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Ice Surface Models

Figure 1 of the main article depicts the finite slab model used in the calculations. The slab has a

vanishing dipole moment to the direction of the slab normal due to water molecule orientations that

balance the net dipole moment. The surface dangling hydrogen bond arrangement corresponds to

an order parameter1 of 2, i.e., to a situation where the neighboring dangling bonds are far apart.

This arrangement is known to be energetically favorable.1,2 During geometry optimizations and

molecular dynamics runs, movements of atoms were not constrained. Considering the topmost

layer only, a single molecule adsorbed on this model slab corresponds to the coverage of ≈ 0.08
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ML. Using the definition of ML from Ref [3], namely, 4.6×1014 molecules/cm2, a single adsorbed

molecule in our model system corresponds to ≈ 0.1 ML.

Laboratory studies of ice grown on metal substrates indicate that, at low temperatures, the ice

basal surface is full-bilayer terminated, while the topmost layer might be reconstructed and/or dec-

orated (see Ref [4] and references therein). When increasing temperatures (180 - 260 K), surface

premelting and the so-called quasi-liquid layer (QLL) steps in4–7 making the surface gradually

more liquid-like, starting from the topmost layers. In the present work, we are interested in tem-

perature regimes T≤200 K and also, from a fundamental point of view, in ice-like structures:

crystalline surface structures similar to ours have earlier been used8–11 to study ice surfaces.

Recently it has been realized that both the adsorption energies of water molecules11 and defect

formation energies10 vary enormously on a crystalline ice surface. The adsorption energy can

obtain, depending on the overall arrangement of the dangling OH bonds and the order parameter,

values between ∼ 10 - 21 kcal/mol, [9,11] the high values corresponding to highly proton-ordered

ice surfaces, while defect formations energies can vary between ∼ 5 - 21 kcal/mol. [10] This

spread in adsorption and defect formation energies stems from the dipole-moment distribution of

individual water monomers on an ice surface, which can be scattered.10 Especially, the small defect

formation energies and a defect “cascading” effect10 contribute to surface roughness together with

the monomer adsorption energies that can compete with surface energies.9,11

Some key energetics of the slab model, defect formation and adsorption energies are tabulated

in Table S1. The water monomer adsorption energy into the “A2” site9,11,12 is, in the present case,

≈30% larger than in earlier DFT calculations. We attribute this to the dispersion correction that

has been included in our calculations. Same is true for the defect formation energies.

The stability of the slab model was tested by a 20 ps (picosecond) AIMD run at T=200 K and

during this time the hexagonal structure was perfectly maintained. No water molecule rotations

leading to different hydrogen bonding patterns than those of the original system took place.

Defect structures based on the slab model were constructed, as depicted in Figure 1 of the

main article and in Figure S2: (AAD) or (ADD) species were removed from the topmost layer
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and a local geometry optimization was performed, resulting in defects “LD1” and “LD2”. In LD1

a hydrogen bond between molecules (1) and (3) is formed while in LD2, a weak hydrogen bond

(as suggested by the O-H-O angle of ∼ 151◦) appears between molecules (2) and (4). “Annealed”

defects (D1 and D2) were constructed by performing a few ps AIMD at T=200 K for LD1 and LD2.

As suggested by Figure S2, LD1 does not reconstruct during the AIMD, while LD2 reconstructs

slightly.

Table S1: Sublimation energy (Esub) of the ice surface model (see Figure 1 of the main article), defect
formation energies (Ede f ) for various defect structures (see Figure S2) and adsorption energies (Eads) for
nitric acid adsorption. Section “Optimization” gives values obtained from local geometry optimization:
H+NO−

3 refers to spontaneous, while HNO3 refers to non-dissociative adsorption. “MD” refers to molecular
dynamics run: Eads is obtained by performing a local relaxation at the end of the simulation (length of the
simulation is indicated in parenthesis). “Meta-MD” refers to metadynamics and (Eact) to activation energy.
Positive (negative) values indicate endothermic (exothermic) process. Our results are compared to earlier
computational and experimental data in the rightmost part of the table. 1 kcal/mol = 4.184 kJ/mol.

Optimization kcal/mol Ref. kcal/mol
P Esub 15.04
LD1 Ede f 22.83 [10], Figure 2 Ede f 4.6-20.8
LD2 Ede f 25.27
D2 Ede f 22.57

PH2O (A2-site) Eads -17.91 [11] (DFT) Eads -13.44
[9] (DFT) -12.73
[12] (TIP4P) -15.68

