Supporting Information

Remarkable Photophysics and Amplified Quenching of Conjugated Polyelectrolyte Oligomers

Fude Feng, ${ }^{\dagger}$ Jie Yang, ${ }^{\dagger}$ Dongping Xie, ${ }^{\dagger}$ Tracy D. McCarley, ${ }^{\dagger}$ Kirk S. Schanze ${ }^{\dagger, *}$
${ }^{\prime}$ Department of Chemistry and Center for Macromolecular Science and Engineering, University of Florida, PO Box 117200, Gainesville, FL 32611-7200
${ }^{7}$ Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804
*Corresponding Author e-mail: kschanze@chem.ufl.edu

Experimental

Ester-type oligomer stock solutions (0.5 mM) were prepared in chloroform. The stock solutions of CPEOs (0.5 mM) were prepared in water (pH 9.0). Water (pH 8.0) was used for all of experiments unless special notation was mentioned. UV/vis absorption spectra were recorded on a Shimadzu 1800 photospectrometer. Steady state emission spectra were collected on a PTI (Photon Technology International) fluorometer. Lifetime experiments were performed on PicoHarp300 equipped with light source by excitation at 370 nm . Transient absorption measurements were conducted on a home-built apparatus using a Continuum Surelite Ii Nd:YAG laser for excitation ($6 \sim 7 \mathrm{~mJ} / \mathrm{pulse}$) and PI-Max intensified CCD camera coupled with spectrograph as a detector, and the probe source was a PerkinElmer LS1130-3 pulsed xenon lamp. The optical density (355 nm) of samples was adjusted to 0.7 and samples were purged with argon for 20 minutes prior to transient absorption measurements. The solutions of methyl viologen $\left(\mathrm{MV}^{2+}\right)$ and 3,3'-diethyloxacarbocyanine iodide (DOC) were freshly prepared in water (pH 8.0) for quenching experiments. The solutions of sodium chloride and calcium chloride were freshly prepared in water (pH 8.0) for ionic effect experiments.

FCS measurements were taken on a homemade setup using a 405 nm diode laser (Coherent, CUBE) as the excitation light. Fluorescein (30 nM in 10 mM phosphate buffer, $\mathrm{pH}=8$) was used as the calibration for the system. The concentrations of oligomer and polymer samples are 5 uM for both pH dependent and salt-dependent experiments. For pH -dependent studies, $\mathrm{pH} 2.5, \mathrm{pH} 8.0$ and pH 11.0 aqueous solutions were chosen. For salt-dependent investigation, $0,1.0$ and 10 mM CaCl 2 was chosen to study the diffusion behaviors.(see the next paragraph)

Principal component analysis (PCA) was done following the procedure previously reported. ${ }^{1}$ In brief, PCA was performed on a personal computer with a macro written in Matlab. A non-orthogonal target transformation was applied to obtain the real eigenvectors which correspond to the absorption spectra of the principal components. Figure 2c (see main paper) illustrates the principal component
spectra, and Figure 2d (see main paper) shows the factor loadings which correspond to the principal component spectra. The normalized factor loadings are proportional to the fraction of each conformer present in the mixture as a function of Ca^{2+} concentration.

Figure S1. Synthetic scheme of C1, 7 and Endcap.
Compound 1 was prepared from p-xylene dichloride in four-steps including cyano substitution, acidcatalyzed hydrolysis, esterization and reduction by lithium aluminum hydride. ${ }^{2,3}$

Synthesis of 2: Compound $\mathbf{1}(10 \mathrm{~g}, 60 \mathrm{mmol})$, acetic anhydride (50 mL), pyridine (200 mL) and 4dimethylamino pyridine (catalytic amount) were mixed and stirred at room temperature for overnight. The solvent and excess acetic anhydride were removed under vacuum. The residue was subject to silica column to give $\mathbf{2}$ as a white solid ($15 \mathrm{~g}, 100 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.15(\mathrm{~s}, 4 \mathrm{H}), 4.26(\mathrm{t}, 4 \mathrm{H}, J$ $=7.2 \mathrm{~Hz}), 2.91(\mathrm{t}, 4 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.03(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.19,136.28,129.24$, 65.12, 34.89, 21.18. MS (ESI) $m / z\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 273.1283$.

