## Supporting Information

# Selective Formation of Adjacent Stereocenters by Allylboration of Ketones under Mild Neutral Conditions 

Rauful Alam, ${ }^{\text {a }}$ Mihai Raducan, ${ }^{\text {a }}$ Lars Eriksson ${ }^{\text {b }}$ and Kálmán J. Szabó *a<br>${ }^{\text {a }}$ Department of Organic Chemistry, ${ }^{\text {b }}$ Department of Inorganic and Structural Chemistry, SE-106 91 Stockholm, Sweden.<br>E-mail: kalman@organ.su.se. Fax: +46-8-15 4908

## Contents:

General Information S2
Experimental Procedure and Spectral Data for 3a-m S2-S8
General Procedure for the One-pot Allylation of $\alpha$-ketoacids S8
Experimental Procedure and Spectral Data for $\mathbf{3 m} \mathbf{- q} \quad$ S8-S11
Chemical Transformations for Compound Characterization S11-S13
References S14
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra $\quad$ S15-S50

## General Information

The solvents used in this study (dry degassed THF, MeOH, DMSO) and activated molecular sieves were stored in an Ar-filled glove box. THF was purified by passing through activated alumina in a solvent purification system. MeOH (anhydrous) was sparged with Ar and stored over molecular sieves $(3 \AA$ ) for several days before use. Anhydrous DMSO- $d_{6}$ was purchased from commercial source and stored over molecular sieves inside the Ar glovebox. Molecular sieves $3 \AA$ and $4 \AA$ (pellets) were activated by several microwave heating/vacuum/Ar cycles. Allylboronic acids were synthesized according to previously described literature. ${ }^{1}$ All other chemicals were obtained from commercial sources and used as received. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in $\mathrm{CDCl}_{3}$ (internal standard: $7.26 \mathrm{ppm},{ }^{1} \mathrm{H} ; 77.16 \mathrm{ppm},{ }^{13} \mathrm{C}$ ) using 400 MHz and 500 MHz spectrometers. High resolution mass data (HRMS) were obtained using ESI technique. For column chromatography, silica gel (35-70 microns) was used.

## Experimental Procedures and Spectral Data (4a-m)

## General Procedures for the Addition of Allylboronic Acids to Ketones

A. Solid Ketones: The ketone $\mathbf{2}(0.30 \mathrm{mmol})$ was weighed under air in a small vial then transferred to the glove box where it was dissolved in THF ( 0.6 mL ). The allyl boronic acid 1 ( 0.39 mmol ) was added to the stirred solution; a clear solution was obtained. Then, the vial was sealed with Teflon-lined cap and removed from the glove-box. The reaction mixture was allowed to stir at room temperature for allotted time (Table 1). After completion of the reaction, water ( 1 mL ) was added to the reaction mixture and stirred vigorously for 5-10 min (except compounds $\mathbf{3 g}$ and $\mathbf{3 m}$ ). Then, the reaction mixture was extracted with MTBE (methyl tert-butyl ether) (1 $\mathrm{mL} x 4)$ and dried over anhydrous $\mathrm{MgSO}_{4}$. The solvent was evaporated under vacuum and the crude product was purified by silica gel chromatography or recrystallization.
B. Liquid Ketones: In the glovebox, boronic acid $\mathbf{1}(0.39 \mathrm{mmol})$ was weighed in a small vial and dissolved in THF ( 0.6 mL ); the vial was then sealed Teflon-lined cap and removed from the glove-box. The corresponding ketone ( 0.30 mmol ) was added to the stirred solution via a Hamilton syringe; a clear solution was obtained. The reaction mixture was stired at room temperature (except 3i) for the allotted time (Table 1). The desired product $\mathbf{3}$ was subsequently purified as describe below.


1-Bromo-2,3-diphenylpent-4-en-2-ol (3a). The compound was prepared according to above general procedure-A. Product 3a was isolated in $97 \%$ yield ( 93.0 mg ) as colorless solid using ether:pentane (1:10) as eluent for silica gel chromatography. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ): $\delta 7.37-7.24(\mathrm{~m}, 8 \mathrm{H}), 7.16-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.10(\mathrm{ddd}, J=18.0,9.3,7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.03$ (ddd, $J=10.2,1.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{ddd}, J=17.0,1.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90$ (d, $J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~d}, J=$ $0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$ ) ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 142.4,139.3,137.0,129.8,128.4$, 128.1, 127.6, 127.3, 126.2, 118.1, 77.6, 59.8, 44.8; HRMS (pos. ESI) m/z: Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrONa}[\mathrm{M}+\mathrm{Na}]^{+}$339.0355. Found, 339.0352.


