102} \mathrm{~N}_{2} \mathrm{NaO}_{24} \mathrm{~S}\right]$ requires 1793.6435, found 1705.6353.

Ethyl-2-O-acetyl-3,4,6-tri- O-benzyl- α-D-mannopyranosyl-(1-3)-2-O-acetyl- β-D-mannopyranosyl-(1-4)-3,6-di-O-benzyl-2-deoxy-2- N-phthalamido- β-D-glucopyranosyl-(1-4)-3,6-di-O-benzyl-2-deoxy-2- N-phthalamido-1-thio- β-Dglucopyranoside

p-Toluenesulfonic acid monohydrate ($68 \mathrm{mg}, 0.36 \mathrm{mmol}$) was added to a solution of ethyl-2- O-acetyl-3,4,6-tri- O-benzyl- α-D-mannopyranosyl-(1-3)-2-O-acetyl-4,6-O-benzylidene- β-D-mannopyranosyl-(1-4)-3,6-di- O-benzyl-2-deoxy-2-N-phthalamido-β-D-glucopyranosyl-(1-4)-3,6-di- O-benzyl-2-deoxy-2-N-phthalamido-1-thio- β-Dglucopyranoside $24(6.35 \mathrm{~g}, 3.58 \mathrm{mmol})$ in dry methanol (128 ml) and dey $1,4-$ dioxane (72 ml) at r.t under a nitrogen atmosphere. The resulting solution was heated to $85{ }^{\circ} \mathrm{C}$ for 3.5 h whereupon TLC analysis ($50 \% \mathrm{EtOAc} /$ petrol) indicated the complete consumption of the starting material $(\mathrm{Rf}=0.68)$ and formation of a single product ($\mathrm{Rf}=0.21$). The reaction mixture was diluted with $\mathrm{DCM}(400 \mathrm{ml})$ and saturated aqueous sodium hydrogencarbonate solution (300 ml). The layers were separated and the aqueous layer was extracted with DCM ($3 \times 150 \mathrm{ml}$). The combined organic extracts were washed with saturated aqueous sodium hydrogencarbonate solution (150 ml) and brine $(150 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give a white solid which was purified by flash column chromatography on silica gel eluting with an increasing proportion of ethyl acetate/petrol from 50-80\% to give ethyl-2- O-acetyl-3,4,6-tri- O-benzyl- α-D-mannopyranosyl-(1-3)-2- O-acetyl- β-D-mannopyranosyl-(1-4)-3,6-di- O-benzyl-2-deoxy-2- N-phthalamido- β-D-glucopyranosyl-(1-4)-3,6-di- O-benzyl-2-deoxy-2- N-phthalamido-1-thio- β-Dglucopyranoside $25(5.56 \mathrm{~g}, 92 \%)$ as a white solid: $[\alpha]_{\mathrm{D}}{ }^{25}+19.6$ (c=1.0, CHCl_{3}); δ_{H} ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.11\left(3 \mathrm{H}, \mathrm{t}, J 7.6,-\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 2.06(3 \mathrm{H}, \mathrm{s},-\mathrm{OAc}), 2.15(3 \mathrm{H}, \mathrm{s},-$ $\mathrm{OAc}), 2.52\left(1 \mathrm{H}, \mathrm{dq}, J 12.6,7.6,-\mathrm{SC}_{\mathrm{C}} \mathrm{HCH}_{3}\right), 2.60\left(1 \mathrm{H}, \mathrm{dq}, J 12.6,7.6,-\mathrm{SC}_{2} H \mathrm{HCH}_{3}\right)$, 3.03 (1 H , ddd, $J 9.5,4.7,3.2,5 \mathrm{c}-H), 3.23$ (1 H , br d, $J 9.6,5 \mathrm{~b}-H$), 3.34 (1H, dd, $J 9.6$, 3.8, 5a-H), 3.41 (1H, dd, J 11.4, 3.8, 6a-HH), 3.27-3.59 (4H, m, 3d-H, 6a-HH, 6b$H \mathrm{H}, 6 \mathrm{c}-H \mathrm{H}), 3.63(1 \mathrm{H}$, br d, $J 11.0,6 \mathrm{~b}-\mathrm{H} H), 3.68$ (1H, dd, $J 11.7,3.2,6 \mathrm{c}-\mathrm{H} H), 3.72-$
$3.75\left(2 \mathrm{H}, \mathrm{m}, 6 \mathrm{~d}-\mathrm{H}_{2}\right), 3.80-3.86$ ($\left.2 \mathrm{H}, \mathrm{m}, 4 \mathrm{c}-H, 4 \mathrm{~d}-H\right), 3.88$ ($1 \mathrm{H}, \mathrm{dd}, J 9.3,3.0,3 \mathrm{c}-H$), 3.97 (1H, dt, $J 9.5,3.5,5 \mathrm{~d}-H), 4.10$ (1H, dd, $J 9.6,8.5,4 \mathrm{~b}-H), 4.16$ (1H, dd, $J 9.8,8.2$, $3 \mathrm{a}-H$), 4.17-4.23 (3H, m, 2a-H, 2b-H, 4a- H), 4.25 ($1 \mathrm{H}, \mathrm{dd}, J 10.5,8.5,3 \mathrm{~b}-H$), 4.39 $(1 \mathrm{H}, \mathrm{d}, J 12.0,(-\mathrm{CHHPh}), 4.43(1 \mathrm{H}, \mathrm{d}, J 12.0,-\mathrm{CHHPh}), 4.47-4.58(7 \mathrm{H}, \mathrm{m}, 7 \mathrm{x}-$ CHHPh), $4.65(1 \mathrm{H}, \mathrm{d}, J 11.7,-\mathrm{CHHPh}), 4.65(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1 \mathrm{c}-H), 4.67(1 \mathrm{H}, \mathrm{d}, J 11.7$, CHHPh), 4.86 ($1 \mathrm{H}, \mathrm{d}, J 11.3,-\mathrm{CHHPh}), 4.87(1 \mathrm{H}, \mathrm{d}, J 12.7$, -CHHPh), 4.88 ($1 \mathrm{H}, \mathrm{d}, ~ J$ 11.3, -CHHPh), 5.07 ($1 \mathrm{H}, \mathrm{d}, J 10.1,1 \mathrm{a}-H$), 5.25 ($1 \mathrm{H}, \mathrm{d}, J 1.5,1 \mathrm{~d}-H$), 5.26 ($1 \mathrm{H}, \mathrm{d}, J$ 8.2, 1b-H), 5.27 (1H, dd, $J 2.3,1.5,2 \mathrm{~d}-H), 5.34(1 \mathrm{H}, \mathrm{d}, J 3.5,2 \mathrm{c}-H), 6.74-6.78$ (3H, $\mathrm{m}, 3 \mathrm{x} \operatorname{Ar} H), 6.93-7.02(7 \mathrm{H}, \mathrm{m}, 7 \mathrm{x} \operatorname{Ar} H), 7.19-7.23(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{x} \operatorname{ArH}), 7.24-7.37(23 \mathrm{H}$, $\mathrm{m}, 23 \mathrm{x} \mathrm{Ar} H), 7.52-7.56(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.60-7.79(6 \mathrm{H}, \mathrm{m}, 6 \mathrm{x} \operatorname{Ar} H), 7.84-7.91(1 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 14.9\left(-\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 21.0\left(-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 21.1\left(-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right)$, $23.6\left(-\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 54.7(\mathrm{C}-2 \mathrm{a}), 56.5(\mathrm{C}-2 \mathrm{~b}), 62.1(\mathrm{C}-6 \mathrm{c}), 67.0(\mathrm{C}-4 \mathrm{c}), 67.4(\mathrm{C}-6 \mathrm{~b})$, 68.3 (C-6a), 69.0 (C-6d), 69.3 (C-2d), 71.0 (C-2c), 71.76 (C-5d), $71.82\left(-\mathrm{CH}_{2} \mathrm{Ph}\right)$, $72.7\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 73.1\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 73.4\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 74.2(\mathrm{C}-4 \mathrm{~d}), 74.37(\mathrm{C}-5 \mathrm{~b}), 74.42(-$ $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 74.6\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 74.8\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 75.4(\mathrm{C}-5 \mathrm{c}), 75.6(\mathrm{C}-4 \mathrm{a}), 76.8(\mathrm{C}-3 \mathrm{~b}), 77.4$ (C-3c), 77.7 (C-3a), 78.0 (C-4b), 78.6 (C-3d), 78.8 (C-5a), 80.7 (C-1a), 97.0 (C-1b), 98.15 (C-1c or 1d), 98.21 (C-1c or 1d), 123.2, 123.3, 123.7, 126.9, 127.28, 127.34, $127.5,127.6,127.7,127.8,127.9,128.0,128.11,128.14,128.3,128.35,128.39$, $128.6,131.4,131.65,131.69,133.5,133.6,133.9,134.1,137.8,137.9,138.3,138.4$, $138.5,167.5,167.6,167.7,168.4,169.7\left(-C(\mathrm{O}) \mathrm{CH}_{3}\right), 170.6\left(-C(\mathrm{O}) \mathrm{CH}_{3}\right) ; \mathrm{ESI}^{+}$ $\left[\mathrm{C}_{95} \mathrm{H}_{98} \mathrm{~N}_{2} \mathrm{NaO}_{24} \mathrm{~S}\right]$ requires 1705.6122, found 1705.6059.