PHNO3 -22.54

LD
H+NO−

3
1 -24.03

LDHNO3
2 -24.46

DHNO3
2 -19.89

MD, T=200K

LD
H+NO−

3
2 Eads (7.7 ps) -32.15

D
H+NO−

3
2 Eads (4.7 ps) -27.92

Meta-MD, T=200K

PH+NO−
3 Eact 4.62

Reaction energies kcal/mol

Eads(LD
H+NO−

3
2 )+Ede f (LD2) ∆E -6.88 [13] (experimental) ∆H -12.91±0.62

[14] (experimental) -7.24±1.43

Eads(LD
H+NO−

3
2 )-Eads(LDHNO3

2 ) -7.69 [15], Table 8 (T=210 K) ∆G 2.31-5.17
[15], Table 8 (T=210 K) ∆H 1.64-4.30

Computational Methods

The CP2K/Quickstep program package16 with Density-functional theory (DFT), PBE general-

ized gradient (GGA) exchange- and correlation functional17 (XCF) including Grimme’s “D3” dis-

persion corrections18 was used. The Molopt basis-set19 was employed together with Goedecker-
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Teter-Hutter20 pseudopotentials. The surface slab model was decoupled from its periodic images

using the Martyna-Tuckermann scheme,21 with sufficient vacuum between the slab images. In

all cases, if not otherwise stated, hydrogen was substituted with deuterium as this stabilizes the

simulation and entitled us to use a larger timestep in time-integration, which we chose to be 0.75

fs (femtoseconds). All AIMD runs were performed in the NVT ensemble with the Nose-Hoover

thermostat. In metadynamic22 runs, scaling coefficient and the height of the Gaussians were 0.15

and 1.4×10−4 Hartree (1 Hartree = 2625.4996 kJ/mol), respectively. Gaussians were added at

every 40 timesteps.

We have used the PBE XCF, which is known to give excellent results for ice.23 In the context

of DFT and proton transfer reactions, GGAs (typically BLYP) have been widely used.24–26 On the

other hand, it is recognized that all GGA XCFs underestimate the proton-transfer barrier27–30 due

to the self-interaction error. In detail, the barrier for proton transfer between two water molecules,

as a function of their oxygen-oxygen distance dO−O, falls to zero as dO−O is reduced. The DFT

method exaggerates this tendency, i.e., the barrier falls faster than with MP2 or coupled-cluster

calculations, which may result in exaggerated rates for proton transfer reactions in AIMD simu-

lations. Picosecond AIMD of (semi-)infinite systems with hybrid XC functionals is, in principle,

possible31 while computationally intensive and for this reason not considered in this work.

In Figure S1, the clusters and molecules that were calculated with two computational schemes,

namely (1): PBE/Molopt scheme with dispersion corrections (DFT+D) and (2): Møller-Plesset

second order perturbation theory32 (MP2) as implemented in the TurboMole program.33 Basis set

used was def2-TZVPD.34,35 Our MP2 results can be compared (for HNO3 and MX), for example,

to the B3LYP results of Ref [36]. Agreement in bond lengths is within ∼15 mÅ.

Bader occupational charges37,38 for the test systems have been tabulated in Table S3, revealing

a slightly higher electron population of protons in the DFT+D case. Sublimation energies for

clusters M1 and MX using MP2 are -10.16 and -34.52 kcal/mol, while with DFT+D they are -

10.97 and -38.55 kcal/mol, respectively. The DFT+D / Molopt then slightly overbinds (≈ 0.7

kcal/mol per molecule) when compared to MP2 / def2-TZVPD.
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Table S2: Bond lengths in Å as calculated with DFT+D and MP2 for nitric acid, nitrate ion and small clusters (MX, M1). See Figure
S1.

N(1)-O(1) N(1)-O(2) N(1)-O(3) O(1)-H(1) H(1)-O(4) O(2)-H(3) O(4)-H(2) O(4)-H(3) O(4)-H(6) O(3)-H(4) O(3)-H(5)

HNO3 (DFT+D) 1.45 1.23 1.21 0.98
(MP2) 1.40 1.21 1.20 0.98
% err 3.21 1.16 0.92 0.82

NO−
3 1.28 1.28 1.28

1.26 1.26 1.26
1.59 1.51 1.51

M1 1.40 1.24 1.22 1.02 1.69 2.18 0.97 0.98
1.37 1.22 1.20 1.00 1.70 2.41 0.97 0.97
2.41 1.64 1.00 1.80 -0.65 -9.71 0.83 1.24

MX 1.37 1.24 1.23 1.06 1.51 1.94 2.17 2.20
1.35 1.22 1.21 1.02 1.56 2.16 2.20 2.23
1.56 1.72 1.24 3.13 -3.32 -10.12 -1.50 -1.21
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Table S3: Bader occupational charges37,38 from DFT+D and MP2 calculations in units of e−. See Figure S1.

