Supporting Information

Interfacial Bond Breaking Electron Transfer in Mixed Water-Ethylene

Glycol Solutions: Reorganization Energy and Interplay between Different

Solvent Modes

Oksana Ismailova,[†] Alexander S. Berezin,[‡] Michael Probst^{§,*}, and Renat R. Nazmutdinov^{‡,*}

[†]Institute of Ion-Plasma and Laser Technology, Academy of Sciences of Uzbekistan, 100125 Tashkent, Uzbekistan [‡]Kazan National Research Technological University, 420015 Kazan, Republic of Tatarstan, Russian Federation [§]Institute of Ion Physics and Applied Physics, University of Innsbruck, 6020 Innsbruck, Austria

Section A1

Table 1S. Partial charges and van der Waals potential parameters used in the MD simulations.

Atom	$S_2O_8^{2-}$	$S_2O_8^{3-}$	<i>σ</i> , Å	ε , kJ mol ⁻¹
S	1.4458	1.5439	0.355	1.050
0	-0.7245	-0.8756	0.300	0.714
O *	-0.2722	-0.4169	0.300	0.714

^{*}The oxygen atom of the peroxide group.

Figure 1S. (a) Probability to reach a certain interval of the energy of Coulomb interaction of the reactant (*i*) and product (*f*) with solvent molecules (ΔE) calculated with the help of MD simulations performed for x(EG) = 0.5; (b) The reaction free energy surface $G_{i(f)}$ as function of ΔE calculated using eq.(15). Dashed lines refer to a parabolic fit.

Section A3

Dealing with the Sumi-Marcus model⁸ (i.e. with the Agmond-Hopfield formalism) we have to solve the equation:

$$\frac{\partial P(q,\tau)}{\partial \tau} = \hat{L} P(q,\tau), \qquad (1a)$$

where τ is time, q is a solvent coordinate and $P(q, \tau)$ is the probability density to find a reactant in initial state.

In eq.1a \hat{L} is the Smoluchowski operator supplemented by a sink term:

$$\hat{L}P(q,\tau) = D\left\{\frac{\partial^2}{\partial q^2} + \frac{1}{k_B T}\frac{dU(q)}{dq}\frac{\partial}{\partial q}\right\}P(q,\tau) - k_{in}(q)P(q,\tau), \qquad (2a)$$

where *D* refers to the coefficient of diffusion along *q*, $D = \frac{k_B T}{2\lambda_s \tau_L}$; λ_s is the solvent reorganization

energy (a value of 17.8 kcal mol⁻¹ was taken for λ_s); τ_L is the solvent relaxation time.

U(q) in eq.2a is a section of the reaction free energy surface (FES):

$$E_i(q,r) = \lambda_s q^2 + U_i^*(r) ,$$

and

$$E_f(q, r) = \lambda_s (q-1)^2 + U_f^*(r) - e_0 \eta$$
,

where intramolecular potentials $U_{i(f)}^{*}(r)$ are the same as in eqs. (6, 7) and η is electrode overvoltage.

(3a)

The sink term in eq.2a, $k_{in}(q)$, is written as follows:

$$k_{in} = v_{in} \exp\left\{-\Delta E_a^*(q) / k_B T\right\},\tag{4a}$$

where v_{in} is an effective nuclear frequency factor.

The energy barrier along the intra-molecular degree of freedom, ΔE_a^* , depends on the solvent coordinate *q* and is defined in the form

$$\Delta E_a^*(q) = U(q, q_{saddle}^*(q)) - U(q, r = r_0),$$
(5a)

where $q_{saddle}^*(q)$ notes the saddle line on the three-dimensional free energy surface E(q, r); $q_{saddle}^*(q)$ is defined by a transcendent equation; r_0 refers to the minimum of $U_i^*(r)$.

Two different time scales characterizing different averaged survival times of the product in initial state can be considered (see relevant discussion in ref 7).

$$\tau_a = \int_0^\infty d\tau \int_{q_L}^{q_R} P(q,\tau) dq d\tau,$$
(6a)

and

$$\tau_b = \frac{1}{\tau_a} \int_0^\infty \tau d\tau \int_{q_L}^{q_R} P(q,\tau) dq d\tau, \qquad (7a)$$

where $q_{\rm L}$ and $q_{\rm R}$ are assumed q values at the left and right boundaries, respectively.

Some details of an original computational scheme developed to solve eq.1a can be found in ref (Nazmutdinov, R.R.; Bronshtein, M.D.; Glukhov, D.V.; Zinkicheva, T.T. Modeling of Solvent Viscosity Effects on the Electroreduction of Pt(II) Aquachlorocomplexes. *J. Solid State Electrochem.* 2008, 12, 445-451). Then the ET rate constant (k) can be defined in two different ways, as $1/\tau_a$ and $1/\tau_b$ (in our case k_a and k_b are nearly equal. The results of calculations are shown in Fig.2S. Note that the relaxation time τ_L is directly proportional to the solvent viscosity.

Figure 2S. Rate constant of the first electron transfer at the electroreduction of $S_2O_8^{2-}(k)$ calculated using the Sumi-Marcus model as a function of the solvent relaxation time (τ_L) at different electrode overvoltages.

Section A4

(24) Case, D.A.; Darden, T.A.; Cheatham III, T.E.; Simmerling, C.L.; Wang, J.; Duke, R.E.;
Luo, R.; Walker, R.C.; Zhang, W.; Merz, K.M.; Roberts, B.; Hayik, S.; Roitberg, A.; Seabra, G.;
Swails, J.; Goetz, A.W.; Kolossváry, I.; Wong, K.F.; Paesani, F.; Vanicek, J.; Wolf, R.M.; Liu, J.;
Wu, X.; Brozell, S.R.; Steinbrecher, T.; Gohlke, H.; Cai, Q.; Ye, X.; Wang, J.; Hsieh, M.-J. Cui,
G.; Roe, D.R.; Mathews, D.H.; Seetin, M.G.; Salomon-Ferrer, R.; Sagui, C.; Babin, V.; Luchko, T.;
Gusarov, S.; Kovalenko, A.; Kollman, P.A. 2012, AMBER 12, University of California, San
Francisco.

(50) Gaussian 09, Revision A.1, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.