Ethyl-2-O-acetyl-3,4,6-tri-O-benzyl- α-D-mannopyranosyl-(1-6)-[2-O-acetyl-3,4,6-tri-O-benzyl- α-D-mannopyranosyl-(1-3)]-2-O-acetyl- β-D-mannopyranosyl-(1-4)-3,6-di-O-benzyl-2-deoxy-2- N-phthalamido- β-D-glucopyranosyl-(1-4)-3,6-di-O-benzyl-2-deoxy-2- N-phthalamido-1-thio- β-D-glucopyranoside

A mixture of ethyl-2-O-acetyl-3,4,6-tri- O-benzyl- α-D-mannopyranosyl-(1-3)-2-O-acetyl- β-D-mannopyranosyl-(1-4)-3,6-di- O-benzyl-2-deoxy-2- N-phthalamido- β-D-glucopyranosyl-(1-4)-3,6-di- O-benzyl-2-deoxy-2- N-phthalamido-1-thio- β-D-
glucopyranoside 25 ($25 \mathrm{mg}, 15 \mu \mathrm{~mol}$) and 2- O-acetyl-3,4,6-tri- O-benzyl- α-D-mannopyranosyl-1', $1^{\prime}, 1^{\prime}$-trichloroacetimidate $18(10 \mathrm{mg}, 16 \mu \mathrm{~mol})$ was concentrated from toluene ($3 \times 2 \mathrm{ml}$) and dried under vacuum. The dried mixture was dissolved in dry DCM (1 ml) and added via cannula to a flask containing freshly activated $4 \AA$ molecular sieves (100 mg) at r.t. under a nitrogen atmosphere. The resulting suspension was stirred at r.t. for 30 min then cooled to $-40 \quad{ }^{\circ} \mathrm{C}$. Trimethylsilyltrifluoromethanesulfonate $(0.2 \mu 1,1.5 \mathrm{mmol})$ was added and the mixture was stirred at $-40{ }^{\circ} \mathrm{C}$ for 20 min whereupon TLC analysis (33% EtOAc/toluene) indicated complete consumption of the acceptor $25(\mathrm{Rf}=0.07)$ and donor $18(\mathrm{Rf}=0.67)$, and the formation of a product $(\mathrm{Rf}=0.38)$. Triethylamine ($100 \mu \mathrm{l}$) was added and the mixture was warmed to r.t. and filtered through celite. The filtrate was concentrated in vacuo to give a colourless oil which was purified by flash column chromatography (Biotage SNAP 10g) on silica gel eluting with an increasing proportion of EtOAc/petrol from $10-75 \%$ to give ethyl-2-O-acetyl-3,4,6-tri- O-benzyl-α-D-mannopyranosyl-(1-6)-[2-O-acetyl-3,4,6-tri-O-benzyl- α-D-mannopyranosyl-(1-3)]-2-O-acetyl- β-D-mannopyranosyl-(1-4)-3,6-di-O-benzyl-2-deoxy-2-N-phthalamido- β-D-glucopyranosyl-(1-4)-3,6-di- O-benzyl-2-deoxy-2- N -phthalamido-1-thio- β-D-glucopyranoside 44 ($27 \mathrm{mg}, 85 \%$) as a white solid: $[\alpha]_{\mathrm{D}}{ }^{18}+42.6(\mathrm{c}=0.5$, $\left.\mathrm{CHCl}_{3}\right)$, Lit. $[\alpha]_{\mathrm{D}}{ }^{18}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.11(3 \mathrm{H}, \mathrm{t}, J 7.4,-$
$\left.\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 1.95(3 \mathrm{H}, \mathrm{s},-\mathrm{OAc}), 2.08(3 \mathrm{H}, \mathrm{s},-\mathrm{OAc}), 2.14(3 \mathrm{H}, \mathrm{s},-\mathrm{OAc}), 2.51(1 \mathrm{H}, \mathrm{dq}$, $J 12.4,7.4,-\mathrm{SC}_{\mathrm{H}} \mathrm{HCH}_{3}$), $2.59\left(1 \mathrm{H}, \mathrm{dq}, J 12.4,7.4,-\mathrm{SCH} H \mathrm{CH}_{3}\right), 3.06(1 \mathrm{H}, \mathrm{dt}, J 9.5$, $2.9,5 \mathrm{c}-H), 3.23(1 \mathrm{H}$, br d, $J 9.9,5 \mathrm{~b}-H), 3.32(1 \mathrm{H}, \mathrm{dd}, J 9.9,3.4,5 \mathrm{a}-H), 3.37(1 \mathrm{H}, \mathrm{dd}$, $J 11.0,3.4,6 \mathrm{a}-H \mathrm{H}), 3.53(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 11.0,6 \mathrm{a}-\mathrm{H} H), 3.55(1 \mathrm{H}, \mathrm{dd}, J 11.2,2.6,6 \mathrm{~b}-H \mathrm{H})$, $3.59(1 \mathrm{H}, \mathrm{dd}, J 9.6,3.3,3 \mathrm{c}-H), 3.62-3.65(2 \mathrm{H}, \mathrm{m}, 6 \mathrm{~b}-\mathrm{H} H$ and $6 \mathrm{c}-H \mathrm{H}), 3.67-3.69(2 \mathrm{H}$, $\left.\mathrm{m}, 6 \mathrm{e}-\mathrm{H}_{2}\right), 3.72-3.76(2 \mathrm{H}, \mathrm{m}, 5 \mathrm{e}-H$ and $6 \mathrm{~d}-H \mathrm{H}), 3.79-3.82(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{e}-H, 4 \mathrm{~d}-H$ and $6 \mathrm{~d}-\mathrm{H} H), 3.89-3.93$ ($3 \mathrm{H}, \mathrm{m}, 3 \mathrm{~d}-H, 4 \mathrm{e}-H$ and $6 \mathrm{c}-\mathrm{H} H$), 3.95 ($1 \mathrm{H}, \mathrm{t}, J 9.5,4 \mathrm{c}-H$), 3.98$4.01(1 \mathrm{H}, \mathrm{m}, 5 \mathrm{~d}-H), 4.10-4.24(7 \mathrm{H}, \mathrm{m}, 2 \mathrm{a}-H, 3 \mathrm{a}-H, 4 \mathrm{a}-H, 2 \mathrm{~b}-H, 3 \mathrm{~b}-H, 4 \mathrm{~b}-H$ and $\mathrm{C} H \mathrm{HPh}), 4.40-4.58(12 \mathrm{H}, \mathrm{m}, 12 \mathrm{x}-\mathrm{C} H \mathrm{HPh}), 4.65-4.68(4 \mathrm{H}, \mathrm{m}, 1 \mathrm{c}-H$ and $3 \mathrm{x}-$ $\mathrm{C} H \mathrm{HPh}), 4.77(1 \mathrm{H}, \mathrm{d}, J 10.7,-\mathrm{C} H \mathrm{HPh}), 4.81(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1 \mathrm{e}-H), 4.85-4.89(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{x}-$ $\mathrm{C} H \mathrm{HPh}), 5.06(1 \mathrm{H}, \mathrm{d}, J 10.4,1 \mathrm{a}-H), 5.23(1 \mathrm{H}, \mathrm{s}, 1 \mathrm{~d}-H), 5.24(1 \mathrm{H}, \mathrm{d}, J 8.3,1 \mathrm{~b}-H)$, $5.30(1 \mathrm{H}, \mathrm{br}$ s, 2e-H), $5.37(1 \mathrm{H}, \mathrm{d}, J 3.2,2 \mathrm{c}-H), 5.43(1 \mathrm{H}$, br s, 2d-H), 6.74-6.81 (6 H , m, 6x Ar- H), 6.95-6.99 (4H, m, 4x Ar-H), 7.09-7.12 (2H, m, 2x Ar-H), 7.14-7.17 (2H, m, 2x Ar- H), 7.22-7.36 (36H, m, 36x Ar-H), 7.54-7.82 (8H, m, 8x Ar-H); $\delta_{\mathrm{C}}(175$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 14.9\left(-\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 20.9\left(-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 21.0\left(-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 21.1$ ($\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 23.7\left(-\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 54.7(\mathrm{C}-2 \mathrm{a}), 56.6(\mathrm{C}-2 \mathrm{~b}), 66.1(\mathrm{C}-6 \mathrm{c}), 67.0(\mathrm{C}-4 \mathrm{c}), 67.6$ (C-6b), 68.3 (C-6a), 68.5 (C-2e), 68.7 (C-6e), 68.87 (C-6d), 68.93 (C-2d), 71.1 ($\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 71.5\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 71.82(\mathrm{C}-4 \mathrm{~d}), 71.85\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 71.9(\mathrm{C}-5 \mathrm{~d}), 72.7\left(-\mathrm{CH}_{2} \mathrm{Ph}\right)$, $73.0\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 73.37\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 73.44\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 74.1(\mathrm{C}-4 \mathrm{e}), 74.3(\mathrm{C}-5 \mathrm{e}), 74.4(\mathrm{C}-$ $5 b), 74.50(\mathrm{C}-5 \mathrm{c}), 74.54\left(2 \mathrm{x}-\mathrm{CH}_{2} \mathrm{Ph}\right), 74.7\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 75.4\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 75.5(\mathrm{C}-3 \mathrm{a})$, 76.9 (C-3b), 77.7 (C-4a), 77.8 (C-3d), 78.0 (C-3c), 78.2 (C-3e), 78.8 (C-4b and C-5a), 80.7 (C-1a), 96.9 (C-1b), 97.9 (C-1e), 99.1 (C-1c), 99.4 (C-1d), 123.1, 123.2, 123.3, $123.5,126.8$, 127.1, 127.4, 127.5, 127.60, 127.62, 127.65, 127.7, 127.76, 127.8, $127.9,127.98,128.02,128.11,128.14,128.2,128.3,128.35,128.4,128.5,131.4$, $131.7,131.8,133.5,133.58,133.62,133.8,137.8,137.9,138.0,138.1,138.2,138.3$, 138.6, 138.65, 138.7, 167.5, 167.7, 168.2, $169.9\left(-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right)$, $170.0\left(-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right)$, $170.4\left(-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right) ; \mathrm{ESI}^{+}\left[\mathrm{C}_{124} \mathrm{H}_{128} \mathrm{~N}_{2} \mathrm{NaO}_{30} \mathrm{~S}\right]$ requires 2180.8198, found 2180.8187 .