## N-(4-(1-Chloro-2-hydroxy-3-phenylpent-4-en-2-yl)phenyl)

 acetamide (3b). The compound was prepared according to above general procedure-A. After evaporation of the solvent (MTBE) the compound was washed with pentane three times and dried under vacuum which yielded $96 \%(95.0 \mathrm{mg})$ as white solid. Since impurities was not observed according to the NMR spectra, compound $\mathbf{3 b}$ was not purified by chromatography. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.49$ (d, $J=8.6 \mathrm{~Hz}$, 2 H ), 7.27-7.24 (m, 5H), 7.21 (br s, 1H, NH), 7.14-7.12 (m, 2H), 6.08 (ddd, $J=18.0$, $9.2,7.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.05 (d, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.95 (d, $J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.92$ (d, $J=$ $11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.72(\mathrm{~m}, 2 \mathrm{H}), 2.6(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 2.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 125 MHz , $\mathrm{CDCl}_{3}$ ): $\delta 168.4,139.1,137.7,137.3,136.7,129.8,128.4,127.3,127.1,119.2$, 118.2, 78.0, 59.3, 53.4, 24.8; HRMS (pos. ESI) m/z: Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ClNO}_{2} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}$352.1075. Found, 352.1089.

4-(1-Bromo-2-hydroxy-3-phenylpent-4-en-2-yl)benzonitrile (3c). The compound was prepared according to above general procedure-A. Product 3c was recrystallized from $\mathrm{CDCl}_{3}$ and washed with pentane, then dried under vacuum. The compound was isolated in $83 \%$ yield ( 85.0 mg ) as colorless solid. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ 7.66-7.63 (m, 2H), 7.46-7.43 (m, 2H), 7.33-7.27 (m, 3H), 7.18-7.15 (m, 2H), 6.06 (ddd, $J=18.1,9.2,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{ddd}, J=10.2,1.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{dt}, J=$ $17.0,1.2,1 \mathrm{H}), 3.86(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J=10.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.64(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 148.2,138.5$, 136.1, 131.9, 129.6, 128.7, 127.7, 127.2, 118.8(3), 118.8, 115.5, 77.8, 59.8, 43.5; HRMS (pos. ESI) m/z: Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrNONa}[\mathrm{M}+\mathrm{Na}]^{+}$364.0307. Found, 364.0322.


X-ray structure of compound 3c. Displacement ellipsoids shown at 50\% probability level. (cif file name: compound_3c.cif)
 4-(1-Bromo-2-hydroxy-3-vinyloctan-2-yl)benzonitrile (3d). The compound was prepared according to the above general procedure-A. The product 3d was isolated in $92 \%$ yield ( 93.0 mg ) as colorless oil, using ether:pentane (1:6) as eluent for silica gel chromatography. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.66-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.48$ (m, 2H), 5.36-5.29 (m, 1H), 5.18 (dd, $J=10.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.16-5.12$ (m, 1H), 5.47$5.43(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, 2.47-2.43 (m, 1H), 1.75-1.69 (m, 1H), 1.25-1.17 (m, 4H), 1.15-1.03 (m, 2H), $0.83(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.77-0.70(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 147.0,137.2$,
$131.8,127.4,119.6,118.8,111.4,76.7,53.7,44.2,31.7,28.4,27.2,22.7,14.1$; HRMS (pos. ESI) m/z: Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{BrNONa}[\mathrm{M}+\mathrm{Na}]^{+}$358.0777. Found, 358.0762.


3,4-Diphenylhex-5-en-1-yn-3-ol (3e). The compound was prepared according to the above general procedure-A. Product $\mathbf{3 e}$ was isolated in $85 \%$ yield ( 63.50 mg ) as colorless liquid, using ether:pentane (1:10) as eluent for silica gel chromatography. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.38$ 7.35 (m, 2H), 7.23-7.20 (m, 3H), 7.16-7.12 (m, 3H), 7.05-7.02 (m, 2H), 6.49 (ddd, $J$ $=18.3,8.8,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.31$ (ddd, $J=10.2,1.7,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{ddd}, J=17.0$, $1.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=9.4,1 \mathrm{H}) 2.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 2.76(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 141.7,138.7,136.8,129.4,127.9,127.8,127.1,126.4,119.7,84.9$, 76.5, 75.5, 63.6; HRMS (pos. ESI) m/z: Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}$271.1093. Found, 271.1104.


