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Experimental Procedure 

  The experiments were done on beamline ID09B at the European Synchrotron Radiation 

Facility in Grenoble. This beamline provides a quasi-monochromatic x-ray source with intense 

x-ray pulses. The detailed setup of the time-resolved x-ray liquidography experiment is described 

elsewhere 
1-7

. Briefly, a typical pump-probe scheme with optical pump and x-ray probe pulses 

was adopted to initiate and monitor the chemical reaction of interest. The solutions were 

prepared by dissolving I2 (Sigma-Aldrich, PN I8780, 99.2%) in CCl4 (Sigma-Aldrich, PN 

270652, 99.9%) or cyclohexane (Sigma-Aldrich, PN 676861, ≥ 99%) at 25 mM or 20 mM 
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concentration, respectively, which were then circulated through a high-pressure slit nozzle (0.3 

mm slit, Kyburz) to form a liquid jet. The nozzle provides a stable flow of liquid and its speed 

was adjusted to inject a fresh sample for every new x-ray pulse, maintaining the temperature of 

the liquid constant. A 1-kHz femtosecond laser was used to dissociate iodine and a chopper was 

used to reduce the x-ray frequency to 1 kHz. Photodissociation of I2 was initiated by laser pulses 

at 530 nm (for I2 in CCl4) or 520 nm (for I2 in cyclohexane) generated by a TOPAS OPA which 

was pumped by the 800 nm output from an amplified Ti:sapphire laser system. In order to 

prevent multi-photon excitation, the laser pulse was temporally stretched to ~0.5 ps by passing it 

through a fused silica rod. The laser pulse with the energy of 60 μJ per pulse was focused to a 

spot of ~205 μm diameter (220 μm for horizontal and 190 μm for vertical) at the sample, giving 

a fluence of 0.46 mJ/mm
2
. Subsequently, a time-delayed x-ray pulse was used to probe the 

progress of the reaction. The experiment was performed in 16 bunch mode with 100 ps x-ray 

pulses. A single-harmonic undulator with a magnetic period of 17 mm provided an intense quasi-

monochromatic beam with a 3 % bandwidth around 18.15 keV with 5  10
8
 photons per pulse. 

The scattering pattern was recorded by an integrating CCD detector with fast readout (FReLoN 

camera, 2048×2048 pixel, detection area 105 × 105 mm
2
, and readout to 16 bits in 0.5 s per 

image). The exposure time per image was about 2 s and 1200 images were taken per hour. The 

images were integrated azimuthally and were corrected for the polarization and space-angle 

effects. 

 

Time-slicing                            

Scattering patterns containing a fingerprint of the iodine recombination were collected as 

a function of the pump-probe delay t from –174 ps to 426 ps, and -109 ps to 431 ps with a time 

step of 10 ps for CCl4 and cyclohexane, respectively. This time step, which is much smaller than 

the usual ones used in previous experiments, was used to monitor the fast vibrational relaxation 

processes whose time scale is comparable to the full width at half maximum (fwhm) of the x-ray 

temporal profile (100 ps). The instrumental time resolution depends on the duration of the x-ray 

(100 ps) and laser (0.5 ps) pulses and their relative jitter (3 ps), and thus is governed by the x-ray 

pulse duration. 

 



S3 

 

Data processing                            

The 2D scattering patterns recorded on the CCD detector were azimuthally integrated 

into one-dimensional intensity curves, S(q,t), as a function of momentum transfer q (q = 

()sin(), where  is the wavelength of the x-ray and the 2 is the scattering angle) and time 

delay t between the laser and x-ray pulses. The curves were averaged and scaled to the total 

scattering, both elastic and inelastic, from non-excited solvent/solute background in the high q 

region, where the scattering is insensitive to structural changes. After scaling the intensities, 

difference scattering curves ΔS(q,t) were generated by subtracting the reference data measured at 

–3 ns from the data at other time delays, as shown in Fig. S1 for I2 in CCl4, and in Fig. S20 for I2 

in cyclohexane. The correlated difference radial distribution function, ΔS[r,t], which is a measure 

of the radial electron density change as a function of interatomic distance r in real space, was 

obtained by sine-Fourier transforming the qΔS(q,t) curves: 

2
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where the constant  ( = 0.03 Å
2
) is a damping term that accounts for the finite q range in the 

experiment (0.04 – 9.0 Å
-1

) and fI is the scattering factor of the iodine atom to sharpen the 

resulting peaks (sharpening term). The resultant ΔS[r,t] curves are shown in Fig. S2 and Fig. S21 

for I2 in CCl4 and I2 in cyclohexane, respectively. 