Phenyl-2-O-acetyl-3,4,6-tri-O-benzyl- α-D-mannopyranosyl-(1-6)-[2-O-acetyl-
3,4,6-tri-O-benzyl- α-D-mannopyranosyl-(1-3)]-2,4-di- O-acetyl- β-D-mannopyranosyl-(1-4)-3,6-di-O-benzyl-2-deoxy-2- N -phthalamido- β-D-glucopyranosyl-(1-4)-3,6-di-O-benzyl-2-deoxy-2- N-phthalamido- β-Dglucopyranoside

Acetic anhydride ($30.0 \mathrm{ml}, 317.4 \mathrm{mmol}$) was added dropwise to a solution of ethyl-2-O-acetyl-3,4,6-tri- O-benzyl- α-D-mannopyranosyl-(1-6)-[2-O-acetyl-3,4,6-tri- O -benzyl- α-D-mannopyranosyl-(1-3)]-2-O-acetyl- β-D-mannopyranosyl-(1-4)-3,6-di-O-benzyl-2-deoxy-2-N-phthalamido- β-D-glucopyranosyl-(1-4)-3,6-di-O-benzyl-2-deoxy-2- N-phthalamido-1-thio- β-D-glucopyranoside 44 ($2.53 \mathrm{~g}, 1.35 \mathrm{mmol}$) in dry pyridine (45 ml) at rt under an atmosphere of nitrogen. The mixture was stirred for 7 h at rt whereupon TLC analysis ($50 \% \mathrm{EtOAc} /$ petrol) indicated the complete consumption of the starting material $(\mathrm{Rf}=0.36)$ and formation of a single product ($\mathrm{Rf}=0.41$). The reaction mixture was concentrated in vacuo. The resulting oil was again concentrated in vacuo from methanol (2 x 100 ml) then partitioned between DCM (150 ml) and saturated aqueous sodium hydrogencarbonate solution (100 ml). The layers were separated and the organic phase was washed with brine (100 ml), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give a white solid which was purified by flash column chromatography (Biotage SNAP 100g) on silica gel eluting with an increasing proportion of EtOAc/petrol from 11-75\% to give a white solid $(2.48 \mathrm{~g})$ which was concentrated in vacuo from toluene (3 x 75 ml) then dissolved in dry DCM $(20 \mathrm{ml})$ and stirred over freshly activated $4 \AA$ molecular sieves $(1.0 \mathrm{~g})$ at r.t. under a nitrogen atmosphere for 1 h . The mixture was cooled to $-10^{\circ} \mathrm{C}$ and NIS (511 $\mathrm{mg}, 2.27 \mathrm{mmol}$, dried by stirring over freshly activated $4 \AA$ molecular sieves) was added followed immediately by TMS-OTf ($21 \mu \mathrm{~L}, 0.11 \mathrm{mmol}$). The mixture was stirred at $-10^{\circ} \mathrm{C}$ for 15 min then phenol $(252 \mathrm{mg}, 2.68 \mathrm{mmol}$, concentrated in vacuo
from toluene ($3 \times 10 \mathrm{ml}$) and stirred over freshly activated $4 \AA$ molecular sieves) in dry DCM (10 ml) was added. The reaction mixture was stirred for 2 h slowly warming to $-5{ }^{\circ} \mathrm{C}$ then filtered through celite and diluted with DCM (150 ml) and 5% aqueous sodium thiosulfate solution (100 ml). The layers were separated and the aqueous phase was extracted with DCM (3x 80 ml). The combined organic extracts were washed with 5% aqueous sodium thiosulfate solution (100 ml) and brine (100 ml), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give a yellow oil which was purified by flash column chromatography (Biotage SNAP 100g) on silica gel eluting with an increasing proportion of EtOAc/petrol from $25-70 \%$ to give phenyl-2-O-acetyl-3,4,6-tri- O-benzyl- α-D-mannopyranosyl-(1-6)-[2-O-acetyl-3,4,6-tri-O-benzyl-α-D-mannopyranosyl-(1-3)]-2,4-di-O-acetyl- β-D-mannopyranosyl-(1-4)-3,6-di-O-benzyl-2-deoxy-2- N-phthalamido- β-D-glucopyranosyl-(1-4)-3,6-di-O-benzyl-2-
deoxy-2- N-phthalamido- β-D-glucopyranoside 27 ($1.21 \mathrm{~g}, 48 \%$) as a white solid; $[\alpha]_{\mathrm{D}}{ }^{18}+31.7\left(\mathrm{c}=0.6, \mathrm{CHCl}_{3}\right)$, Lit. $[\alpha]_{\mathrm{D}}{ }^{18}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.92$ (3H, s, -OAc), $2.11(3 \mathrm{H}, \mathrm{s},-\mathrm{OAc}), 2.13$ ($3 \mathrm{H}, \mathrm{s},-\mathrm{OAc}$), 2.16 ($3 \mathrm{H}, \mathrm{s},-\mathrm{OAc}$), 3.22-3.28 $(2 \mathrm{H}, \mathrm{m}, 5 \mathrm{~b}-H, 5 \mathrm{c}-H), 3.39(1 \mathrm{H}, \mathrm{dd}, J 10.7,4.4,6 \mathrm{c}-H \mathrm{H}), 3.44(1 \mathrm{H}, \mathrm{app} \mathrm{dd}, J 8.6,4.3$, $5 \mathrm{a}-H), 3.51-3.59(3 \mathrm{H}, \mathrm{m}, 6 \mathrm{c}-\mathrm{H} H, 6-H, 6-H), 3.62-3.68(4 \mathrm{H}, \mathrm{m}, 3 \mathrm{c}-H, 6-H, 6-H, 6-H)$, 3.70-3.74 (2H, m, 5e-H, 6-H), 3.76 (1 H , dd, $J 10.7,4.1,6-H$), 3.81-3.87 (3H, m, 3d$H, 4 \mathrm{e}-H, 6-H), 3.91$ (1H, dd, J 9.3, 3.0, 3e-H), 3.93-3.99 (2H, m, 4d-H, 5d-H), 4.124.25 (5H, m, 2b-H, 3a-H, 3b-H, 4a-H, 4b-H), 4.37-4.74 (16H, m, 16x PhCH-), 4.39$4.42(1 \mathrm{H}, \mathrm{m}, 2 \mathrm{a}-H), 4.79-4.88(4 \mathrm{H}, \mathrm{m}, 4 \mathrm{x}$ PhCH-), 4.82 ($1 \mathrm{H}, \mathrm{d}, J 2.8,1 \mathrm{e}-H), 4.94$ (1 H , d, $J 1.9,1 \mathrm{~d}-H), 5.13(1 \mathrm{H}, \mathrm{dd}, J 3.2,1.9,2 \mathrm{~d}-H), 5.22(1 \mathrm{H}, \operatorname{app} \mathrm{t}, J 9.5,4 \mathrm{c}-H), 5.23(1 \mathrm{H}$, d, $J 7.6,1 \mathrm{~b}-H), 5.31(1 \mathrm{H}, \mathrm{dd}, J 3.0,1.9,2 \mathrm{e}-H), 5.40(1 \mathrm{H}, \mathrm{d}, J 3.2,2 \mathrm{c}-H), 5.57(1 \mathrm{H}, \mathrm{d}$, $J 8.5,1 \mathrm{a}-H), 6.72-6.82(7 \mathrm{H}, \mathrm{m}, 7 \mathrm{x} \mathrm{ArH}), 6.87-6.99$ (5H, m, 5x ArH), 7.05-7.40 (44H, m, 44x $\mathrm{Ar} H$), $7.56-7.82(7 \mathrm{H}, \mathrm{m}, 7 \mathrm{x} \mathrm{Ar} H)$; $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 20.78\left(-\mathrm{CH}_{3}\right), 20.83$ $\left(-\mathrm{CH}_{3}\right), 21.0\left(-\mathrm{CH}_{3}\right), 21.1\left(-\mathrm{CH}_{3}\right), 55.5(\mathrm{C}-2 \mathrm{a}), 56.5(\mathrm{C}-2 \mathrm{~b}), 66.7(\mathrm{C}-6), 67.5(\mathrm{C}-6)$, 68.0 (C-6c), 68.4 (C-2e), 68.66 (C-4c), 68.68 (C-6), 68.8 (C-6), 69.2 (C-2d), 70.8 (C2c) $71.70(\mathrm{C}-5 \mathrm{a}), 71.74\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 71.78\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 72.1(\mathrm{C}-5 \mathrm{~d}), 72.68(\mathrm{C}-5 \mathrm{c}), 72.73$ $\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 73.0\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 73.4\left(2 \mathrm{x}-\mathrm{CH}_{2} \mathrm{Ph}\right), 73.9(\mathrm{C}-4 \mathrm{~d}), 74.1(\mathrm{C}-4 \mathrm{e}), 74.42(\mathrm{C}-5 \mathrm{~b})$, $74.43\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 74.5\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 74.6\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 74.7(\mathrm{C}-5 \mathrm{a}), 75.0\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 75.8(\mathrm{C}-$ 3a, 3b or 4a), 76.3 (C-3a, 3b or 4a), 76.6 (C-3a, 3b or 4a), 77.4 (C-3c), 78.2 (C-3e),
79.0 (C-4b), 96.2 (C-1a), 97.1 (C-1b), 97.9 (C-1e), 98.8 (C-1c), 100.0 (C-1d), 116.9, 122.6, 123.1, 123.2, 123.5, 126.9, 127.2, 127.37, 127.40, 127.45, 127.49, 127.54, 127.62 , 127.67, $127.73,127.79,128.0,128.15,128.18,128.20,128.23,128.26$, $128.35,128.36,128.6,129.2,131.4,131.6,131.8,133.6,133.8,137.9,138.00$, 138.03, 138.1, 138, 2, 138.3, 138.4, 138.5, 138.6, 156.8, 167.4, 168.1, 169.7, 170.0, 170.1, 170.5; $\mathrm{ESI}^{+}\left[\mathrm{C}_{130} \mathrm{H}_{130} \mathrm{~N}_{2} \mathrm{Na}_{2} \mathrm{O}_{32}\right]$ requires 1138.4196, found 1138.4222.