3-Phenyl-4-vinylnon-1-yn-3-ol (3f). The compound was prepared according to the above mentioned general procedure-A. Product $\mathbf{3 f}$ was isolated in $93 \%$ yield ( 67.50 mg ) as colorless liquid using ether:pentane (1:10) as eluent for silica gel chromatography. ${ }^{1} \mathrm{H}$ NMR for major isomer ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.66-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.29(\mathrm{~m}$, $1 \mathrm{H}), 5.87$ (dt, $J=17.1,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.35$ (dd, $J=10.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.26$ (dd, $J=$ 17.1, $1.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 2.72(\mathrm{~s}, 1 \mathrm{H}), 2.36-2.31(\mathrm{~m}, 1 \mathrm{H}), 1.38-0.97(\mathrm{~m}$, $8 \mathrm{H}), 0.79(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 142.1,138.4,128.1$, 128.0, 126.6, 120.6, 84.5, 75.7, 75.1, 57.8, 31.6, 29.4, 27.2, 22.6, 14.1; HRMS (pos. ESI) $\mathrm{m} / \mathrm{z}$ : Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{ONa}[\mathrm{M}+\mathrm{H}]^{+}$265.1563. Found, 265.1562.


2-Hydroxy-2,3-diphenylpent-4-enenitrile (3g) was prepared according to the general procedure-A from 1a ( $0.36 \mathrm{mmol}, 58 \mathrm{mg}$ ) and $2 \mathbf{e}(0.30 \mathrm{mmol}, 40 \mathrm{mg})$ in THF $(0.6 \mathrm{~mL})$. The product was purified by addition of $\mathrm{HCl} 0.1 \mathrm{M}(0.6 \mathrm{~mL})$ and extraction with $\mathrm{Et}_{2} \mathrm{O}(5 \times 0.6 \mathrm{~mL})$. The combined organic phases were concentrated over Celite ( 200 mg ) in the presence of $\mathrm{AcOH}(0.2 \mathrm{~mL})$ then purified by flash chromatography (pentane/Et $\mathrm{E}_{2} \mathrm{O} / \mathrm{AcOH} 100: 20: 5$ ) to yield $\mathbf{3 g}$ as a clear oil that slowly solidified over
the next days ( $65 \mathrm{mg}, 86 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.32-7.15(\mathrm{~m}, 8 \mathrm{H})$, 7.05-6.99 (m, 2H), 6.45 (ddd, J = 16.9, 10.2, $9.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.46 (ddd, J = 10.2, 1.4, $0.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{ddd}, \mathrm{J}=16.9,1.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.31(\mathrm{~s}, \mathrm{OH}$, exchanges with $\mathrm{H}_{2} \mathrm{O}$ ); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 137.4,136.4,134.6,129.13$, 129.12, 128.5, 128.3, 128.0, 126.0, 122.0, 119.9, 77.1, 62.8.
 2-Hydroxy-2-phenyl-3-vinyloctanenitrile (3h). The compound was prepared according to the above general procedure-A. Product 3h was isolated in $80 \%$ yield ( 58.70 mg ) as colorless liquid using ether:pentane (1:10) as eluent for silica gel chromatography. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ): $\delta 7.58-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 3 \mathrm{H}), 5.82(\mathrm{dt}, J=17.0,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.50$ (dd, $J=10.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{ddd}, J=17.0,1.6,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, 2.41 (ddd, $J=11.7,9.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.43-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.23(\mathrm{~m}, 1 \mathrm{H}), 1.2-0.97$ $(\mathrm{m}, 6 \mathrm{H}), 0.80(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 137.9,136.3$, 129.4, 128.8, 126.1, 123.1, 119.6, 76.7, 57.0, 31.4, 29.0, 26.9, 22.5, 14.1


2-Hydroxy-2-methyl-3-phenylpent-4-enenitrile (3i). A Teflon-lined screw cap reaction vial ( 2 mL ) was charged with allylboronic acid ( $0.3 \mathrm{mmol}, 49 \mathrm{mg}$ ) and THF $(0.4 \mathrm{~mL})$ in glove box. The reaction vial was taken out of glove box (the solution was kept under Ar). The reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ (acetone + dry ice in a Dewar wessel). Pyruvnitrile $2 \mathbf{f}$ ( $90 \%$ commertial purity) ( $0.39 \mathrm{mmol}, 30 \mu \mathrm{~L}$ ) was dissolved in THF ( 0.2 mL ) and then it was added slowly to the reaction mixture by syringe. The reaction mixture was allowed to warm to room temperature $\left(22^{\circ} \mathrm{C}\right)$, and then 0.2 mL of AcOH was added. The column chromatography was performed without evaporating solvent using pentane:ether (4:1) as eluent. Product $\mathbf{3 i}$ was isolated in $72 \%$ ( 40 mg ) yield as colorless liquid. Product was mixture of two stereoisomers in a ratio of 9:1. ${ }^{1} \mathrm{H}$ NMR for major isomer ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.41-7.31(\mathrm{~m}, 5 \mathrm{H}), 6.35(\mathrm{dt}, J=16.9,9.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.45$ (dd, $J=10.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.39$ (ddd, $J=16.9,1.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.38$ (d, $J$ $=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{q}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 1.47(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR for major isomer ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 137.3,134.6,129.1,128.7,128.2,121.8,121.1$, 70.7, 60.7, 25.6; HRMS (pos. ESI) m/z: Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NONa}[\mathrm{M}+\mathrm{Na}]^{+} 210.0890$.