 

Removal of the solvent contribution                            

In order to study the dynamics of the iodine recombination alone, the scattering from the 

pure CCl4 (or pure cyclohexane) solvent was subtracted from the scattering of the solution. 

However, a complication arises when a chemical reaction takes place. The solvent changes 

temperature, giving rise to an unwanted thermal background in ΔS(q,t). A separate experiment 

was thus performed to evaluate this effect. Pure CCl4 was irradiated with 0.1 ps laser pulses at 

the off-resonant wavelength of 390 nm to heat the solvent through multiphoton absorption 

without inducing any chemical change. Once the thermal response of the solvent is measured, it 

is subtracted from the solution signal by suitable scaling. The multiphoton excitation of pure 

solvent was made with 70 µJ  pulses focused into Ø 150 µm; the signals S[r,t] of the pure 

solvent were recorded at t = 200 ps and 1 µs for the constant volume and constant pressure 
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regimes respectively. The scale constant in the subtraction was determined by scaling the Fourier 

transforms S[r,t] of the solution and the pure solvent to each other, at distances r much greater 

than the size of the I2 molecule, here r > 6 Å , as shown in Fig. S3. Fig. S4 displays the S[r,t] 

curves of the I2 alone at various time delays after the solvent contribution was subtracted. In the 

case of pure cyclohexane, a near-IR (1725 nm) laser pulse was used to measure the thermal 

response. The pulse duration was 100 fs, and the energy was 60 µJ at the sample with the beam 

focused to Ø 100 µm. The signals were measured at two time delays at t = 200 ps and 1 µs. As in 

the case of CCl4, the cyclohexane signal was subtracted from the I2/cyclohexane signal after 

scaling at distances r greater than the size of the I2 molecule as shown in Fig. S22. 

 

Polychromatic correction                            

The x-ray pulse used in the experiment has a bandwidth of 3 % with a characteristic 

semi-Gaussian shape in the intensity vs energy (or wavelength) profile (Fig. S5a). This 

polychromaticity of the x-ray spectrum convolutes ΔSmono(q), the function of interest, into the 

measured data: 

( ) ( )
(2 )

( )

monoS q P d
S

P d

 


 


 




,  (2) 

where ΔS(2θ) is the observed signal as a function of the scattering angle (2θ), ΔSmono(q) is the 

scattering signal from monochromatic x-rays, and P(λ) is the x-ray spectrum (Fig. S5a).  

The polychromatic x-ray beam gives rise to a small shift and damping in the high-2 part 

of ΔS(2θ). Consequently the Fourier transform slightly deviates from the corresponding 

monochromatic one, ΔS[r]. The effect of the polychromatic beam on ΔS[r] is shown in Fig. S5b. 

To get accurate distance information, it is necessary to correct for the polychromaticity on ΔS[r]. 

The polychromatic effect is applied to reciprocal-space data, ΔS(q), and ΔS[r] is affected as well. 

If the x-ray wavelength changes from λ0 to λ' (λ' = aλ0), the new scattering intensity 

( , '( ')monoS q )
 
can be defined as 

0, ' ,( ') ( )mono monoS q S q    , where q’ is q/a. 

If P(λ) is normalized, Eq. (2) is simplified to 

 ,
(2 ) ( ) ( )

mono
S S q P d     .       (3) 

Eq. (3) can be converted to a discrete sum, 
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The Fourier transform of polychromatic data ΔS(q) is as follows (ignoring the constant term): 
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Then, inserting Eq. (4) into Eq. (5) leads to 
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This equation shows that the scattering data from polychromatic beam is still a weighted sum of 

monochromatic data in real-space. 