Phenyl-2-O-acetyl-3,4,6-tri-O-benzyl- α-D-mannopyranosyl-(1-6)-[2-O-acetyl-

3,4,6-tri- O-benzyl- α-D-mannopyranosyl-(1-3)]-2,4-di- O-acetyl- β-D-

 mannopyranosyl-(1-4)-3,6-di-O-benzyl-2-deoxy-2- N -acetyl- β-D-glucopyranosyl-
(1-4)-3,6-di-O-benzyl-2-deoxy-2- N - acetyl- β-D-glucopyranoside

Methanol (25 ml) was added to a solution of phenyl-2- O-acetyl-3,4,6-tri- O-benzyl- $\alpha-$ D-mannopyranosyl-(1-6)-[2-O-acetyl-3,4,6-tri- O-benzyl- α-D-mannopyranosyl-(1-3)]-2,4-di- O-acetyl- β-D-mannopyranosyl-(1-4)-3,6-di-O-benzyl-2-deoxy-2-N-phthalamido- β-D-glucopyranosyl-(1-4)-3,6-di- O-benzyl-2-deoxy-2- N-phthalamido- β -D-glucopyranoside 27 ($1.14 \mathrm{~g}, 0.51 \mathrm{mmol}$) in 1,2-ethylenediamine ($5.11 \mathrm{ml}, 76.50$ mmol) at r.t under a nitrogen atmosphere. The mixture was heated to reflux and stirred for 6 h then concentrated in vacuo from toluene (3 x 40 ml). The resulting yellow oil was dissolved in dry pyridine (24 ml) and acetic anhydride (16 ml) at r.t under a nitrogen atmosphere. The mixture was stirred for 16 h whereupon TLC analysis ($75 \% \mathrm{EtOAc} /$ petrol) indicated the formation of a single product $(\mathrm{Rf}=0.57)$. The reaction mixture was concentrated in vacuo. The resulting oil was again concentrated in vacuo from methanol (2x 150 ml) then partitioned between EtOAc $(100 \mathrm{ml})$ and water $(100 \mathrm{ml})$. The layers were separated and the aqueous layer was extracted with EtOAc ($4 \times 75 \mathrm{ml}$). The combined organic extracts were washed with brine $(150 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give a pale yellow solid which was purified by flash column chromatography on silica gel eluting with 60% ethyl acetate/petrol to give phenyl-2- O-acetyl-3,4,6-tri- O-benzyl- α-D-mannopyranosyl-(1-6)-[2-O-acetyl-3,4,6-tri-O-benzyl- α-D-mannopyranosyl-(1-3)]-