Found, 210.0890. The structure of $\mathbf{3 i}$ was determined by X-ray crystallography via its ester derivative (See page S12 for the details).


Ethyl 2-hydroxy-2-methyl-3-phenylpent-4-enoate (3j). The compound was prepared according to the above general procedure-A. Product $\mathbf{3 j}$ was isolated in $70 \%$ yield $(49.5 \mathrm{mg})$ as a colorless liquid, using ether:pentane (1:10) as eluent for the silica gel chromatography. The stereochemistry of the compound was confirmed by comparison with the epimer of $\mathbf{3 j}$ (see page S 12 for the details). ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ): $\delta 7.38-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 1 \mathrm{H}), 6.22$ (ddd, $J=$ $18.3,8.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-5.05(\mathrm{~m}, 2 \mathrm{H}), 4.31-4.21(\mathrm{~m}, 2 \mathrm{H}), 3.58(\mathrm{~d}, J=9.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.38(\mathrm{~s}, 1 \mathrm{H}), 1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 125 MHz , $\mathrm{CDCl}_{3}$ ): $\delta$ 176.7, 139.3, 137.2, 129.6, 128.4, 127.1, 117.4, 77.2, 62.3, 58.2, 24.8, 14.4; HRMS (pos. ESI) m/z: Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+2 \mathrm{Na}]^{+}$257.1148. Found, 257.1160


Ethyl 2-(bromomethyl)-2-hydroxy-3-phenylpent-4-enoate (3k). The compound was prepared according to above general procedure-A. Product $\mathbf{3 k}$ was isolated in $88 \%$ yield $(82.6 \mathrm{mg})$ as a colorless liquid using ether:pentane (1:15) as eluent for silica gel chromatography. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.38-7.25(\mathrm{~m}, 5 \mathrm{H}), 6.22(\mathrm{ddd}, J=18.2,8.9,8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.12-5.06(\mathrm{~m}, 2 \mathrm{H}), 4.38-4.28(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{t}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.69(\mathrm{~d}, J=$ $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=10.4,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~d}, J=10.4, \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ ): $\delta$ 173.1, 138.1, 136.6, 129.4, 128.7, 127.7, 117.9, 79.9, 63.0, 56.9, 38.9, 14.4; HRMS (pos. ESI) m/z: Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{BrO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$335.0253. Found, 335.0259.


Ethyl 2-hydroxy-2,3-diphenylpent-4-enoate (31) was prepared according to the general procedure-B from $\mathbf{1 a}(0.39 \mathrm{mmol})$ and $\mathbf{2 i}$ ( $50 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$ ) in THF ( 0.6 mL ). The crude reaction mixture was concentrated over Celite ( 240 mg ) then the product was purified by flash chromatography (pentane/Et $2_{2} \mathrm{O} 100: 8$ ) to yield $\mathbf{3 1}$ as a soft white solid ( $78 \mathrm{mg}, 87 \%$ yield). The stereochemistry of the compound was confirmed by comparison with the
ethyl ester of $\mathbf{3 m}$ (see below, S11). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.80-7.77$ (m, 2 H ), 7.46-7.44 (m, 2H), 7.41-7.36 (m, 2H), 7.32-7.28 (m, 3H), 7.26-7.22 (m, 1H), 6.01 (ddd, $\mathrm{J}=17.2,1.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{ddd}, \mathrm{J}=10.3,1.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{ddd}$, $\mathrm{J}=17.2,1.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.04-3.93(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~d}, \mathrm{~J}=$ $0.6 \mathrm{~Hz}, \mathrm{OH}$, exchanges with $\mathrm{H}_{2} \mathrm{O}$ ), $1.13(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 174.2,140.4,139.7,136.2,129.7,128.3,128.2,127.8,127.3,126.6$, 118.1, 80.9, 62.7, 57.9, 14.0