Based on the relationship in q-space, 
0, ' ,( / ) ( )mono monoS q a S q   

 
where a is the ratio 

between two wavelengths, the r-space relationship is found as follows: 
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Substituting ar for r' gives a new Fourier transform equation for ΔSmono, λ'(r'): 
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By swapping the sides of and simplifying Eq. (8), the following equation is obtained: 
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Finally, inserting Eq. (9) into Eq. (6) yields 
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Therefore, the ΔS[r] from a monochromatic x-ray beam can be easily converted to the curves at 

many different x-ray wavelengths and construct ΔS[r] that can be obtained from a polychromatic 

x-ray beam by using Eq. (10). Conversely, ΔS[r] in monochromatic condition can be extracted 

from the polychromatic data by least-squares fitting. We start with a trail scattering curve and 

convolute it with the polychromatic spectrum. The comparison between polychromatic 

experimental data and the convoluted trial curve gives us, after least-square refinement, ΔS[r] 

under monochromatic conditions. The original experimental polychromatic ΔS[r] was used as 

the initial trial data. In practice, the trial data is divided into 50 intervals in r with a 5-order 

polynomial representing each interval. These intervals are connected smoothly using b-spline 

smoothing. The polychromatic correction is applied to this synthesized arbitrary data and then 

least-squares refinement against the experimental data gives theoretical ΔS[r] in monochromatic 

condition, which agrees with experimental data after polychromatic correction. The 

monochromatic S[r,t] were obtained by the protocol shown in Fig. S5 and the results are shown 

in Fig. S6. 

 

Experimental data, r
2
Sinst[r] and the pair distribution function, ρ(r) 

The radial distribution function, ρ(r), is basically the same as r
2
S[r] from Eq. (1) except 

that the latter is modified by the damping term in the Fourier transform. The static scattering 

intensity is calculated from the pair distribution function gij(r) as follows: 

2 2
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The first term in Eq. (11) is eliminated in the difference scattering because it does not depend on 

the molecular structure. Then, the difference intensity from the difference pair distribution 

function is 
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For a I2 molecule, Eq. (12) can be written as follows: 
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Therefore, the inverse transform of 
2
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In Eq. (1), 
2exp( )q   can be replaced to 
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where * stands for convolution. 
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Multiplying by r
2
 on both sides of the last equation in Eq. (15) shows the relationship 

between r
2
ΔS[r] and Δρ(r) for a I2 molecule, 
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The damping factor, a Gaussian function, was convoluted and it broadens r
2
S[r] compared to ρ(r). 

As a result, ρ(r) shows two maxima close to the turning points of the X state whereas this feature 

is much less apparent in r
2
S[r] in Fig S18 (see also Fig. 3d). The loss of resolution in the x-ray data 

is due to the finite q range and the form factor effect, i.e. that x-rays probe atoms as “electron balls” 

unlike neutrons that probe the positions of the nuclei. Except the broadening by the damping term, 

the radial distribution, ρ(r) is identical to r
2
S[r]. 

 

Deconvolution to retrieve r
2
Sinst[r,t]                             

In the present theory, the experimental signal r
2
S[r,t] appears as a convolution integral 

2 2[ , ] ( ) [ , ]
x ray inst

r S r t d I t r S r  





    ,  (17) 

where Ix-ray(t) is the x-ray intensity as a function of time, and r
2
Sinst[r,t] is the signal of the 

sample induced by an (hypothetical) ultrashort x-ray pulse (Fig. S7b). Thus, to extract 

r
2
Sinst[r,t] from the experimentally determined r

2
S[r,t], a deconvolution of the x-ray temporal 

profile is necessary. Various deconvolution algorithms exist, including the constrained iterative 