Synthesis of 3, following a reported iodination procedure ${ }^{4}$: Sodium periodate $(7.3 \mathrm{~g}, 34 \mathrm{mmol}, 40 \%$ excess) and iodine ($26.2 \mathrm{~g}, 104 \mathrm{mmol}, 40 \%$ excess) were stirred into a mixture of glacial acetic acid (129 mL) and acetic anhydride (64.5 mL) at $0 \sim 5^{\circ} \mathrm{C}$. Concentrated sulfuric acid ($43 \mathrm{~mL}, 860 \mathrm{mmol}$) was then added slowly to the stirring suspension. Compound $2(21.5 \mathrm{~g}, 86 \mathrm{mmol})$ was added to this solution and stirred continuously for 6 h at room temperature. The reaction mixture was then poured into an ice-water mixture containing previously dissolved $\mathrm{Na}_{2} \mathrm{SO}_{3}$. The precipitate was collected and recrystallized in ethanol to give compound $\mathbf{3}$ as a white solid ($34.5 \mathrm{~g}, 80 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67(\mathrm{~s}, 2 \mathrm{H})$, $4.24(\mathrm{t}, 4 \mathrm{H}, J=6.9 \mathrm{~Hz}), 3.00(\mathrm{t}, 4 \mathrm{H}, J=6.9 \mathrm{~Hz}), 2.06(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.13$, 141.26, 140.57, 100.43, 63.34, 38.89, 21.16. MS (ESI) $m / z\left([M]^{+}\right) 502.9225$.

Synthesis of 4: To the solution of $\mathbf{3}(8.4 \mathrm{~g}, 16.7 \mathrm{mmol})$ in dichloromethane (50 mL) and methanol (200 mL) was added potassium carbonate ($25 \mathrm{~g}, 181 \mathrm{mmol}$) stirred at room temperature overnight. The solvent was removed under vacuum. Water (300 mL) was added and the suspension was strongly stirred at room temperature for 2 h . The solid was collected to give $\mathbf{4}$ as a white solid ($5.9 \mathrm{~g}, 85 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , Acetone-d6) $\delta 7.71(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~m}, 4 \mathrm{H}), 2.94(\mathrm{t}, 4 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.38(\mathrm{t}, 2 \mathrm{H}, J=5.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, Acetone-d6) $\delta 142.26,140.50,100.25,61.15,42.84$. MS (ESI) $m / z\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 440.8827$.

Synthesis of $\mathbf{5}$, following a reported procedure with minor modifications ${ }^{5}$: To acetonitrile (80 mL) was added periodic acid ($4.8 \mathrm{~g}, 21 \mathrm{mmol}$) and the mixture was stirred at room temperature for 15 min . The mixture was cooled down to $0^{\circ} \mathrm{C}$, and compound $4(2.0 \mathrm{~g}, 4.8 \mathrm{mmol})$ was then added, followed by addition of freshly prepared pyridinium chlorochromate ($44 \mathrm{mg}, 2 \mathrm{~mol} \%$) in acetonitrile (10 mL). The reaction mixture was stirred at room temperature for 6 h . After removal of most solvent under vacuum, the residue was added into water (100 mL). The precipitate was collected and recrystallized in toluene to afford 5 as a white solid ($1.7 \mathrm{~g}, 80 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.50(\mathrm{~s}, 2 \mathrm{H}), 7.80(\mathrm{~s}, 2 \mathrm{H}), 3.68(4$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO-d6) δ 171.98, 141.33, 139.99, 102.18, 45.12. MS (ESI) $\mathrm{m} / \mathrm{z}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$ 468.8404.

Synthesis of C1: A mixture of $5(9.0 \mathrm{~g}, 20 \mathrm{mmol})$, dodecyl alcohol ($80.0 \mathrm{~g}, 465 \mathrm{mmol}$) and 85% phosphoric acid $(0.5 \mathrm{~mL})$ was heated at $150^{\circ} \mathrm{C}$ in a flask equipped with a Dean-Stark trap. After reaction over 6 h, the solvent was removed under vacuum. The residue was recrystallized in isopropanol to give 6 as an off-white solid ($13.4 \mathrm{~g}, 85 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73$ (s, 2H), $4.12(\mathrm{t}, 4 \mathrm{H}, J=6.6 \mathrm{~Hz}$), $3.71(\mathrm{~s}, 4 \mathrm{H}), 1.63(\mathrm{~m}, 4 \mathrm{H}), 1.26(\mathrm{~m}, 36 \mathrm{H}), 0.88(\mathrm{t}, 6 \mathrm{H}, J=6.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.09$, $140.84,138.85,100.81,65.64,45.31,32.14,29.88,29.81,29.59,29.43,28.75,26.12,22.93,14.36 . \mathrm{MS}$ (ESI) $m / z\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 805.2160$.