2-Hydroxy-2,3-diphenylpent-4-enoic acid (3m) was prepared according to the general procedure $\mathbf{A}$ from $\mathbf{1 a}(0.36 \mathrm{mmol})$ and $\mathbf{2 j}$ $(46 \mathrm{mg}, 0.30 \mathrm{mmol})$ in $\mathrm{MeOH}(0.6 \mathrm{~mL})$. The mixture was concentrated over Celite ( 240 mg ) then the product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOH} 100: 2\right)$ to yield $\mathbf{3 m}$ as a white solid $(58 \mathrm{mg}, 72 \%$ yield). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts were consistent with the literature values ${ }^{2} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ 7.77-7.74 (m, 2H), 7.43-7.37 (m, 2H), 7.34-7.30 (m, 1 H ), 7.28-7.20 (m, 3H), 5.98 (ddd, $\mathrm{J}=17.2,10.4,8.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.98 (ddd, $\mathrm{J}=10.4$, $1.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{dt}, \mathrm{J}=17.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{br} \mathrm{s}$, OH , exchanges with $\mathrm{H}_{2} \mathrm{O}$ ); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 176.7$, 139.3, 139.0, 135.5, 129.7, 128.5, 128.4, 128.2, 127.6, 126.6, 118.8, 81.0, 57.3.

General Procedure for the One-pot Allylation of $\boldsymbol{\alpha}$-Keto acids $\mathbf{2 j}$-k Using Allylic Alcohols (4a-d). Allyl alcohol 4 ( 0.30 or 0.48 mmol ) was dissolved in the corresponding solvent under ambient conditions, then the Pd catalyst 5 ( $1-5 \mathrm{~mol} \%$ ) and $\mathrm{B}_{2}(\mathrm{OH})_{4}(0.36$ or 0.58 mmol$)$ were successively added. The reaction was stirred for the alloted times given in Table 2 to form the corresponding allylboronic acids. Then, $\alpha$-ketoacid $\mathbf{2 j}$ or $\mathbf{2 k}$ ( 0.24 mmol ) was added in one portion. The reaction mixture was stirred for further 30 minutes and the product (3) was purified.


2-Hydroxy-2,3-diphenylpent-4-enoic acid (3m) was prepared according to the general procedure by treating a solution of $\mathbf{4 a}$ $(0.30 \mathrm{mmol})$ with catalyst $\mathbf{5 a}(10 \mu \mathrm{~L}, 1 \mathrm{~mol} \%)$ and $\mathrm{B}_{2}(\mathrm{OH})_{4}(0.36$ $\mathrm{mmol})$ in $\mathrm{MeOH}(0.6 \mathrm{~mL})$ for 18 h followed by addition of $\mathbf{2 j}$ ( $37 \mathrm{mg}, 0.24 \mathrm{mmol}$ ). Palladium black was filtered off through a short pad of silica then the reaction vial
and silica pad were washed with MeOH ( 5 times). The mixture was concentrated over Celite ( 220 mg ) then the product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOH} 100: 2\right)$ to yield $\mathbf{3 m}$ as a white solid ( $39 \mathrm{mg}, 60 \%$ yield).


2-Hydroxy-2-methyl-3-phenylpent-4-enoic acid (3n) was prepared according to the general procedure by treating a solution of $\mathbf{4 a}(0.30 \mathrm{mmol})$ in $\mathrm{MeOH}(0.6 \mathrm{~mL})$ with $\mathbf{5 a}(10 \mu \mathrm{~L}, 1 \mathrm{~mol} \%)$ and $\mathrm{B}_{2}(\mathrm{OH})_{4}(0.36 \mathrm{mmol})$ for 18 h followed by addition of $\mathbf{2 k}(17 \mu \mathrm{~L}, 0.24 \mathrm{mmol})$. Palladium black was filtered off through a short pad of silica then the reaction vial and silica pad were washed with MeOH ( 5 times). The mixture was concentrated over Celite ( 200 mg ) then the product was purified by flash chromatography (pentane $/ \mathrm{Et}_{2} \mathrm{O} / \mathrm{AcOH} 80: 20: 2$ ) to yield 3 n as a white solid ( $41 \mathrm{mg}, 83 \%$ yield). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts in $\mathrm{CDCl}_{3}$ were consistent with literature values. ${ }^{2,3}{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.28-7.21(\mathrm{~m}, 5 \mathrm{H}), 6.26(\mathrm{dt}, \mathrm{J}=17.0,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.26$ (dd, J = 10.2, 1.8 Hz, 1H), 5.21 (ddd, J = 17.0, 1.7, $0.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.58(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}$, 1 H ), $1.50(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 180.3,139.6,135.6,128.8,128.7$, 127.5, 119.2, 77.1, 57.9, 24.7.