2,4 -di- O-acetyl- β-D-mannopyranosyl-(1-4)-3,6-di- O-benzyl-2-deoxy-2-N-acetyl- β-D-glucopyranosyl-(1-4)-3,6-di- O-benzyl-2-deoxy-2- N - acetyl- β-D-glucopyranoside 45 $(838 \mathrm{mg}, 80 \%)$ as a colourless oil: $[\alpha]_{\mathrm{D}}{ }^{18}+26.5\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$, Lit. $[\alpha]_{\mathrm{D}}{ }^{18}(\mathrm{c}=1.0$, $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.58\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 1.91\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 2.03(3 \mathrm{H}, \mathrm{s},-$
$\left.\mathrm{CH}_{3}\right), 2.05\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 2.13\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 2.15\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 3.20-3.27(2 \mathrm{H}, \mathrm{m}, 5 \mathrm{~b}-$ $H, 5 \mathrm{c}-H), 3.44-3.53(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{~b}-H, 6 \mathrm{c}-H \mathrm{H}, 6-H), 3.53-3.71$ ($8 \mathrm{H}, \mathrm{m}, 2 \mathrm{~b}-H, 3 \mathrm{c}-H, 6 \mathrm{a}-$ $H \mathrm{H}, 6 \mathrm{~b}-H_{2}, 6 \mathrm{c}-\mathrm{H} H, 2 \mathrm{x}$ 6-H), 3.73-3.95 (10H, m, 3a-H, 3d- $H, 3 \mathrm{e}-H 4 \mathrm{~d}-H, 4 \mathrm{e}-H, 5 \mathrm{a}-H$, $5 \mathrm{~d}-H, 5 \mathrm{e}-H, 6 \mathrm{a}-\mathrm{H} H, 6-H), 3.96-3.99$ ($1 \mathrm{H}, \mathrm{m}, 4 \mathrm{a}-H$), 4.04 (1 H , app t, $J 8.8,4 \mathrm{~b}-H$), 4.30 ($1 \mathrm{H}, \mathrm{d}, J 8.2,1 \mathrm{~b}-H), 4.33\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}-\right), 4.37(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{PhC} H \mathrm{H}-), 4.38(1 \mathrm{H}, \mathrm{d}$, J 12.0, PhCHH-), 4.41-4.45 (1H, m, 2a-H), 4.43 (1H, d, $J 12.0$, PhCHH-), 4.45-4.63 (9H, m, 9x PhCHH-), 4.59 (1H, br s, 1c-H), 4.63 ($1 \mathrm{H}, \mathrm{d}, J 12.3$, PhCHH-), 4.66 (1 H , d, $J 12.3, \mathrm{PhC} H \mathrm{H}-), 4.67$ (1H, d, $J 8.2,-\mathrm{NHAc}), 4.78$ ($1 \mathrm{H}, \mathrm{d}, J 12.0, \mathrm{PhC} H \mathrm{H}-), 4.81$ (1H, d, $J 12.0, \mathrm{PhC} H \mathrm{H}-), 4.82$ ($1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{PhC} H \mathrm{H}-$), 4.85 (1H, d, $J 11.4$, PhCHH), $4.86(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1 \mathrm{e}-H), 4.92(1 \mathrm{H}, \mathrm{d}, J 1.7,1 \mathrm{~d}-H), 5.11(1 \mathrm{H}, \mathrm{dd}, J 2.8,1.7,2 \mathrm{~d}-H), 5.17$ (1H, app t, $J 9.9,4 \mathrm{c}-H), 5.23(1 \mathrm{H}, \mathrm{d}, J 4.1,1 \mathrm{a}-H), 5.33(1 \mathrm{H}, \mathrm{d}, J 3.1,2 \mathrm{c}-H), 5.34(1 \mathrm{H}$, dd, $J 2.8,1.9,2 \mathrm{e}-H), 6.75$ ($1 \mathrm{H}, \mathrm{d}, J 9.5,-\mathrm{NHAc}), 6.94-7.00$ (3H, m, 3x ArH), 7.147.20 ($6 \mathrm{H}, \mathrm{m}, 6 \mathrm{xAr} \mathrm{H}$), 7.21-7.37 (46H, m, 46x ArH); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 20.8 ($\left.\mathrm{OC}(\mathrm{O}) \mathrm{CH}_{3}\right), 20.9\left(-\mathrm{OC}(\mathrm{O}) \mathrm{CH}_{3}\right), 21.0\left(-\mathrm{OC}(\mathrm{O}) \mathrm{CH}_{3}\right), 21.1\left(-\mathrm{OC}(\mathrm{O}) \mathrm{CH}_{3}\right), 23.0(-$ $\left.\mathrm{NHC}(\mathrm{O}) \mathrm{CH}_{3}\right), 23.4\left(-\mathrm{NHC}(\mathrm{O}) \mathrm{CH}_{3}\right), 49.1(\mathrm{C}-2 \mathrm{a}), 55.0(\mathrm{C}-2 \mathrm{~b}), 66.4(\mathrm{C}-6 \mathrm{c}), 68.3(\mathrm{C}-$ 6b), 68.4 (C-4c), 68.6 (C-2e, 6e or 6d), 68.69 (C-2e, 6e or 6d), 68.71 (C-2e, 6e or 6d), $69.0(\mathrm{C}-2 \mathrm{~d}), 70.1(\mathrm{C}-6 \mathrm{a}), 71.6(\mathrm{C}-5 \mathrm{e}), 71.7\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 71.86\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 71.90(-$ $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 72.1(\mathrm{C}-5 \mathrm{~d}), 72.8(\mathrm{C}-5 \mathrm{c}), 73.0(\mathrm{C}-4 \mathrm{a}), 73.32\left(2 \mathrm{x}-\mathrm{CH}_{2} \mathrm{Ph}\right), 73.35\left(-\mathrm{CH}_{2} \mathrm{Ph}\right)$, $73.36\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 73.7\left(-\mathrm{CH}_{2} \mathrm{Ph}\right), 73.8(\mathrm{C}-4 \mathrm{e}), 74.3(\mathrm{C}-4 \mathrm{~d}), 74.4(\mathrm{C}-5 \mathrm{~b}), 74.6\left(-\mathrm{CH}_{2} \mathrm{Ph}\right)$, 74.8 (C-5a), 75.2 ($-\mathrm{CH}_{2} \mathrm{Ph}$), 76.4 (C-3a), 76.8 (C-4b), 77.3 (C-3c and 3d), 77.7 (C3b), 78.4 (C-3e), 97.75 (C-1a and 1e), 98.0 (C-1c), 99.9 (C-1d), 100.0 (C-1b), 116.4, $122.0,127.4,127.5,127.57,127.59,127.65,127.68,127.71,127.80,127.86,127.91$, 127.92, 128.00, 128.04, 128.08, 128.19, 128.26, 128.27, 128.32, 128.37, 128.59, 128.64, 128.9, 129.3, 137.76, 137.78, 137.9, 138.1, 138.2, 138.3, 138.4, 138.55, $138.63,157.1,169.8\left(-C(\mathrm{O}) \mathrm{CH}_{3}\right), 170.0\left(-C(\mathrm{O}) \mathrm{CH}_{3}\right), 170.33\left(-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 170.35(-$ $\left.C(\mathrm{O}) \mathrm{CH}_{3}\right), 170.5\left(-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 170.7\left(-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right) ; \mathrm{ESI}^{+}\left[\mathrm{C}_{118} \mathrm{H}_{130} \mathrm{~N}_{2} \mathrm{NaO}_{30}\right]$ requires 2077.8601, found 2077.8651.

Phenyl- α-D-mannopyranosyl-(1-6)-[α-D-mannopyranosyl-(1-3)]- β-D-mannopyranosyl-(1-4)-2-deoxy-2- N-acetyl- β-D-glucopyranosyl-(1-4)-2-deoxy-2-

 N-acetyl- β-D-glucopyranoside

 N-acetyl- β-D-glucopyranoside}

A mixture of $\mathrm{Pd}(\mathrm{OH})_{2}$ on carbon ($20 \% \mathrm{w} / \mathrm{w}, 400 \mathrm{mg}, 0.376 \mathrm{mmol}$) and phenyl-2-O-acetyl-3,4,6-tri- O-benzyl- α-D-mannopyranosyl-(1-6)-[2-O-acetyl-3,4,6-tri- O-benzyl-α-D-mannopyranosyl-(1-3)]-2,4-di-O-acetyl- β-D-mannopyranosyl-(1-4)-3,6-di-O-benzyl-2-deoxy-2- N-acetyl- β-D-glucopyranosyl-(1-4)-3,6-di-O-benzyl-2-deoxy-2- N -acetyl- β-D-glucopyranoside 46 ($650 \mathrm{mg}, 0.316 \mathrm{mmol}$) was suspended in dry methanol $(50 \mathrm{ml})$ at r.t under a nitrogen atmosphere. The flask was evacuated and purged with hydrogen twice. A balloon of hydrogen was attached and the mixture was stirred at r.t for 64 h whereupon MS analysis indicated complete conversion. The reaction vessel was purged with nitrogen and the reaction mixture was filtered through a short celite pad under a constant stream of nitrogen. The resulting solution was concentrated in vacuo to give a white solid which was purified by column chromatography on silica gel eluting with 25% methanol/DCM to give a white solid (331 mg) which was dissolved in dry $\mathrm{MeOH}(50 \mathrm{ml})$ at rt under an atmosphere of nitrogen. Sodium methoxide (4.37 M solution in $\mathrm{MeOH}, 17 \mu \mathrm{~L}, 0.074 \mathrm{mmol}$) was added and the reaction mixture was stirred at rt for 8 h whereupon MS analysis indicated complete reaction. Activated Dowex $-\mathrm{H}^{+}$resin (2.0 g) was added and the mixture stirred at rt for 30 min then filtered and concentrated in vacuo to give phenyl- α-D-mannopyranosyl-(1-6)-[α-D-mannopyranosyl-(1-3)]- β-D-mannopyranosyl-(1-4)-2-deoxy-2-N-acetyl- β -D-glucopyranosyl-(1-4)-2-deoxy-2-N-acetyl- β-D-glucopyranoside 4 (258 mg , 88\%) as a white solid: $[\alpha]_{\mathrm{D}}{ }^{18}-12.9\left(\mathrm{c}=0.1, \mathrm{H}_{2} \mathrm{O}\right) ; \delta_{\mathrm{H}}\left(700 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): 1.94(3 \mathrm{H}, \mathrm{s},-$
$\left.\mathrm{NHC}(\mathrm{O}) \mathrm{CH}_{3}\right), 2.01\left(3 \mathrm{H}, \mathrm{s},-\mathrm{NHC}(\mathrm{O}) \mathrm{CH}_{3}\right), 3.54-3.62(7 \mathrm{H}, \mathrm{m}, 3 \mathrm{~d}-H, 3 \mathrm{e}-H, 5 \mathrm{a}-\mathrm{H}, 5 \mathrm{~b}-$ $H, 5 \mathrm{c}-H, 5 \mathrm{~d}-H, 6 \mathrm{a}-H \mathrm{H}), 3.62-3.70(8 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-H, 3 \mathrm{c}-H, 4 \mathrm{a}-H, 4 \mathrm{~b}-H, 4 \mathrm{c}-H, 6 \mathrm{a}-\mathrm{H} H, 2 \mathrm{x}$ 6-H), 3.70-3.75 (4H, m, 2b-H, 3b-H, 5d-H, 6c-HH), 3.78-3.86 (7H, m, 4d-H, 4e-H, $\left.6 \mathrm{c}-\mathrm{H} H, 6-H_{2}, 2 \mathrm{x} 6-H\right), 3.89(1 \mathrm{H}, \mathrm{dd}, J 3.4,1.4,2 \mathrm{e}-H), 3.93(1 \mathrm{H}, \mathrm{dd}, J 10.5,8.5,2 \mathrm{a}-$ $H), 3.99$ ($1 \mathrm{H}, \mathrm{dd}, J 3.2,1.5,2 \mathrm{~d}-H), 4.18(1 \mathrm{H}, \mathrm{d}, J 2.0,2 \mathrm{c}-H), 4.55(1 \mathrm{H}, \mathrm{d}, J 8.2$, 1b$H), 4.70(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1 \mathrm{c}-H), 4.84(1 \mathrm{H}, \mathrm{d}, J 1.4,1 \mathrm{e}-H), 5.02(1 \mathrm{H}, \mathrm{d}, J 1.5,1 \mathrm{~d}-H), 5.07$ (1H, d, $J 8.5,1 \mathrm{a}-H), 6.98$ (2H, d, $J 8.2,2 \mathrm{x}$ Ar- $H_{\text {ortho }}$), 7.07 ($1 \mathrm{H}, \mathrm{t}, J 7.2$, Ar- $H_{\text {para }}$), 7.30 (2H, dd, $J 8.2,7.2,2 \mathrm{x} \mathrm{Ar}-H_{\text {meta }}$); $\delta_{\mathrm{C}}\left(175 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): 22.1\left(-\mathrm{NHC}(\mathrm{O}) \mathrm{CH}_{3}\right), 22.2(-$ $\mathrm{NHC}(\mathrm{O}) \mathrm{CH}_{3}$), 54.87 (C-2b), 54.92 (C-2a), 59.9 (C-6), 60.0 (C-6a), 60.9 (C-6), 61.1 (C-6), 65.8 (C-4c and 6c), 66.8 (C-3e or 3d), 66.9 (C-3e or 3d), 69.9 (C-2e), 70.0 (C2d), 70.1 (C-2c), 70.3 (C-4d or 4e), 70.4 (C-4d or 4e), 71.9 (C-3a), 72.1 (C-3b), 72.7 (C-5e), 73.4 (C-5d), 74.2 (C-5c), 74.4 (C-5b), 74.7 (C-5a), 79.0 (C-4a), 79.6 (C-4b), 80.5 (C-3c), 99.4 (C-1a), 99.6 (C-1e), 100.4 (C-1c), 101.4 (C-1b), 102.5 (C-1d), 116.6 (C-ortho), 123.5 (C-para), 130.0 (C-meta), 156.6 (C-ipso), 174.7 (-C(O$) \mathrm{CH}_{3}$), 174.9 $\left(-C(\mathrm{O}) \mathrm{CH}_{3}\right) ; \mathrm{ESI}^{+}\left[\mathrm{C}_{40} \mathrm{H}_{62} \mathrm{~N}_{2} \mathrm{NaO}_{26}\right]$ requires 1009.3483, found 1009.3456.