Synthesis of 6: Compound C1 (3.9 g, 5 mmol) was dissolved in a mixture of THF (40 mL) and isopropylamine (120 mL), and combined with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(14 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathrm{CuI}(7.5 \mathrm{mg}, 0.4$ mmol). After a complete degas, trimethylsilylacetylene ($1.4 \mathrm{~g}, 15 \mathrm{mmol}$) was added, and reacted overnight at room temperature. The solvent was removed and the residue was extracted with dichloromethane/water. The organic layer was washed with saturated ammonium chloride, water and brine, and then dried over anhydrous sodium sulfate. The solvent was removed under vacuum and the crude product was purified by silica chromatography (hexane/dichloromethane, 2/1) to give compound $\mathbf{6}$ as light yellow oil ($3.2 \mathrm{~g}, 90 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37(\mathrm{~s}, 2 \mathrm{H}), 4.10(\mathrm{t}, 4 \mathrm{H}, J=6.9 \mathrm{~Hz}), 3.75$ $(\mathrm{s}, 4 \mathrm{H}) 1.59(\mathrm{~m}, 4 \mathrm{H}), 1.26(\mathrm{~m}, 36 \mathrm{H}), 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}), 0.23(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $170.88,135.59,133.63,123.92,102.68,101.05,65.32,39.60,32.14,29.88,29.86,29.80,29.74,29.58$, 29.45, 28.78, 26.07, 22.91, 14.34, 0.08. MS (ESI) $m / z\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 745.5018$.

Synthesis of 7: To the solution of compound $\mathbf{6}(2.0 \mathrm{~g}, 2.8 \mathrm{mmol})$ in chloroform (50 mL) was added tetra-n-butylammonium floride (TBAF, $6.7 \mathrm{~mL}, 6.7 \mathrm{mmol}, 1 \mathrm{M}$ in THF). After reaction over 1 h , the reaction mixture was passed through a silica column and gave $\mathbf{6}$ as white solid ($1.1 \mathrm{~g}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{~s}, 2 \mathrm{H}), 4.10(\mathrm{t}, 4 \mathrm{H}, J=6.6 \mathrm{~Hz}), 3.78(\mathrm{~s}, 4 \mathrm{H}), 3.33(\mathrm{~s}, 2 \mathrm{H}), 1.61(\mathrm{~m}, 4 \mathrm{H}), 1.26(\mathrm{~m}, 36 \mathrm{H})$, $0.88(\mathrm{t}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.16,135.67,134.17,123.34,83.56,81.06,63.15,52.34$, 39.15, 32.98, 32.12, 29.84, 29.66, 29.56, 25.97, 22.89, 14.31. MS (ESI) $\mathrm{m} / \mathrm{z}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 601.4227$.

Synthesis of 9: Compound $\mathbf{8}^{6,7}(6.4 \mathrm{~g}, 20 \mathrm{mmol})$ was dissolved in a mixture of THF (50 mL) and isopropylamine (150 mL), and combined with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(28 \mathrm{mg}, 0.4 \mathrm{mmol})$ and $\mathrm{CuI}(15 \mathrm{mg}, 0.8$
mmol). After a complete degas, trimethylsilylacetylene ($4.8 \mathrm{~g}, 50 \mathrm{mmol}$) was added, and reacted overnight at room temperature. The solvent was removed and the residue was extracted with dichloromethane/water. The organic layer was washed with saturated ammonium chloride, water and brine, and then dried over anhydrous sodium sulfate. The solvent was removed under vacuum and the crude product was purified by silica chromatography (hexane/dichloromethane, $2 / 1$) to give compound $\mathbf{9}$ as light yellow solid ($5.5 \mathrm{~g}, 95 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}$), $7.21(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}$ $=8.1 \mathrm{~Hz}), 3.50(\mathrm{~s}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 0.24(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.45,135.45,132.28$, 129.33, 42.87, 28.23, 0.24. MS (ESI) $m / z\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 311.1448$.

Synthesis of 10: To the solution of compound $9(2.9 \mathrm{~g}, 10 \mathrm{mmol})$ in chloroform (50 mL) was added tetra-n-butylammonium floride (TBAF, $12 \mathrm{~mL}, 12 \mathrm{mmol}, 1 \mathrm{M}$ in THF). After reaction over 1 h , the reaction mixture was passed through a silica column and gave 10 as light yellow solid ($2.0 \mathrm{~g}, 95 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.24(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 3.52(\mathrm{~s}, 2 \mathrm{H}), 3.06(\mathrm{~s}, 1 \mathrm{H}), 1.43(\mathrm{~s}$, 9H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.55,135.71,132.38,129.40,83.69,81.29,42.77,28.22$. MS (ESI) $m / z\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 239.1043$.