algorithm, inverse filter and the least-mean-squares algorithm
8-10

. We deconvoluted using the 

least-mean-squares technique
8
. For each r, r

2
S[r,t] is a function of t. This function r

2
S[r,t] is 

the convolution of r
2
Sinst[r,t] with the x-ray temporal profile Ix-ray(t). The goal of deconvolution 

is to reconstruct r
2
Sinst[r,t] from r

2
S[r,t]. To do so, a model function for r

2
Sinst[r,t] is 
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expressed as a sum of three exponentials and the coefficients and the time constants of the 

exponentials were used as fitting parameters to minimize the discrepancy between the 

experimental r
2
S[r,t] and the model function convoluted with the x-ray temporal profile, as 

shown in Fig. S7. Ix-ray(t) is approximated by four half-Gaussians which give a perfect fit to the 

the x-ray temporal profile measured by a streak camera. Note how the rising edge of the x-ray 

pulse (negative time) is slightly steeper that the falling edge. 

Because the experimental data is convoluted in time, the least-mean-squares algorithm is 

applied to r
2
ΔS[r,t] for each r independently. For a given ri, ri

2
ΔSinst[ri,t] is calculated from the 

sum of three exponentials with 5 ps time steps. The least-squares fit between the experimental 

data ri
2
ΔS[ri,t] and ri

2
ΔSinst[ri,t] convoluted with the x-ray temporal profile gives ri

2
ΔSinst[ri,t] 

optimized for each ri. In principle, any functional form can be used as a trial function for the 

deconvolution. The quality of the deconvolution can be checked by convoluting r
2
Sinst[r,t] with 

the  Ix-ray(t) and then comparing it with r
2
ΔS[r,t]. As shown in Fig. S8 and Fig. S23, they show a 

good agreement for both samples. The deconvoluted r
2
Sinst[r, t] curves are shown in Fig. S9 

(also in Fig. 2a) for I2 in CCl4 and in Fig. 2b for I2 in cyclohexane. Two effects slightly distort 

the features in the r
2
Sinst[r,t] curves. First, although the equilibrium I-I distance in the X and 

A/A’ state is 2.67 Å and 3.1 Å, respectively, the positions of the negative and positive peaks are 

slightly shifted from these values in the difference curves. This peak shift is due to a partial 

overlap of positive and negative peaks. Second, a limited q range of the experimental data causes 

artificial oscillation in the Fourier transformed data,Sinst[r,t]. Because of the r
2
 factor, these 

oscillations are enhanced in the high r region (r > 3.5 Å ) of r
2
Sinst[r,t] and generates wiggles in 

an otherwise monotonous distribution as shown in Fig. 2a and 2b. This oscillation has a specific 

period 2/qmax, where qmax is the maximum q used in the Fourier transform. In our case, qmax is 9 

Å
-1

 and thus the period is ~0.7 Å . 

 

Double difference curves r
2
Sinst[r,t]                            

The r
2
Sinst[r,t] monitors the evolution of iodine over two electronic surfaces X and A/A’ 

simultaneously, which complicates the interpretation. The A/A’ state has a rather long life time 

(2.7 ns or 1.2 ns for I2 in CCl4 as discussed below) compared with the investigated time range. In 

addition, a very small fraction of I2 completely dissociates into atoms that do not return to I2 in 
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the investigated time range. To clean up the contribution from these long-lived A/A’ state and 

atomic iodine, double difference signals, r
2
Sinst[r,t] = r

2
Sinst[r,t] - r

2
Sinst[r,t],  were 

calculated (Fig. S10), where t  (426 ps was used in this case) is a time delay larger than the time 

scale of the vibrational relaxation in the X state. In addition, although the A/A’ life time is long 

(1.2 ns; extracted from experiment data, details in next section), r
2
Sinst[r,t] is still affected by 

the decay of A/A’. To remove this effect, theoretical r
2
Sinst[r,t] curves corresponding to this 

A/A’ decay were calculated (see the next section) and subtracted from r
2
Sinst[r,t]. The 

corrected r
2
Sinst[r,t] curves are shown in Fig. S11. I2 in cyclohexane shows faster population 

decay of A/A’ than in CCl4. The population decay of A/A’ state is almost finished in 100 ps, 

making it hard to decouple the population decay of the A/A’ state and the vibrational cooling. 