References

[1] Halgren, T. A. J. Comput. Chem. 1999, 20, 730.
[2] Parish, C.; Lombardi, R.; Sinclair, K.; Smith, E.; Goldberg, A.; Rappleye, M.; Dure, M. J. Molec. Graphics \& Modelling 2002, 21, 129.
[3] a) Kolossavary, I.; Guida, W.C. J. Comp. Chem. 1999, 20, 1671; b) Kolossvary, I.; Guida, W.C. J. Am. Chem. Soc. 1996, 118, 5011.
[4] Chang, G.; Guida, W.C.; Still, W.C. J. Am. Chem. Soc. 1989, 111, 4379.
[5] Mohamadi, F.; Richards, N. G. J.; Guida, W. C.; Liskamp, R.; Lipton, M.; Caufield,C.; Chang, G.;Hendrickson, T.; Still, W.C. J. Comp Chem. 1990, 11, 440.
[6] Gaussian 09, Revision A.1, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.;
Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.;

Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.;

Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
[7] Kaminski, G. A.; Friesner, R. A.; Tirado-Rives, J.; Jorgensen, W. J. J. Phys. Chem. B 2001, 105, 6474.
[8] Kirschner, K.N.; Yongye, A.B.; Tschampel, S.M.; González-Outeiriño, J.; Daniels, C.R.; Foley, B.L.; Woods, R.J. J Comput Chem 2008, 29, 622.
[9] Stortz, C.A.;Johnson, G.P.; French, A.D.; and Csonka, G.I. Carbohydr. Res. 2009, 344, 2217.
[10] Still, W.C.; Galynker, I. Tetrahedron 1981, 37, 3981.
[11] Ponder, J.W.; Richards, F. M. J. Comp. Chem. 1987, 8, 1016.
$[12]$ a) Qiu, D.; Shenkin, P. S.; Hollinger, F. P.; Still, W. C. J. Phys. Chem. A 1997, 101, 3005; b) Still, W. C.; Tempczyk, A. ; Hawley, R. C.; Hendrickson, T. J. Am. Chem. Soc. 1990, 112, 6127; c) Weiser, J.; Shenkin, P. S.; Still, W. C.; J. Comp. Chem. 1999, 20, 688; d) Weiser, J.; Shenkin, P. S.; Still, W. C. J. Comp. Chem. 1999, 20, 586; e) Weiser, J.; Weiser, A. A.; Shenkin, P. S.; Still, W. C. J. Comp. Chem.1998, 19, 797.
[13] Stanca-Kaposta, E. C. ; Gamblin, D. P.; Cocinero E. J.; Frey, J.; Kroemer, R. T.; Fairbanks, A. J.; Davis, B. G. ; Simons, J. P. J. Am. Chem. Soc. 2008, 130, 10691.
[14] Rising, T. W. D. F.; Claridge, T. D. W.; Davies, N.; Gamblin, D. P.; Moir, J. W. B.; Fairbanks, A. J. Carbohydr. Res. 2006, 341, 1574.
[15] Cocinero, E. J.; Stanca-Kaposta, E. C.; Dethlefsen, M.; Liu, B., Gamblin, D. P.; Davis, B. G.; Simons, J. P. Chem. Eur. J. 2009, 15, 13427.
[16] Li, Y. M.; Zhou, Y.; Ma, Y. F.; Li, X. B. Carbohydr. Res. 2011, 346, 1714.
[17] Nagorny, P.; Fasching, B.; Li, X. C.; Chen, G.; Aussedat, B.; Danishefsky, S. J. J. Am. Chem. Soc. 2009, 131, 5792.
[18] Lonn, H. Carbohydr. Res. 1985, 139, 105.
[19] Sarkar, K.; Mukherjee, I.; Roy, N.J. Carbohydr. Chem. 2003, 22, 95.
[20] Witte, M. D. Horst, D.; Wiertz, E. J. H. J.; van der Marel, G. A.; Overkleeft, H. S. J. Org. Chem. 2009, 74, 605.
[21] W. M. Macindoe, W.M.; Nakahara, Y.; Ogawa, T. Carbohydr. Res. 1995, 271, 207.
[22] Houdier, S.; Vottero, P. J. A. Carbohydr. Res. 1993, 248, 377.
[23] Mukhopadhyay, B.; Kartha, K. P. R.; Russell, D. A.; Field, R. A. J. Org. Chem. 2004, 69, 7758.
[24] Soderberg, E.; Westman, J.; Oscarson, S. J. Carbohydr. Chem. 2001, 20, 397.
[25] Li, Z. J.; Li, H.; Cai, M. S. Carbohydr. Res. 1999, 320, 1.
[26] Dais, P.; Shing, T. K. M.; Perlin, A. S. Carbohydr. Res. 1983, 122, 305.
[27] Tsui, D. S.; Gorin, P. A. J. Carbohydr. Res. 1986, 156, 1.
[28] Zhang, Y. M.; Mallet, J. M.. Sinay, P. Carbohydr. Res. 1992, 236, 73.
[29] Beignet, J.; Tiernan, J.; Woo, C. H.; Kariuki, B. M.; Cox, L. R. J. Org. Chem. 2004, 69, 9323.
[30] Ogawa, T.; Sasajima, K. Carbohydr. Res.1981, 93, 53.
[31] Yamazaki, Y.; Sato, S.;Nukada, T.; Ito, Y.; Ogawa, T. Carbohydr. Res.1990, 201, 31 .

NMR Spectra

NAME	Mar30-2010-24		
EXPNO	2		
PROCNO	1		
Date_	20100330		
Time	11.02		
INSTRUM	av400		
PROBHD	5 mm	m QNP 1H/13	
PULPROG	zgpg 30		
TD	32768		
SOLVENT	CDC13		
NS	256		
DS	4		
SWH	26178.010 Hz		
FIDRES	0.798889 Hz		
AQ	0.6259188 sec		
RG	32768		
DW	19.100 usec		
DE	7.50 usec		
TE	300.0 K		
D1	1.00000000 sec		
D11	0.03000000 sec		
TDO	1		
	CHANNEL $\mathrm{f} 1 \mathrm{l}=======$		
NUC1	13 C		
P1	9.50 usec		
PL1	0.00 dB		
SFO1	100.6403931 MHz		
	CHANNEL f2 ========		
CPDPRG2	waltz16		
NUC2	1H		
PCPD2	80.00 usec		
PL2	0.00 dB		
PL12	19.00 dB		
PL13	25.00 dB		
SFO2	400.2016008 MHz		
SI	32768		
SF	100.6303718 MHz		
WDW	EM		
SSB	0		
LB	1.00 Hz		
GB	1.40		
PC			