Synthesis of 11: Compound $6(3.6 \mathrm{~g}, 5 \mathrm{mmol})$ was dissolved in a mixture of THF (50 mL) and isopropylamine (150 mL), and combined with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(14 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathrm{CuI}(7.5 \mathrm{mg}, 0.4$ $\mathrm{mmol})$. After a complete degas, $\mathbf{1 0}(0.2 \mathrm{~g}, 1 \mathrm{mmol})$ was added, and reacted overnight at room temperature. The solvent was removed and the residue was extracted with dichloromethane/water. The organic layer was washed with saturated ammonium chloride, water and brine, and then dried over anhydrous sodium sulfate. The solvent was removed under vacuum and the crude product was purified by silica chromatography (hexane/dichloromethane, $3 / 2$) to give compound $\mathbf{1 1}$ as light yellow solid ($0.1 \mathrm{~g}, 12 \%$). \%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 4.09(\mathrm{~m}, 4 \mathrm{H})$, $3.77(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H}), 1.60(\mathrm{~m}, 4 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.22(\mathrm{~m}, 36 \mathrm{H}), 0.87(\mathrm{t}, 6 \mathrm{H}, J=6.9 \mathrm{~Hz})$. ${ }^{13}{ }^{1}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.71,170.47,170.32,140.75,137.11,136.78,135.59,133.54,131.80$, $129.47,124.23,121.54,100.97,95.24,86.72,81.24,65.53,65.48,45.95,42.82,39.52,32.15,29.88$, 29.81, 29.76, 29.59, 29.44, 28.78, 28.23, 26.12, 26.09, 22.93, 14.37. MS (ESI) $m / z\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 893.4191$.

Synthesis of 12: Compound $\mathbf{1 1}(0.15 \mathrm{~g}, 0.17 \mathrm{mmol})$ was dissolved in a mixture of THF (5 mL) and isopropylamine (15 mL), and combined with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(2.8 \mathrm{mg}, 0.04 \mathrm{mmol})$ and $\mathrm{CuI}(1.5 \mathrm{mg}, 0.08$ $\mathrm{mmol})$. After a complete degas, trimethylsilylacetylene ($0.19 \mathrm{~g}, 2 \mathrm{mmol}$) was added, and reacted overnight at room temperature. The solvent was removed and the residue was extracted with dichloromethane/water. The organic layer was washed with saturated ammonium chloride, water and brine, and then dried over anhydrous sodium sulfate. The solvent was removed under vacuum and the crude product was purified by silica chromatography (hexane/dichloromethane, 2/1) to give compound $\mathbf{1 2}$ as light yellow solid $(0.13 \mathrm{~g}, 90 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz})$, $4.08(\mathrm{~m}, 4 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 3.51(\mathrm{~s}, 2 \mathrm{H}), 1.60(\mathrm{~m}, 4 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.23(\mathrm{~m}, 36 \mathrm{H}), 0.88(\mathrm{t}$, $6 \mathrm{H}, J=6.6 \mathrm{~Hz}), 0.24(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.99,170.89,170.52,135.75,135.56$, $135.24,133.78,133.30,131.86,129.49,124.11,123.68,121.69,102.80,101.00,95.66,87.36,81.22$, $65.38,65.31,42.82,39.93,39.65,32.14,29.88,29.80,29.75,29.72,29.58,29.45,29.42,28.80,28.22$, 26.10, 26.06, 22.91, 14.34, 0.10. MS (ESI) $m / z\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 863.5601$.

Synthesis of Endcap: To the solution of compound $\mathbf{1 2}$ ($0.12 \mathrm{~g}, 0.14 \mathrm{mmol}$) in chloroform (10 mL) was added tetra-n-butylammonium floride (TBAF, $0.2 \mathrm{~mL}, 0.2 \mathrm{mmol}, 1 \mathrm{M}$ in THF). After reaction over 1 h , the reaction mixture was passed through a silica column and gave $\mathbf{1 3}$ as light yellow solid ($82 \mathrm{mg}, 75 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}) 4.11(\mathrm{~m}, 4 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}$, $2 \mathrm{H}), 3.53(\mathrm{~s}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 1 \mathrm{H}), 1.60(\mathrm{~m}, 4 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.25(\mathrm{~m}, 36 \mathrm{H}), 0.88(\mathrm{t}, 6 \mathrm{H}, J=6.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.92,170.86,170.50,135.86,135.59,135.30,134.22,133.34,131.85$, $129.48,124.51,122.60,121.56,95.75,87.13,83.19,81.50,81.26,65.42,65.38,42.82,39.92,39.51$, 32.15, 29.88, 29.81, 29.60, 29.44, 28.78, 28.23, 26.08, 22.93, 14.37. MS (ESI) $m / z\left([M+H]^{+}\right) 769.5419$.

Figure S2. Synthetic scheme of oligomers.
Synthesis of $\mathbf{C} 2$ and C3: Compound $\mathbf{C 1}(1.8 \mathrm{~g}, 2.3 \mathrm{mmol})$ was dissolved in a mixture of THF (150 mL) and isopropylamine (150 mL), and combined with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(14 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathrm{CuI}(7.5 \mathrm{mg}, 0.4$ $\mathrm{mmol})$. After a complete degassing procedure, compound $7(0.38 \mathrm{~g}, 0.65 \mathrm{mmol})$ was added, and reacted overnight at room temperature. The solvent was removed under vacuum and the residue was extracted with chloroform/water. The organic layer was washed with saturated ammonium chloride, water and brine, and then dried over anhydrous sodium sulfate. The solvent was removed under vacuum and the crude product was purified by silica chromatography to give $\mathbf{C} 2(190 \mathrm{mg}, 15 \%)$ and $\mathbf{C 3}(80 \mathrm{mg}, 4 \%)$.