2-Hydroxy-2-methyl-3-(4-nitrophenyl)pent-4-enoic acid (3o) was prepared according to the above general procedure by treating a solution of $\mathbf{4 b}(0.30 \mathrm{mmol})$ in $\mathrm{MeOH}(0.8 \mathrm{~mL}) /$ DMSO ( 0.2 mL ) with $\mathbf{5 a}(50 \mu \mathrm{~L}, 5 \mathrm{~mol} \%)$ and $\mathrm{B}_{2}(\mathrm{OH})_{4}(0.36$ $\mathrm{mmol})$ for 30 min followed by addition of $\mathbf{2 k}(17 \mu \mathrm{~L}, 0.24$ mmol ). Palladium black was filtered off through a short pad of silica then the reaction vial and silica pad were washed with MeOH ( 5 times). The MeOH was removed, then $\mathrm{CHCl}_{3}(2 \mathrm{~mL})$ was added and the mixture was washed with saturated brine ( 2 x 1 mL ). The brine layers were extracted with $\mathrm{CHCl}_{3}(2 \times 2 \mathrm{~mL})$ and the combined $\mathrm{CHCl}_{3}$ layers were diluted with pentane ( 6 mL ) and purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOH} 100: 4\right)$ to yield 3 o as an orange wax ( $40 \mathrm{mg}, 66 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.12(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.21(\mathrm{dt}, \mathrm{J}=17.0,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dd}, \mathrm{J}=10.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, \mathrm{~J}=17.0$ $\mathrm{Hz}, 1 \mathrm{H}$ ), $3.68(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$
179.7, 147.2(7), 147.2(6), 134.3, 129.8, 123.6, 120.4, 76.7, 57.3, 25.2; HRMS-ESI $\mathrm{m} / \mathrm{z}$ : Calcd. For $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NNaO}_{5}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 274.0686; found: 274.0696.


2-(Cyclohex-2-en-1-yl)-2-hydroxypropanoic acid (3p) was prepared according to the general procedure by treating a solution of $\mathbf{4 c}(0.30 \mathrm{mmol})$ in DMSO $(0.48 \mathrm{~mL}) / \mathrm{H}_{2} \mathrm{O}(0.12 \mathrm{~mL})$ with $\mathbf{5 b}$ ( $7 \mathrm{mg}, 5 \mathrm{~mol} \%$ ) and $\mathrm{B}_{2}(\mathrm{OH})_{4}(0.36 \mathrm{mmol})$ for 3 h followed by addition of $\mathbf{2 k}(83 \%$, $20 \mu \mathrm{~L}, 0.24 \mathrm{mmol})$. Palladium black was filtered off through a short pad of silica then the reaction vial and silica pad were washed with $\mathrm{Et}_{2} \mathrm{O}(5 \times 0.6 \mathrm{~mL})$. The mixture was washed with saturated brine $(0.6 \mathrm{~mL})$ then the brine layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$. The combined $\mathrm{Et}_{2} \mathrm{O}$ layers were concentrated over Celite ( 190 mg ) then purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOH} 100: 8\right)$ to yield $\mathbf{3 p}$ as an clear oil that solidified overnight ( $27 \mathrm{mg}, 65 \%$ yield). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts in $\mathrm{CDCl}_{3}$ were consistent with literature values. ${ }^{4}{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 5.95-$ $5.90(\mathrm{~m}, 1 \mathrm{H}), 5.47-5.45(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.01-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.84$ (m, 2H), 1.61-1.41 (m, overlapped, 2 H ), 1.45 (s, overlapped, 3 H ); ${ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 181.6,132.1,125.7,76.9,43.6,25.1,22.9,22.4,21.8$

