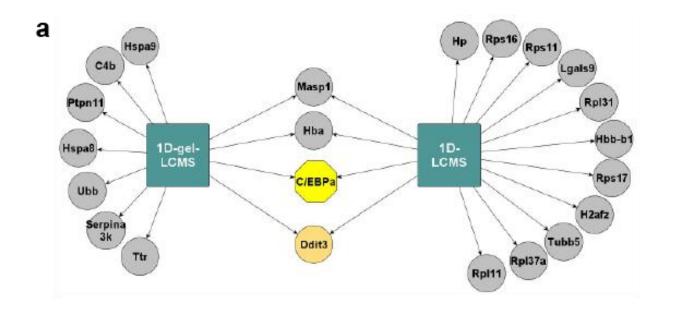
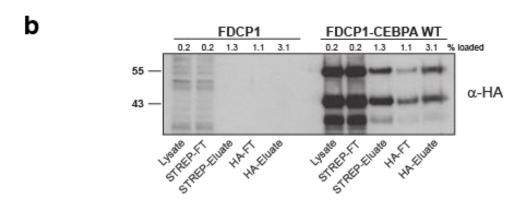
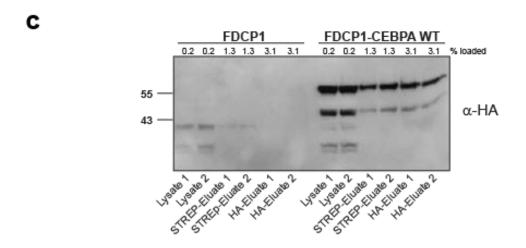
Supporting Information

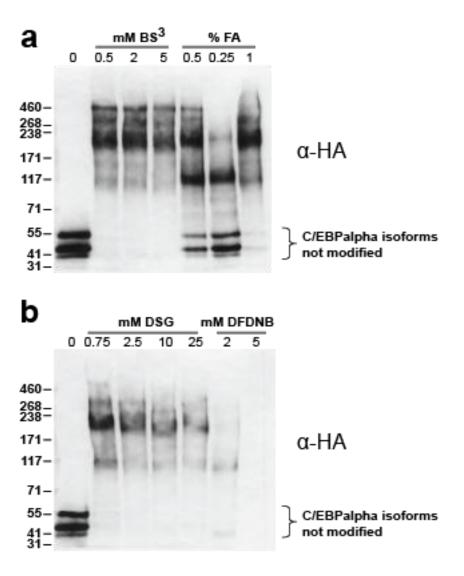
Immunoblot

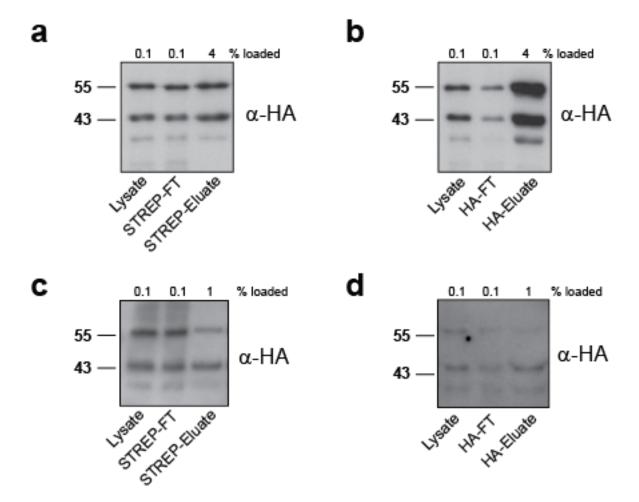

Proteins were separated on 10% SDS gels and transferred to nitrocellulose membranes. After 30 min incubation in blocking solution (5% milk-PBS-TWEEN 0.1%), membranes were incubated overnight with anti-HA-HRP conjugated (clone HA-7, Sigma) dissolved in fresh blocking solution. Membranes were washed 3× in PBS-TWEEN 0.1% and developed using ECL Western Blotting detection reagent (GE-Healthcare, Little Chalfont, UK).


In vitro protein cross-linking


Tagged C/EBPalpha was purified using StrepTactin sepharose beads (IBA) and eluted with biotin as described in the material and methods section for the one-step affinity purification. Three percent of the eluted material was cross-linked with reagents of different solubility and spacer arm distance to reveal the formation of higher molecular mass complexes of C/EBPalpha. Increasing amounts of BS³ (bis[sulfosuccinimidyl] suberate, water soluble, 11.4Å, Thermo Fisher Scientific Inc., Waltham, MA, USA); FA (formaldehyde, water soluble, 0Å, Sigma-Aldrich); DSG (disuccinimidyl glutarate, water insoluble, 7.7Å, Thermo Fisher Scientific Inc.) and DFDNB (1,5-difluoro-2,4-dinitrobenzene, water insoluble, 3Å, Thermo Fisher Scientific Inc.) were assessed. The samples were then separated on a NuPAGE 3-8% Tris-acetate gel (Invitrogen) and C/EBPalpha was detected by anti HA-immunoblotting.

Strategy	Elution	Background proteins	Sensitivity	Resolution	Throughput
STREP-1D-gel-LCMS	biotin	ribosomal proteins	high	high	Low
STREP-1D-LCMS	biotin	carboxylase proteins	moderate	low	High
STREP-2D-LCMS	biotin	carboxylase proteins	high	high	moderate
HA-1D-gel-LCMS	SDS buffer	keratin proteins	high	moderate	Low
HA-1D-LCMS	formic acid	keratin proteins	low	low	High
HA-2D-LCMS	formic acid	Golgi-associated proteins	high	high	moderate


Table S1. Comparison of the six different affinity purification strategies described in the study. Advantages and disadvantages of each strategy are as indicated.



Supplementary Figure 1. 2-step STREP-HA purifications of C/EBPalpha analysed by 1D-gel- and 1D-gel-free LCMS analyses. a, Network of the proteins identified by both AP-MS strategies, after filtering the negative controls. C/EBPalpha is coloured in yellow. Ddit3, the single interactor previously described in the literature is indicated in orange. b, Anti-HA-immunoblot of STREP-HA purifications eluted with SDS buffer from control FDCP-1 and C/EBPalpha-STREP-HA-expressing FDCP-1 cells. c, Anti-HA-immunoblot of STREP-HA purifications eluted with formic acid from control FDCP-1 and C/EBPalpha-STREP-HA-expressing FDCP-1 cells. The samples of both biological replicates were analysed to compare technical reproducibility (number 1 and 2).

Supplementary Figure 2. STREP-purified C/EBPalpha cross-linked with different reagents. a, BS³ and FA; b, DSG and DFDNB. Anti HA-immunoblot analyses were performed to detect C/EBPalpha.

Supplementary Figure 3. Anti-HA immunoblots of 1-step STREP- and HA- purifications of C/EBPalpha from C/EBPalpha-STREP-HA-expressing FDCP-1 cells. a,b, for analysis by 1D-gel-LCMS. c,d, for analysis by 1D-LCMS.