C2: ${ }^{1} \mathrm{H}$ NMR (500 M Hz) $\delta 7.83(\mathrm{~s}, 2 \mathrm{H}), 7.48(\mathrm{~s}, 2 \mathrm{H}), 7.43(\mathrm{~s}, 2 \mathrm{H}), 4.10(\mathrm{~m}, 12 \mathrm{H}), 3.84(\mathrm{~s}, 4 \mathrm{H}), 3.82(\mathrm{~s}$, $4 \mathrm{H}), 3.77(\mathrm{~s}, 4 \mathrm{H}), 1.60(\mathrm{~m}, 12 \mathrm{H}), 1.26(\mathrm{~m}, 108 \mathrm{H}), 0.88(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.78$, $170.61,170.28,140.83,137.30,136.66,135.32,133.98,133.83,123.89,123.84,101.70,92.86,92.82$, $65.63,65.57,65.53,45.95,39.77,39.32,32.18,32.17,29.94,29.92,29.91,29.89,29.88,29.86,29.84$, 29.80, 29.79, 29.62, 29.60, 29.52, 29.51, 29.47, 28.84, 28.83, 28.81, 26.14, 26.11, 26.09, 22.94, 14.37. MS (MALDI-TOF) $\mathrm{m} / \mathrm{z}\left([\mathrm{M}]^{+}\right)$1888.166.

C3: ${ }^{1} \mathrm{H}$ NMR (500M Hz) $\delta 7.84(\mathrm{~s}, 2 \mathrm{H}), 7.50(\mathrm{~m}, 6 \mathrm{H}), 7.44(2 \mathrm{H}), 4.10(\mathrm{~m}, 20 \mathrm{H}), 3.87(\mathrm{~s}, 8 \mathrm{H}), 3.85(\mathrm{~s}$, $4 \mathrm{H}), 3.82(\mathrm{~s}, 4 \mathrm{H}), 3.77(\mathrm{~s}, 4 \mathrm{H}), 1.60(\mathrm{~m}, 20 \mathrm{H}), 1.26(\mathrm{~m}, 180 \mathrm{H}), 0.88(\mathrm{~m}, 30 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.76,170.59,170.25,140.81,137.28,136.64,135.31,133.96,133.88,133.77,123.94,123.83,101.67$, $93.45,92.85,65.60,65.54,65.51,45.94,39.73,39.30,32.15,29.91,29.89,29.86,29.82,29.79,29.60$, 29.50, 29.45, 28.83, 26.12, 26.08, 22.92, 14.34. MS (MALDI-TOF) $m / z\left([M]^{+}\right) 2993.283$.

Synthesis of polymer PPE and oligomers PEns ($\mathrm{n}=5,7,9$): The solution of $\mathbf{C n}(1.0 \mathrm{eq}, \mathrm{n}=1,2,3$ for oligomers and $\mathrm{n}=1$ for polymer) in THF/isopropylamine ($1 / 2, \mathrm{v} / \mathrm{v}$) was degassed 40 min at room temperature before $\operatorname{Pd}(\mathrm{dba})_{2}(0.02 \mathrm{eq})$ and $\mathrm{CuI}(0.04 \mathrm{eq})$ were added. The mixture was degassed at $50^{\circ} \mathrm{C}$ for additional 30 min , followed by dropwise adding degassed solution of Endcap (4.0 eq) for oligomers or $7(1.0 \mathrm{eq})$ for polymer in THF. After reaction under argon atmosphere at $50^{\circ} \mathrm{C}$ for 2 days, the solvent was removed and the residue was extracted with chloroform/water. The organic layer was washed with saturated ammonium chloride, water and brine, and dried over anhydrous sodium sulfate. The solvent was removed under vacuum and the crude product was purified by silica chromatography.