For this reason, the double difference curves were not calculated for I2 in cyclohexane. Harris et 

al
11

 also reported that in cyclohexane a A/A’ decay is ~71 ps, which is on the same time scale as 

the vibrational cooling. 

 

 

The A/A’ state lifetime measurement 

To determine the lifetime of the A/A’ state of I2 in CCl4 from the scattering data, two 

types of analysis were used. The first one is singular value decomposition (SVD) analysis on the 

scattering data r
2
ΔS[r,t] at long time delays from 426 ps to 4 ns. SVD shows that there is only 

one major component. The first time-independent component (left singular vector) shown in Fig. 

12a resembles the difference scattering signal of A/A’. Fig. S12b shows the first time-dependent 

component (right singular vector) and its exponential fitting gave 1.2 ± 0.1 ns lifetime. The 

second method to determine the lifetime of A/A’ is to analyze the amplitude of the solvent 

contribution vs time. The solvent amplitude is directly related to the temperature change in the 

solvent, and the origin of the temperature change is the heat released from the solute to the 

solvent. Since the population relaxation from the A/A’ state to the X state is an exothermic 

process, the temperature change of solvent is sensitive to this process. The solvent amplitude vs 

time and the exponential fit are shown in Fig. S12c. The exponential fit gives 1.2 ± 0.2 ns, which 

is identical to the value obtained from the SVD value. We note that this 1.2 ns life time of A/A’ 

state is smaller than the 2.7 ns reported by spectroscopic studies
11

.  
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Time-dependent pair distribution function r
2
Sinst[r,t]                            

Finally, we compensate for the negative peak at ~2.67 Å , the I2 hole from the depletion of 

the ground state and derive the time-dependent distance distribution r
2
Sinst[r,t] for the bond 

formation in the X-state. Specifically r
2
Sinst[r,t] = r

2
ΔΔSinst[r,t] + r

2
SI2,X[r], where r

2
SI2,X[r] is the 

scattering curve of the ground state (X) of I2. Since a damping term and a sharpening term were 

used in the Fourier transform as shown in Eq. (1), we first check the effect of these terms on the 

r
2
S[r] curves as shown in Fig. S13. It turns out that an intrinsic I-I distribution of ~0.2 Å  do not 

have any significant effect on the r
2
S[r] compared with the case when a single I-I distance (i.e. a 

-function) was used. The only effect of a 0.2 Å  dispersion in the ground state is that the height 

of r
2
S[r] is slightly reduced. The final effect of the size of an iodine atom (x-ray formfactor), 

damping and sharpening is a broadening of r
2
S[r] to ~0.6 Å  (fwhm). A Gaussian function with a 

fwhm of 0.6 Å  reproduces the peak shape satisfactorily, and thus we used a time-independent 

Gaussian function with ~0.6 Å  fwhm to account for the contribution of the depleted ground state. 

By fitting the negative peak in r
2
Sinst[r,1 ps], the Gaussian peak for the depleted ground state 

was scaled and added to r
2
Sinst[r,t]  at all time delays to construct r

2
Sinst[r,t] as shown in Fig. 

S14. For I2 in cyclohexane, rather than the double difference curves, r
2
Sinst[r,t] was used to get 

r
2
Sinst[r,t]. The same Gaussian peak was added to r

2
Sinst[r,t]. 

 

Dependence on the functional form used in the deconvolution procedure 

So far we have described the case where a three-exponential function is used in the 

deconvolution process, but other functions (a two-exponential function, a four-exponential 

function and a stretched exponential function) were also used to check the dependence of the 

results on the functional form. As shown in Fig. S15, the r
2
Sinst[r,t] curves obtained from using 

these four different functional forms yield almost identical deconvoluted curves, but those in the 

early time delays contain some noise. This noise reflects the poorer signal to noise ratio of the 

early delays. In this case, we have to choose the one that gives the lower chi-square value in the 

convoluted curves. In addition, the smoothness of the deconvoluted curves can guide us too. 