N N NCOCHEM.OX

NAME	Sep28-2009-10		
EXPNO	3		
PROCNO	1		
Date_	20090928		
Time	12.17		
INSTRUM	av 400		
PROBHD	5 mm	m QNP 1H/13	
PULPROG	zgpg 30		
TD	32768		
SOLVENT	CDC13		
NS	256		
DS			
SWH	26178.010 Hz0.798889 Hz		
FIDRES			
AQ	0.6259188 sec		
RG	32768		
DW	19.100 usec		
DE	7.50 usec		
TE	300.0 K		
D1	1.00000000 sec		
D11	0.03000000 sec		
TD0	1		
	CHANNEL $\mathrm{f} 1 \mathrm{l}=======$		
NUC1	13 C		
P1	9.50 usec		
PL1	0.00 dB		
SFO1	100.6403931 MHz		
=======	CHANNEL f2 ========		
CPDPRG2	waltz16		
NUC2	1H		
PCPD2	80.00 usec		
PL2	0.00 dB		
PL12	19.00 dB		
PL13	$25.00 \mathrm{~dB}$		
SFO2	400.2016008 MHz		
SI	32768		
SF	100.6303718 MHz		
WDW	EM		
SSB	0		
LB	1.00 Hz		
GB	0		
PC	1.40		

NAME		Jan26-2010-1	
EXPNO		2	
PROCNO		1	
Date_		20100126	
Time		8.50	
INSTRUM		av400	
PROBHD	5 mm	mm QNP 1H/13	
PULPROG		zgpg30	
TD		32768	
SOLVENT		CDC13	
NS		256	
DS		4	
SWH		26178.010	Hz
FIDRES		0.798889	Hz
AQ		0.6259188	sec
RG		32768	
DW		19.100	usec
DE		7.50	usec
TE		300.0	K
D1		1.00000000	sec
D11		0.03000000	sec
TD0		1	
	CHAN	ANNEL $\mathrm{f} 1 \mathrm{=}=$	$=$
NUC1		130	
P1		9.50	usec
PL1		0.00	dB
SFO1		100.6403931	MHz
=======	CHAN	ANNEL f2 ==	$==$
CPDPRG2		waltz16	
NUC2		1H	
PCPD2		80.00	usec
PL2		0.00	dB
PL12		19.00	dB
PL13		25.00	dB
SFO2		400.2016008	MHz
SI		32768	
SF		100.6303718	MHz
WDW		EM	
SSB		0	
LB		1.00	Hz
GB		0	
PC		1.40	

Current Data Parameters NAME Feb15-2010-33 EXPNO
PROCNO

Date Acquisition Parameter
Date_ 20100215
Time 17.14
INSTRUM dpx400
PROBHD
PULPROG 5 mm Dual $1 \mathrm{H} / 1$
$\begin{array}{lr}\text { PULPROG } & \text { zg60 } \\ \text { TD } & 32768\end{array}$
$\begin{array}{lr}\text { SOLVENT } & 32768 \\ \text { NS } & \text { CDC13 }\end{array}$
$\begin{array}{lr}\text { DS } & 16 \\ \text { SWH } & 2 \\ \text { FIDRES } & 5592.841 \\ \text { HQ } & 0.170680\end{array}$
FIDRES $\quad 0.170680 \mathrm{~Hz}$
$\begin{array}{lr}\text { AQ } & 2.9295092 \mathrm{sec} \\ \text { RG } & 128\end{array}$
$\begin{array}{lr}\text { RG } & 89.400 \text { usec } \\ \text { DW } & 17.00 \text { usec }\end{array}$
17.00 usec
300.0 K

D1 1.00000000 sec
$========$ CHANNEL $\mathrm{fl}========$
$\begin{array}{lr}\text { NUC1 } & 1 \mathrm{H} \\ \text { P1 } & 7.30 \mathrm{usec}\end{array}$
$\begin{array}{lr}\text { PL1 } & 0.00 \mathrm{~dB}\end{array}$
$\begin{array}{ll}\text { F2 - Processing parameters } \\ \text { SI } & 32768 \\ \text { SF }\end{array}$

SF	400.1300182
WDW	MH

SSB EM
SSB
LB
0.30 Hz
0.60

NAME		Jan25-2010-4	
EXPNO		7	
PROCNO		1	
Date_		20100126	
Time		1.54	
INSTRUM		av400	
PROBHD	5 mm	mm QNP 1H/13	
PULPROG		zgpg 30	
TD		32768	
SOLVENT		CDC13	
NS		256	
DS		4	
SWH		26178.010	Hz
FIDRES		0.798889	Hz
AQ		0.6259188	sec
RG		32768	
DW		19.100	usec
DE		7.50	usec
TE		300.0	K
D1		1.00000000	sec
D11		0.03000000	sec
TD0		1	
		ANNEL $\mathrm{f1}=$	
NUC1		13 C	
P1		9.50	usec
PL1		0.00	
SFO1		100.6403931	MHz
=======		ANNEL $\mathrm{f} 2 \mathrm{=}=$	==
CPDPRG2		waltz16	
NUC2		1H	
PCPD2		80.00	use
PL2		0.00	dB
PL12		19.00	dB
PL13		25.00	dB
SFO2		400.2016008	MHz
SI		32768	
SF		100.6303718	MHz
WDW		EM	
SSB		0	
LB		1.00	Hz
GB		0	
PC		1.40	

$$
\begin{aligned}
& \begin{array}{l}
\text { Current Data } \left.\begin{array}{l}
\text { Paraneters } \\
\text { NANE } \\
\text { EXPND } \\
\text { Jun } 30-2005 \\
10
\end{array}\right)
\end{array} \\
& \begin{array}{l}
\text { EXPNN } \\
\text { PROCNO }
\end{array}
\end{aligned}
$$

12

Current Data	Parameters
NaME	Jun30-2005
EXPNO	13
PROCNO	,
F2-Acquisition Parameters	
Date_	20050701
Time	4.12
instaum	dpx360
PROOHD 5	5 man DUAL 13C
PuLPROG	$29 p 930$
T0	65536
Solvent	COC13
NS	1024
os	4
SNH	22522.523 Hz
FIDRES	0.343666 Hz
${ }_{40}$	1.4549491 sec
fg	11585.2
ow	22.200 usec
DE	6.00 usec
TE	300.0 K
01	2.00000000 sec
${ }^{111}$	0.03000000 sec
012	0.00002000 sec
NuC1	13 C
P_{1}	5.40 usec
PL. 1	-6.00 d6
5 501	90.5646855 NHz
CHANEL $\ddagger 2$	
CPLPAG2	weltz 16
NUC2	$1{ }^{1}$
PCPO2	100.00 usec
PLE	-3.00 88
P. 12	18.00 d8
PL 19	21.00 d8
5502	360: 1314405 NHz
F2-Processing parameters	
51	32768
SF	$90.5547250 \mathrm{NH-2}$
wow	EM
558	0
LB	1.00 Hz
6B	0
PC	1.40
10 NMR plot parameters	
cx	30.00 cm
FIP	215.000 ppa
F1	19469.27 Hz
F2p	-5.000 ppa
F2	$-452.77 \mathrm{~Hz}$
$\stackrel{\text { PPMCM }}{ }$	$7.33333 \mathrm{ppm} / \mathrm{cm}$ $664.06799 \mathrm{~Hz} / \mathrm{cm}$

Current Data Parameters	
NAME	dg32901511
EXPNO	1
PROCNO	1

F2 - Acquisition Parameters
Date_ 20051115
Date_ 20051115
INSTRUM $\quad 15.32$
avc500

$$
\begin{array}{lr}
\text { PROBHD } & 5 \mathrm{~mm} \text { CPDUL } 13 \mathrm{C} \\
\text { PULPROG } & 6530 \\
\text { TD } & 65536
\end{array}
$$

$$
\begin{array}{ll}
\text { TD } & 6553 \\
\text { SOLVENT } & \text { CDC1 }
\end{array}
$$

$$
\begin{array}{lr}
\text { SOLVENT } & \text { CDC13 } \\
\text { NS } & 16 \\
\text { DS } & 2 \mathrm{~Hz} \\
\text { SWH } & 10330.578 \mathrm{~Hz} \\
\text { FIDRES } & 0.157632 \mathrm{~Hz}
\end{array}
$$

$$
\begin{array}{ll}
\text { FIDRES } & 0.157632 \mathrm{~Hz} \\
\text { AQ } & 3.1719923 \mathrm{sec}
\end{array}
$$

48.400 usec
6.00 usec
298.0 K
1.00000000 sec
$======$ CHANNEL \qquad
$\begin{array}{lr}\text { NUC1 } & 1 \mathrm{H} \\ \text { P1 } & 9.60 \mathrm{usec} \\ \text { PL1 } & -6.00 \mathrm{~dB} \\ \text { SFO1 } & 500.3030896 \mathrm{MHz}\end{array}$
$\begin{array}{lr}\text { NUC1 } & 1 \mathrm{H} \\ \text { P1 } & 9.60 \text { use } \\ \text { PL1 } & -6.00 \mathrm{~dB} \\ \text { SFO1 } & 500.3030896 \mathrm{MHz}\end{array}$
SFO1 500.3030896 MHz
F2 - Processing parameters
SI Processing parameter 32768
500.3000240 MHz