PE5 ($80 \mathrm{mg}, 55 \%$): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50(\mathrm{~m}, 10 \mathrm{H}), 7.27(\mathrm{~d}, 4 \mathrm{H}, J=8.5 \mathrm{~Hz}), 4.10(\mathrm{~m}, 12 \mathrm{H})$, $3.87(\mathrm{~s}, 8 \mathrm{H}), 3.86(\mathrm{~s}, 4 \mathrm{H}), 3.54(\mathrm{~s}, 4 \mathrm{H}), 1.60(\mathrm{~m}, 12 \mathrm{H}), 1.44(\mathrm{~s}, 18 \mathrm{H}), 1.23(\mathrm{~m}, 108 \mathrm{H}), 0.88(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.01,170.94,170.86,170.60,135.64,135.45,135.31,135.27,133.90$, $133.85,133.43,131.92,129.54,124.43,123.96,123.42,121.69,95.96,93.57,93.25,87.40,81.33,65.54$, $65.50,42.88,40.03,39.79,39.77,32.17,29.94,29.93,29.92,29.92,29.91,29.90,29.89,29.86,29.84$,
29.81, 29.80, 29.77, 29.62, 29.62, 29.61, 29.54, 29.51, 29.48, 28.86, 28.84, 28.83, 28.26, 26.11, 26.09, 22.94, 14.36. MS (MALDI-TOF) $m / z\left([\mathrm{M}]^{+}\right) 2064.614$.

PE7 (80 mg, 80\%): ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{~m}, 14 \mathrm{H}), 7.28(\mathrm{~d}, 4 \mathrm{H}, J=8.5 \mathrm{~Hz}), 4.12(\mathrm{~m}, 20$ $\mathrm{Hz}), 3.88(\mathrm{~s}, 16 \mathrm{H}), 3.86(\mathrm{~s}, 4 \mathrm{H}), 3.53(\mathrm{~s}, 4 \mathrm{~Hz}), 1.61(\mathrm{~m}, 20 \mathrm{H}), 1.45(\mathrm{~s}, 18 \mathrm{H}), 1.24(\mathrm{~m}, 180 \mathrm{H}), 0.88(\mathrm{~m}$, $30 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 171.00,170.93,170.84,170.82,170.81,170.59,135.65,135.46$, $135.34,135.32,135.27,133.91,133.89,133.87,133.83,133.43,131.92,129.54,124.45,124.04,123.96$, $123.88,123.41,121.68,95.98,93.62,93.53,93.48,93.24,87.40,81.32,65.54,65.50,42.88,40.03,39.77$, 32.18, 29.94, 29.92, 29.92, 29.91, 29.90, 29.88, 29.86, 29.84, 29.82, 29.80, 29.77, 29.62, 29.53, 29.51, 29.48, 28.86, 28.85, 28.83, 28.26, 26.11, 22.94, 14.36. MS (MALDI-TOF) $\mathrm{m} / \mathrm{z}\left([\mathrm{M}]^{+}\right) 3168.058$.

PE9 (35 mg, 35\%): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{~m}, 18 \mathrm{H}), 7.28(\mathrm{~d}, 4 \mathrm{H}, J=8.5 \mathrm{~Hz}), 4.12(\mathrm{~m}, 28 \mathrm{H})$, $3.88(\mathrm{~s}, 24 \mathrm{H}), 3.86(\mathrm{~s}, 4 \mathrm{H}), 3.54(\mathrm{~s}, 4 \mathrm{H}), 1.61(\mathrm{~m}, 28 \mathrm{H}), 1.45(\mathrm{~s}, 18 \mathrm{H}), 1.24(\mathrm{~m}, 252 \mathrm{H}), 0.88(\mathrm{~m}, 42 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 171.01,170.93,170.85,170.83,170.81,170.61,135.66,135.65,135.63$, $135.45,135.33,135.32,135.27,133.91,133.90,133.88,133.83,133.43,131.92,129.54,124.45,124.04$, $123.97,123.96,123.95,123.88,123.40,121.68,95.97,93.61,93.52,93.47,93.22,87.40,81.33,70.80$, $65.55,65.51,42.88,40.02,39.77,32.18,29.94,29.92,29.91,29.90,29.88,29.86,29.84,29.82,29.81$, 29.77, 29.62, 29.53, 29.51, 29.48, 28.86, 28.26, 26.10, 22.94, 14.36. MS (MALDI-TOF) $\mathrm{m} / \mathrm{z}\left([\mathrm{M}]^{+}\right)$ 4273.837.

PPE (160 mg, 80\%): ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~s}, 0.1 \mathrm{H}), 7.51(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{~m}, 4 \mathrm{H}), 3.87(\mathrm{~m}$, $4 \mathrm{H}), 1.60(\mathrm{~m}, 4 \mathrm{H}), 1.24(\mathrm{~m}, 36 \mathrm{H}), 0.87(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 170.79,170.77,170.75$, $170.65,170.63,170.60,170.57,170.27,135.44,135.43,135.40,135.38,135.37,135.36,135.34,135.32$, $133.91,133.90,133.88,133.87,133.86,133.85,133.84,123.98,123.95,123.94,123.79,93.53,93.48$, $93.47,93.46,93.44,65.62,65.60,65.57,65.53,42.86,39.76,39.75,32.18,29.94,29.92,29.89,29.88$, 29.84, 29.82, 29.79, 29.62, 29.61, 29.53, 29.51, 29.47, 28.85, 28.84, 28.81, 26.14, 26.13, 26.10, 22.94, 14.36.