Among four, the three-exponential case gives the lowest chi-square value and the smoothest 
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curves. Actually if there is no noise at all or the noise is sufficiently low, then there is even less 

dependence on the choice of the functional forms.  

 

Time-dependent average I-I distance as a function of time, <r(t)> 

The r
2
Sinst[r,t] contains information about the time-dependent I-I distance distribution, 

and it was thus used to extract the dynamics of the vibrational relaxation processes. We 

calculated <r(t)>, the average distance as a function of time (Fig. 3c) for I2 in CCl4, by using the 

data from 1.5 Å  to 4.5 Å . A single exponential function does not provide a satisfactory fit to the 

experimental data and double exponential is necessary to attain a satisfactory fit with time 

constants, 16 ± 0.2 ps and 76 ± 2 ps with a relative ratio of about 2:1. Here the errors account for 

the fitting and do not account for any other experimental errors. Adding more exponentials does 

not improve the fit. For example, when three exponentials were used, the two of the time 

constants converge to an identical value, eventually reverting to the same result as with the case 

with the double exponentials. This result reveals that the vibrational cooling process in the X 

state occurs via a bi-exponential decay. We also tried a stretched exponential. This gives a 

slightly worse fit than the double exponential. The fit gives β = 0.69 ± 0.02 and tau = 24 ± 1 ps. 

The mean relaxation time from the result of stretched exponential fit is 31 ps. Since the final 

r
2
Sinst[r,t] curves depend on the widths of the added Gaussian function to compensate for the 

depleted ground state, we examined the effect of this Gaussian width on the final time constants. 

As shown in Fig. S16 and summarized in Table S1, the <r(t)> yields still the same bi-exponential 

decay profile with quite similar time constants. As mentioned earlier, whereas the previous 

spectroscopic study reported 2.7 ns for the lifetime of A/A’, the analysis of our scattering data 

yields 1.2 ns. We also checked the effect of the lifetime values of A/A’ on the final <r(t)> and 

the time constants for the vibrational cooling process. The final results do not show much 

dependence on the lifetime of A/A’ as both values are much larger than the vibrational cooling 

times.  

For I2 in cyclohexane, the change of <r(t)> agrees well with the single exponential 

function with a time constant of 55 ± 1 ps, instead of a double exponential that works for I2 in 

CCl4. Since both the population decay of A/A’ state and the vibrational cooling are mapped in 

<r(t)>, this single exponential decay behaviour of <r(t)> implies that both processes have similar 
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time constants and single-exponential decay profiles. This is consistent with the observation by 

Harris et al
11

, who also reported that, in cyclohexane, the decay of A/A’ state (~71 ps) is on the 

same time scale as the vibrational cooling process. 

 

The deconvolution algorithm comparison: the least-mean-square method and the 

constrained iterative method 

In addition to the least-mean-square deconvolution method, another deconvolution 

method was used to check the dependence of the deconvoluted signal on the deconvolution 

method. For this purpose, the constrained iterative method was applied to the same experimental 

data. Among various constrained iterative method, Jason’s method
8
 was used because it 

introduces a boundary condition in the iteration so that it controls the solution to converge within 

physically meaningful region. In each iteration step, the following equation was used. 

  2 1 2 2 2 2[ , ] [ , ] [ , ] [ , ] ( ) [ , ]k k k k

inst inst inst EXP X ray instr S r t r S r t A r S r t r S r t d I t r S r  

         , (18) 

where k and k+1 indicate iteration numbers,  2 [ , ]k

instA r S r t
 
is the function to provide a 

convergence factor based on the boundary condition defined by ±20 % from the initial guess 

values and is defined as follows: 

 

 

 

2 2 0 2

2 2 2 0

     [ , ]-0.2 [ , ]  [ , ]

[ , ]                               [ , ] 0.2 [ , ]

0     elsewhere.

k k

inst inst inst

k k

inst inst inst

a r S r t r S r t r S r t

A r S r t r S r t r S r t

     



      




. (19) 

One limitation of the iterative method is that the solution is strongly affected by noise. When the 

signal-to-noise ratio is not good enough, the experimental noise generates unphysical oscillations. 