(R)-2-((1R,3S,5R)-6,6-Dimethyl-2-methylene-bicyclo[3.1.1] heptan-3-yl)-2-hydroxypropanoic acid (3q) was prepared according to the general procedure by treating a solution of $\mathbf{4 d}$ $(0.48 \mathrm{mmol})$ in DMSO $(1.28 \mathrm{~mL}) / \mathrm{H}_{2} \mathrm{O}(0.32 \mathrm{~mL})$ with $\mathbf{5 b}(11 \mathrm{mg}, 5 \mathrm{~mol} \%)$ and $\mathrm{B}_{2}(\mathrm{OH})_{4}(0.58 \mathrm{mmol})$ for 1 h followed by addition of $\mathbf{2 k}(17 \mu \mathrm{~L}, 0.24 \mathrm{mmol})$. Palladium black was filtered off through a short pad of silica then the reaction vial and silica pad were washed with $\mathrm{Et}_{2} \mathrm{O}(5 \times 1.6 \mathrm{~mL})$. The mixture was washed with saturated brine $(1.6 \mathrm{~mL})$ then the brine layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(8 \mathrm{~mL})$. The combined $\mathrm{Et}_{2} \mathrm{O}$ layers were concentrated over Celite ( 490 mg ) then purified by flash chromatography (pentane $/ \mathrm{Et}_{2} \mathrm{O} / \mathrm{AcOH} 80: 20: 2$ ) to yield $\mathbf{3 q}$ as a white solid ( 42 mg , $77 \%$ yield). X-Ray quality crystals were grown by slow counter diffusion of pentane vapors into a solution of $\mathbf{3 q}$ in $\mathrm{CDCl}_{3}$. Major isomer: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ $4.95(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 3.04-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{t}, 5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.20(\mathrm{~m}$, $1 \mathrm{H}), 2.12-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{dt}, \mathrm{J}=13.7,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~s}$, $3 \mathrm{H}), 1.60(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 0.74(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 101 MHz ,
$\left.\mathrm{CDCl}_{3}\right): \delta 180.6,149.6,112.7,77.9,53.2,41.6,41.3,40.3,28.1,27.1,26.2,26.0$, 21.8; minor isomer: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, selected signals): $\delta 4.83$ (br s, 1H), $4.77(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.46-3.44(\mathrm{~m}, 1 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H})$; HRMS (pos. ESI) m/z: Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$309.1467. Found, 309.1471.


X-ray structure of compound 3q. Displacement ellipsoids shown at 50\% probability level. The space group is $\mathrm{P} 2_{1} 2_{1} 2_{1}$, indicating that compound $\mathbf{3 q}$ is enantiomerically pure (cif file name: compound_3q.cif).

## Esterification of 31 to $\mathbf{3 m}$



Compound $\mathbf{3 m}$ ( $11 \mathrm{mg}, 0.04 \mathrm{mmol}$ ) was added and then the reaction mixture heated to $100{ }^{\circ} \mathrm{C}$ (MW) for 18 h . Evaporation and vacuum drying afforded a mixture of $\mathbf{3 1}$ and $\mathbf{3 m}$ which was dissolved in $\mathrm{CDCl}_{3}$ (conversion: $88 \%$ ). A sample of $\mathbf{3 1}$ ( 13 mg , 0.04 mmol ) obtained from the allylation of $\mathbf{2 i}$ was added to this mixture. The NMR spectra showed that samples (3I) obtained from esterification of $\mathbf{3 m}$ and allylation of 2 i are identical.

## Esterification of 3n to give the Epimer of 3j




According to (the above described) literature procedure ${ }^{5}$ acetyl chloride $(0.10 \mathrm{~mL})$ was dissolved in $\mathrm{EtOH}(0.4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred for 30 min . Compound $3 \mathbf{n}$ (prepared from 4a, Table 2, entry 2) ( $8 \mathrm{mg}, 0.04 \mathrm{mmol}$ ) was added and this mixture was heated at $50^{\circ} \mathrm{C}$ for 18 h . The esterification afforded the epimer of $\mathbf{3} \mathbf{j}$ quantitatively. This compound and the product obtained by allylation of $\mathbf{2 g}$ (i.e. $\mathbf{3 j}$ itself, Table 1 , entry 10) gave different NMR spectra indicating the epimer relationship between the two compounds. ${ }^{1} \mathrm{H}$ NMR of the epimer of $\mathbf{3 j} \mathbf{~}(400 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ): $\delta 7.28-7.18(\mathrm{~m}, 5 \mathrm{H}), 6.28(\mathrm{dt}, \mathrm{J}=17.1,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{dd}, \mathrm{J}=10.2,1.8$ $\mathrm{Hz}, 1 \mathrm{H}$ ), 5.19 (ddd, 17.1, 1.8, 0.7 Hz, 1H), 4.09-3.97 (m, 2H), $3.55(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}$, 1 H ), 3.24 (br s, OH , exchanges with $\mathrm{H}_{2} \mathrm{O}$ ), $1.47(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ of the epimer of $\mathbf{3 j} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 176.2,140.1,136.3,128.6,128.4$, 127.2, 118.4, 76.8, 62.0, 58.2, 24.8, 14.2.