General synthesis of PPECOONa and oligomers PEnNa ($\mathrm{n}=5,7,9$): The precursor PEn ($\sim 40 \mathrm{mg}$) or PPE was dissolved in chloroform (3 mL) and treated by excess TFA (3 mL) over 5 hours at ambient temperature. The solvents were completely removed under vacuum. The residue was dissolved in THF (20 mL) and then a solution of sodium hydroxide (10 equivalents to ester group) in methanol/water (3 mL , $2 / 1, \mathrm{v} / \mathrm{v}$) was added. The mixture was stirred at $50^{\circ} \mathrm{C}$ overnight. The solvents THF and methanol were removed under vacuum, and water (10 mL) was added to the residue, followed by additional reaction at $50^{\circ} \mathrm{C}$ for 5 hours. The mixture was concentrated to about 2 mL , precipitated in acetone (25 mL), and centrifuged. The precipitate was dissolved again in water ($\mathrm{pH} 9,2 \mathrm{~mL}$). Multiple precipitation was repeated $3 \sim 5$ times in acetone (containing $5 \sim 20 \%$ methanol). Any insoluble in water was removed by centrifuge before precipitation operation. After filtration on a membrane filter with a $0.45 \mu \mathrm{~m}$ pore size and complete dryness under vacuum, the solid was completely dissolved in water and subjected to dialysis using dialysis tube (molecular weight cutoff 500 Da for PEns and 12,000 Da for PPECOONa) against water (pH 8) over 3 days. Light yellow solid was obtained in a yield of $80 \sim 90 \%$ after water was removed under vacuum.

PE5Na: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $87.2 \sim 7.6$ (m), $3.4 \sim 3.9(\mathrm{~m})$.

PE7Na: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 7.15 \sim 7.4(\mathrm{~m}), 3.4 \sim 3.9(\mathrm{~m})$.

PE9Na: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 7.25 \sim 7.6(\mathrm{~m}), 3.5 \sim 3.9(\mathrm{~m})$.

PPECOONa: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 7.85$ (s), 7.25 ~ 7.6 (m), 3.3 ~ 3.9 (m).

Figure S3. MALDI-TOF analysis of a) PE5, b) PE7 and c) PE9.

Figure S4. ${ }^{1} \mathrm{HNMR}$ analysis of a) PE5, b) PE7 and c) PE9 in CDCl_{3}.

Figure S5. Plot of extinction coefficient as a function of number of absorbing unit.

Table S1. Correlation time from fluorescence anisotropy decay

	CHCl_{3}			$\mathrm{H}_{2} \mathrm{O}$		
	PE5	PE7	PE9	PE5Na	PE7Na	PE9Na
$\theta_{400 \mathrm{~nm}, \mathrm{~ns}}$	1.00	--- ${ }^{\text {a }}$	--- ${ }^{\text {a }}$	1.39	--- ${ }^{\text {a }}$	---- ${ }^{\text {a }}$
$\theta_{420 \mathrm{~nm}, \mathrm{~ns}}$	1.18	1.27	1.41	1.36	1.75	1.64
$\theta_{450 \mathrm{~nm}, \mathrm{~ns}}$	1.10	1.31	1.43	1.40	1.88	1.76
$\theta_{500 \mathrm{~nm}, \mathrm{~ns}}$	1.12	1.33	1.58	1.39	1.86	1.75
$\mathrm{R}_{\mathrm{H}}, \mathrm{nm}$	1.27	1.34	1.40	1.15	1.26	1.24
$\mathrm{V}, \mathrm{nm}^{3}$	8.7	10.2	11.7	6.5	8.5	7.9

[^0]

Figure S6. Transient absorption spectra of PEnNas ($\mathrm{n}=5,7,9$) in MeOH containing 10 mM NaOH . The optical density at 355 nm is 0.7 .

Figure S7. Absorption spectra of a) PE5Na, b) PE7Na, c) PPECOONa in water upon adding CaCl_{2}; fluorescence spectra of d) PE5Na, e) PE7Na, f) PPECOONa in water upon adding $\mathrm{CaCl}_{2}, \lambda_{\mathrm{ex}}=360 \mathrm{~nm}$. $[\mathbf{P E n N a}](\mathrm{n} 5,7,9)=1.0 \mu \mathrm{M},[\mathbf{P P E C O O N a}]=5 \mu \mathrm{M}$ in repeat unit.

Figure S8. FCS trace of a-c) PE7Na in the presence of $0,1.0$ and $10.0 \mathrm{mM} \mathrm{CaCl}_{2}$ respectively; d-f) PE9Na in the presence of $0,1.0$ and 10.0 mM CaCl 2 respectively.