N(1) O(1) O(2) O(3) O(4) H(1) H(2) H(3) H(4) H(5) H(6)

HNO3 (DFT+D) 4.13 6.68 6.42 6.39 0.38
(MP2) 4.07 6.72 6.43 6.41 0.36
% err 1.47 -0.60 -0.16 -0.31 5.56

NO−
3 4.20 6.60 6.60 6.60

4.02 6.61 6.70 6.66
4.48 -0.15 -1.49 -0.90

M1 4.17 6.66 6.46 6.38 7.59 0.38 0.38 0.35
4.04 6.72 6.48 6.46 7.26 0.33 0.34 0.32
3.22 -0.89 -0.31 -1.24 4.55 15.15 11.76 9.38

MX 4.21 6.65 6.48 6.38 7.22 0.36 0.30 0.42 0.38
3.97 6.75 6.49 6.46 6.75 0.30 0.30 0.35 0.35
6.05 -1.48 -0.15 -1.24 6.96 20.0 1.56 20.0 8.57

S6

50
51
52
53
54
55
56
57
58
59
60



3

3

−

N(1)

O(1)
O(3)

O(2)

N(1)

O(1)

O(3)

O(2)

H(1)

H(1)

O(4)

H(2)

H(3)

N(1)

O(1)

O(2)

O(3)

O(1)

H(1)

O(4)

N(1)

O(2)

O(3)

H(5)

H(4)H(3)

M1

MXNO

HNO

Figure S1: Molecules (nitric acid, nitrate) and small clusters (MX, M1) for test calculations (see
Table S2 and Table S3).

Complementary Results

The main article describes in detail nitric acid ionization as it was adsorbed on defects LD1 and

LD2 of Figure S2. Some AIMD snapshots from adsorption to annealed defect D2 are depicted in

Figure S3 and details are similar to the LD2 case (see Figures 3-5 of the main article). However,

in Figure S3 a stable CIP (contact ion pair) is formed before the collective proton jump and SSIP

(solvent separater ion pair) formation.

Additionally, two cases where nitric acid was placed slightly ”off-site“ from the defect were

studied. Figure S4 shows snapshots from one of them, in which the nitric acid proton was placed

near molecule (M): during AIMD, nitric acid’s only hydrogen bond that was persistent throughout

the simulation, was the one between acid’s proton and (M), while sporadic proton rattling events

took place at this hydrogen bond. The defect then moved to the immediate vicinity of nitric acid,

facilitating the ”presolvation“ of molecule (M) after 1.47 ps. The CIP did not occur, however,

until 7.6 ps when the nitrate ion became solvated. In the final frame, a proton rattling event to the

surface SSIP Eigen species takes place. The instantaneous CIP and SSIP events were correlated to

situations where nitrate ion becomes temporarily solvated by four hydrogen bonds, however, nei-
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ther a stable CIP or SSIP were formed during a 18 ps simulation as the nitrate ion has difficulties in

finding a stable solvation structure (the hydrogen bond marked with an arrow was only temporarily

available for the nitrate ion).

In yet another test case, nitric acid was placed in such a position that its proton formed a

hydrogen bond with molecule (f) in Figure S4, i.e. even further from the defect site. In this

case, the defect and nitric acid stayed separate during a 18 ps AIMD. No presolvation of (f) took

place, while the binding state of nitric acid was again ”sloppy“; the only hydrogen bond that was

persistent during the whole simulation, was the one between the acid’s proton and (f).

The following conclusions from results presented in the main article and this Supporting Infor-

mation can be drawn: (a) while a CIP and SSIP may form easily at defect sites, the rate limiting

steps for ionization are the migration of defects and nitric acid itself. The defect and acid must

find each other and furthermore, position accordingly in order to form a SSIP and (b) the persistent

bond between the nitric acid proton and the surface molecule can lead, in picosecond timescales,

to the ”presolvation“ of the molecule at the immediate vicinity of a defect. An atmospheric and

”rough“ ice surface has a high density of defects, admolecules and kinks that should facilitate these

processes.

Once the SSIP formation is initiated, it’s mechanism can be different to aqueous systems, as

suggested by Figures 4 and 5 of the main article: a collective proton jump over two hydrogen

bonds is observed, resulting directly in a SSIP and a proton residing in a surface Eigen site.

The SSIP formation on the pristine surface was studied using metadynamics. Details are given

in Figure S5, where the free-energy is plotted as function of the first collective variable (first O-H

bond length), for several values of the second collective variable (second O-H bond length). We

associate most of the 4.62 kcal/mol reaction barrier to the fact that the acid is forcefully ionized,

while the nitrate ion is not completely solvated (four hydrogen bonds are needed for complete

solvation). On the other hand, the intermediate state where three protons jump simultaneously (J)

is energetically close (≤ 0.2 kcal/mol) to the final, solvent separated state. A collective proton

jump involving three hydrogen bonds then seems likely, if the nitrate ion could be solvated by the
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aid of, say, an admolecule or a kink site in an otherwise crystalline basal plane.
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Figure S2: Snapshots of local structures of defects LD1 (top row) and LD2 (lowermost row) at
T=200 K during ≈ 9 ps AIMD. Final geometries were stable during several picoseconds and they
constitute the “annealed” defects LD1 and D2.
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