EM
0
0.30 Hz

0
1.00

Current Data Parameters
NAME
dg 34560712 EXPNO
PROCNO
F2 - Acquisition Parameter
Date_ 20051208
Time $\quad 20.32$
INSTRUM avc500 PROBHD 5 mm CPDUL 13 C PULPROG $\begin{aligned} & \text { zgpg } \\ & \text { TD } \\ & 65536\end{aligned} ~$ $\begin{array}{ll}\text { SOLVENT } & 65536 \\ \text { NS } & \text { CDCl3 }\end{array}$ DS SWH
FID
RG
RE
RG
DW
$D E$ DE
TE
D1
d11 TDO
\qquad NUC1 P1 PL1
SFO1 8.00 usec $-4.40 \mathrm{dE}$
\qquad
CPDPRG2

$$
\begin{aligned}
& \text { NUC2 } \\
& \text { PCPD }
\end{aligned}
$$

PCPD2

$$
\begin{aligned}
& \text { PI2 } \\
& \text { PTI }
\end{aligned}
$$

PLI2

$$
\begin{aligned}
& \text { PL13 } \\
& \text { SFO2 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { F2 - Processing parameters } \\
& \text { SI }
\end{aligned}
$$

$$
\begin{array}{r}
32768 \\
125.8005438 \mathrm{MHz}
\end{array}
$$

EM
0
1.00 Hz
1.40

NMRеснемох

NRRPCHemox

Current Data NAME	Data Parameters dg38191502
EXPNO	- 2
PROCNO	1
F2 - Acquisition Parameters	
Date_	20060215
Time	8.26
InSTRUM	avc500
PROBHD 5 mm	5 man CPDUL 13C
PULPROG	zgpg30
TD	65536
SOLVENT	CDC13
NS	256
DS	2
SWH	31250.000 Hz
FIDRES	0.476837 Hz
AQ	1.0486259 sec
RG	1150
DW	16.000 usec
DE	20.00 usec
TE	298.0 K
D1	2.00000000 sec
d11	0.03000000 sec
DELTA	1.89999998 sec
TDO	1
P1	8.00 usec
PL1	$-4.40 \mathrm{~dB}$
SFO1	125.8131151 MHz
CPDPRG2 waltzl6	
NUC2	1H
PCPD2	80.00 usec
PL2	$-6.00 \mathrm{~dB}$
PL12	12.40 dB
PL13	17.00 dB
SEO2	500.3020012 MHz
F2 - Processing parameters	
SI	32768
SF	125.8005438 MHz
WDW	EM
SSB	0
LB	1.00 Hz
GB	0
PC	1.40

NMRechem.ох

NRRenerwox

NWR@CHEMO:

NAME	Jan08-2010-21		
EXPNO		- 2	
PROCNO		1	
Date_		20100109	
Time		5.35	
INSTRUM		av400	
PROBHD	5 mm	(QNP 1H/13	
PULPROG		zgpg30	
TD		32768	
SOLVENT		CDC13	
NS		256	
DS		4	
SWH		26178.010	Hz
FIDRES		0.798889	Hz
AQ		0.6259188	sec
RG		32768	
DW		19.100	usec
DE		7.50	usec
TE		300.0	K
D1		1.00000000	sec
D11		0.03000000	sec
TD0		1	
=======	CHANNEL f1		
NUC1		13 C	
P1		9.50	usec
PL1		0.00	dB
SFO1		100.6403931	MHz
	CHANNEL $\mathrm{f} 2 \mathrm{=======}$		
CPDPRG2	waltz16		
NUC2	1H		
PCPD2	80.00 usec		
PL2	0.00 dB		
PL12	19.00 dB		
PL13	25.00 dB		
SFO2	400.2016008 MHz		
SI			
SF		100.6303718	MHz
WDW	EM		
SSB	0		
LB	1.00 Hz		
GB		0	
PC	1.40		

NAME	Feb10-2010-36		
EXPNO	2		
PROCNO	1		
Date_	20100210		
Time			
INSTRUM	av 400		
PROBHD	5 mm	m QNP 1H/13	
PULPROG	zgpg 30		
TD	32768		
SOLVENT	CDC13		
NS	256		
DS	4		
SWH	26178.010 Hz		
FIDRES	0.798889 Hz		
AQ	0.6259188 sec		
RG	32768		
DW	19.100 usec		
DE	7.50 usec		
TE	300.0		
D1	1.00000000 sec		
D11	0.03000000 sec		
TD0	1		
	CHAN	NNEL $\mathrm{f} 1 \mathrm{=}==$	$===$
NUC1	Channel 13 C		
P1	9.50 usec		
PL1	0.00 dB		
SFO1	100.6403931 MHz		
	CHANNEL $\mathrm{f} 2===$		
CPDPRG2	waltz16		
NUC2	1H		
PCPD2	80.00 usec		
PL2	0.00 dB		
PL12	19.00 dB		
PL13	25.00 dB		
SFO2	400.2016008 MHz		
SI	32768		
SF	100.6303718 MHz		
WDW	EM		
SSB	0		
LB	1.00 Hz		
GB	0		
PC	1.40		

Current Data Parameters NAME Feb25-2009-20 EXPNO PROCNO
F2 - Acquisition Parameters
Date_ 20090225
INSTRUM dpx400
5 mm Dual $1 \mathrm{H} / 1$
PURBRD 5 mm Dual $1 \mathrm{H} / 1$
PULPROG $\begin{aligned} & \text { zg60 } \\ & \text { TD } \\ & 32768\end{aligned}$
$\begin{array}{ll}\text { TD } & 32768 \\ \text { SOLVENT } & \text { CDC13 }\end{array}$

NS	CDCl 13
NS	16

$\begin{array}{lr}\text { DS } & 2 \\ \text { SWH } & 5592.841 \mathrm{~Hz}\end{array}$
FIDRES $\quad 0.170680 \mathrm{~Hz}$
AQ 2.9295092 sec
$\begin{array}{lr}\text { RQ } & 2.9295092 \\ \text { RG } & 80.6 \\ \text { DW } & 89.400\end{array}$
89.400 usec
17.00 usec
300.0 K
1.00000000 sec
$\begin{array}{lr}========\text { CHANNEL } \mathrm{fI}======= \\ \text { NUC1 } & 1 \mathrm{H} \\ \text { P1 } & 7.30 \mathrm{usec} \\ \text { PL1 } & 0.00 \mathrm{~dB} \\ \text { SFO1 } & 400.1320007 \mathrm{MHz}\end{array}$
F2 - Processing parameters
SI Processing 32768
$\begin{array}{ll}\text { SF } & 400.1300182 \mathrm{MHz} \\ \text { NDW } & 32768\end{array}$
WDW EM
0.30 Hz

0
0.60

| N N N COCHEM.OX

NAME	Mar30-2010-23	
EXPNO		
PROCNO	1	
Date_	20100330	
Time	10.37	
INSTRUM	av 400	
PROBHD	5 mm QNP 1H/13	
PULPROG	zgpg 30	
TD	32768	
SOLVENT	CDC13	
NS	256	
DS	4	
SWH	26178.010	Hz
FIDRES	0.798889	Hz
AQ	0.6259188	sec
RG	32768	
DW	19.100	usec
DE	7.50	usec
TE	300.0	K
D1	1.00000000	sec
D11	0.03000000	sec
TD0	1	
========	CHANNEL $\mathrm{f} 1===$	
NUC1	$13 \mathrm{C}$	
P1	9.50	usec
PL1	0.00	dB
SFO1	100.6403931	MHz
	CHANNEL $f 2===$	
CPDPRG2	waltz16	
NUC2	1H	
PCPD2	80.00	usec
PL2	0.00	dB
PL12	19.00	dB
PL13	25.00	dB
SFO2	400.2016008	MHz
SI	32768	
SF	100.6303718	MHz
WDW	EM	
SSB	0	
LB	1.00	Hz
GB	0	
PC	1.40	

1	220	200	180	160	140	120	100	80	60	40	20

N|HRCCHEm.ox

NAME		cb97160807	
EXPNO		1	
PROCNO		1	
Date_		20100708	
Time		19.07	
INSTRUM		avc500	
PROBHD	5 mm	mm CPDUL 13C	
PULPROG		zg30	
TD		65536	
SOLVENT		CDC13	
NS		16	
DS		2	
SWH		10330.578	Hz
FIDRES		0.157632	Hz
AQ		3.1719923	sec
RG		4	
DW		48.400	usec
DE		6.00	usec
TE		298.0	K
D1		1.00000000	sec
TD0		1	
=======	CHANN	ANNEL $\mathrm{fl}====$	====
NUC1		1H	
P1		9.60	usec
PL1		-6.00	dB
PL1W		15.19999981	W
SFO1		500.3030896	MHz
SI		32768	
SF		500.3000240	MHz
WDW		EM	
SSB		0	
LB		0.30	Hz
GB		0	
PC		1.00	

neme

NWROCHEMOO

[^0]: ${ }^{1}$ The OPLS2005 force field possessed the fewest low quality stretch, bend and torsional parameters.