Figure S9. FCS trace of PPECOONa (5 mM in water) in the presence of $0 \mathrm{mM} \mathrm{CaCl}_{2}$ (black), 1.0 mM CaCl_{2} (red, measured at $\mathrm{t}=24 \mathrm{~h}$ after CaCl_{2} was added.) and $10.0 \mathrm{mM} \mathrm{CaCl}_{2}$ (blue, measured at $\mathrm{t}=24 \mathrm{~h}$ after CaCl_{2} was added.) respectively. The inset was the corresponding count rate diagram.

Table S2. Diffusion time (τ_{D}) determined by FCS

		PE5Na	PE7Na	PE9Na	PPECOONa
$\tau_{\mathrm{D}}, 10^{-5} \mathrm{~s}$	$\left[\mathrm{CaCl}_{2}\right]=0$	4.4 ± 0.4	4.5 ± 0.4	5.0 ± 0.2	6.2 ± 0.4
	$\left[\mathrm{CaCl}_{2}\right]=10 \mathrm{mM}$	5.5 ± 0.4	5.2 ± 0.3	5.4 ± 0.5	$-------^{a}$

${ }^{a}$ First order fitting is not available.

Figure S10. Absorption spectra of a) PE5Na, b) PE7Na and c) PE9a in water containing varying NaCl concentrations; fluorescence spectra of d) PE5Na, e) PE7Na and f) PE9a in water containing varying NaCl concentrations, $\lambda_{\text {ex }}=360 \mathrm{~nm}$. [PEnNa] $(\mathrm{n}=5,7,9)=1.0 \mu \mathrm{M}$.

Figure S11. Absorption spectra of a) PE5Na, b) PE7Na, c) PE9a and d) PPECOONa in water upon changing pH ; fluorescence spectra of e) PE5Na, f) PE7Na, g) PE9a and h) PPECOONa in water upon changing $\mathrm{pH}, \lambda_{\text {ex }}=360 \mathrm{~nm}$. [PEnNa] $(\mathrm{n}=5,7,9)=1.0 \mu \mathrm{M},[$ PPECOONa] $=5 \mu \mathrm{M}$ in repeat unit.

Table S3. Diffusion time (τ_{D}) determined by FCS

		PE5Na	PE7Na	PE9Na	PPECOONa
$\tau_{\mathrm{D}}, 10^{-5} \mathrm{~s}$	pH 11	5.1 ± 0.1	5.0 ± 0.4	5.2 ± 0.2	7.9 ± 0.6
	pH 2.5	4.3 ± 0.1	4.9 ± 0.2	4.9 ± 0.4	$-------{ }^{a}{ }^{a}$

${ }^{a}$ First order fitting is not available.

Figure S12. FCS trace of PPECOONa at pH 2.5 . [PPECOONa] $=5 \mu \mathrm{M}$. The inset is count rate history recorded under the same condition.

Figure S13. Stern-Volmer plot of $\mathrm{I}_{0} / \mathrm{I}$ as a function of MV^{2+} concentration. [PEnNa] $(\mathrm{n}=5,7,9)=1.0$ $\mu \mathrm{M},[\mathbf{P P E C O O N a}]=5.0 \mu \mathrm{M}$ in repeat unit. $\lambda_{\mathrm{ex}}=360 \mathrm{~nm}$.

Figure S14. Fluorescence spectra of a) PE5Na, b) PE7Na, c) PPECOONa upon adding DOC, $\boldsymbol{\lambda}_{\text {ex }}=360$ nm . [PEnNa] $(\mathrm{n}=5,7)=1.0 \mu \mathrm{M},[\mathbf{P P E C O O N a}]=5 \mu \mathrm{M}$ in repeat unit.

Reference

(1) Tan, C.; Pinto, M. R.; Kose, M. E.; Ghiviriga, I.; Schanze, K. S. Adv. Mater. 2004, 16, 1208.
(2) Radau, G. Monatshefte für Chemie 2003, 134, 1159.
(3) Mahler, C.; Müller, U.; Muller, W. M.; Enkelmann, V.; Moon, C.; Brunklaus, G.; Zimmermann, H.; Höger, S. Chem. Commun. 2008, 0, 4816.
(4) Lulinski, P.; Skulski, L. Bull. Chem. Soc. Jpn. 2000, 73, 951.
(5) Hunsen, M. Synthesis 2005, 2487.
(6) Faucher, A.-M.; White, P. W.; Brochu, C.; Grand-Maître, C.; Rancourt, J.; Fazal, G. J. Med. Chem. 2003, 47, 18.
(7) Waybright, S. M.; Singleton, C. P.; Wachter, K.; Murphy, C. J.; Bunz, U. H. F. J. Am. Chem. Soc. 2001, 123, 1828.

[^0]: ${ }^{a}$ Measurements were not available as the emission intensity is too weak.