## Derivatization of 3i



Compound $\mathbf{3 i}$ was obtained as an oil, and thus it was not suitable for crystallographic structure determination. When 3i was reacted with bromo benzoic acid a solid product was obtained, which could be crystallized. The following procedure was used for esterification. To a solution of 4-bromobenzoyl chloride ( $0.16 \mathrm{mmol}, 36$ mg ) in dry dichloromethane ( 0.4 mL ) was added compound $\mathbf{3 i}(0.15 \mathrm{mmol}, 28 \mathrm{mg})$ and 4-dimethylaminopyridine ( $0.16 \mathrm{mmol}, 20 \mathrm{mg}$ ) under ambient conditions. Then, the reaction mixture was stired at room tempearture. After 1 h water $(1 \mathrm{~mL})$ was added and the product was extracted with methyl tert-butyl ether ( $1 \times 3 \mathrm{~mL}$ ). The
combined organic phases were dried over anhydrous $\mathrm{MgSO}_{4}$ and concentrated in vacuo. The crude compound was dissolved in dichloromethane and passed through a silica plug using dichloromethane as eluent. After evaporation of the solvent the esterification product was solidified in refrigerator in overnight. Crystalls for X-ray determination were grown by slow counter diffusion of pentane vapors into a solution of pure compound ( 10 mg ) in $\mathrm{CHCl}_{3}(0.2 \mathrm{~mL}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ major isomer: $\delta 7.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.31(\mathrm{~m}$, 5 H ), 6.39 (ddd, $J=17.9,9.1,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.41-5.37$ (m, 2H), $4.00(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) for major isomer: $\delta 163.8,136.7$, 134.1, 132.1, 131.3, 129.4, 129.1, 128.9, 128.3, 128.2, 120.8, 117.9, 75.4, 57.9, 22.9; HRMS (pos. ESI) m/z: Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{BrNO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$392.0257. Found, 392.0268.

## X-ray structure:



X-ray structure of compound 3i-ester derivative. Displacement ellipsoids shown at $50 \%$ probability level. (cif file name: compound_3i_ester.cif)

## References:

(1) Raducan, M.; Alam, R.; Szabó, K. J. Angew. Chem. Int. Ed. 2012, 51, 13050.
(2) Kaur, P.; Singh, P.; Kumar, S. Tetrahedron 2005, 61, 8231.
(3) Howard, B. E.; Woerpel, K. A. Org. Lett. 2007, 9, 4651.
(4) Muderawan, I. W.; Bott, R. C.; Young, D. J. Synthesis 1998, 11, 1640.
(5) Hasuoka, A.; Nakayama, Y.; Adachi, M.; Kamiguchi, H.; Kamiyama, K. Chem. Pharm. Bull. 2001, 49, 1604.
${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 a}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 a}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$



${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 b}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 b}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$


${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 c}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$


$\underbrace{\text { N }}_{\text {n- }}$


${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 c}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 d}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$


${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 d}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$



${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 e}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 e}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$


$3 e^{\text {Ph }}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 f}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$




$\rightarrow \dot{\square} \dot{\circ} \dot{\circ}$


${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 f}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$


${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 g}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$


${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 g}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$


 ドズ犬

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 h}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$




$\dot{m} \quad \dot{\sim} \sim \dot{\sim} \sim \dot{\sim} \sim \dot{\sim} \dot{\sim} \dot{\sim}+\dot{\sim}$



3h
${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 h}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 i}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$


${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 i}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

$3 i$


${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 j}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathbf{C}$ NMR of $\mathbf{3 j}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 k}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$


${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 k}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$



${ }^{1} \mathrm{H}$ NMR of $31\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

$\stackrel{\text { no }}{\stackrel{n}{7}} \stackrel{\Gamma}{\Gamma}$
8

${ }^{13} \mathrm{C}$ NMR of $31\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 m}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 m}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$


$1 \varepsilon<\angle$

三⿳亠二口欠贝
${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 n}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$


${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 n}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$
-


©
NN完
$\stackrel{\oplus}{\circ}$
$N$
$\underset{N}{N}$
N

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 o}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 o}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$


61'sz

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 p}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$
N

N/
$\stackrel{8}{i}$
HoOC

${ }^{13}$ C NMR of $\mathbf{3 p}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 q}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$


${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 q}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

| $\begin{aligned} & \infty \\ & \text { م } \\ & \text { © } \end{aligned}$ | ¢ |
| :---: | :---: |
|  |  |

$\begin{aligned} & 53.1 \\ & 41.6 \\ & 41.29 \\ & 40.3 \\ & 28.1 \\ & 27.1 \\ & 26.1 \\ & 25.98 \\ & 21.77\end{aligned}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 i}$-ester derivative $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR of 3i-ester derivative $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$