The experimental noise causes a strange oscillation at late time delays (>100 ps). In the early 

time region (<100 ps), however, the deconvolutions using the constrained iterative method and 

the least-square-method give almost identical result within experimental errors as shown in Fig. 

S17. 

 

Reliability test of the data analysis and estimation of spatial and temporal uncertainties 

A series of data processing procedures were employed to extract the structural changes 

more clearly. To assess the reliability of the used procedures, we applied the exact same 
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procedures to mock data and examined the uncertainties introduced by the procedures. This test 

confirmed that our procedures can extract reliable information.  

The mock data S(q,t) were calculated by Debye equation (Eq. (21)).  

2 sin( )
( , ) ( ) ( , )I

r

qr
S q t f q r t dr

qr
          (21) 

The difference radial distribution functions, r,t), was calculated by using r,t) from 

MD simulation (Fig. S18a) to mimic the vibrational relaxation process. The time scales of the 

MD simulation were doubled to make the relaxation rates roughly the same as that observed in 

the experimental data. Solvent heating signal was also added to the mock data to account for the 

effect of solvent heating. The random noise was generated by using a Gaussian distribution 

centered on the difference scattering intensity and a standard deviation proportional to q
1.2

 and 

the square of atomic form factor of iodine. The calculated mock data are shown in Fig. S24a and 

it has a similar noise level as the experimental data. This mock data of S(q,t) were used to test 

the reliability of our procedures applied to the experimental data.  

As was done for the experimental S(q,t) curves, the mock S(q,t) curves were converted 

to the difference radial distribution, r
2
S[r,t], by Fourier transform in Eq. (1). The resulting 

r
2
S[r,t] are shown in Fig. S24b. Then, solvent heating signal was subtracted from r

2
S[r,t] by 

using the exact same procedure used for the real data. Fig. S24c shows the resulting r
2
S[r,t] 

where the solvent heating signal was removed. 

The deconvolution calculation of the mock data was done using the least-mean-square 

method by using the exact same target functional form (three exponentials) and x-ray temporal 

profile that were used in data analysis of the experimental data. In Fig. S25a, the deconvoluted 

r
2
S[r,t] curves are compared with the reference r

2
S[r,t] curves which were calculated from 

r,t) by Eq. (16). The agreement is excellent.  

Then, as was done in the real data analysis of the experimental data, a Gaussian 

distribution corresponding to the ground state was added to the deconvoluted r
2
S[r,t] to 

generate the radial distribution of iodine-iodine, r
2
S[r,t] (Fig. S25b). At this point, to 

quantitatively assess the errors introduced by our procedures, we checked the R values calculated 

by Eq. (22). The R values ranged from 0.12 to 0.16, indicating ~12–16% difference between the 

reference and the analyzed data. The peak positions of the analyzed data differ from those of the 
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reference data by less than 0.06 Å , which can be regarded as the maximum spatial uncertainty in 

our analysis. 

2 2

2

[ , ] [ , ]

[ , ]

mock analyzed

mock

r S r t r S r t
R

r S r t






       (22) 

As was done in the data analysis of the experimental data, <r(t)> was calculated for 

r
2
S[r,t] and compared with <r(t)> of the model used to generate the mock data as shown in Fig. 

S25c. As in experimental data, the temporal behavior of <r(t)> for the analyzed mock data is 

well described by a double exponential with lifetimes of 25 ps and 81 ps. The <r(t)> from the 

model data is also well fit by a double exponential with 23 ps and 91 ps. The time constants 

differ by less than 10 ps, which can be regarded as the temporal uncertainty for <r(t)>. We also 

tested another set of mock data where a different set of noise with the same amplitude was used, 

and the spatial and temporal uncertainties were still ~0.06 Å  and ~10 ps, respectively. 

 

Molecular Dynamics simulations                            

All the MD simulations were performed with periodic boundary conditions for a cubic 

box of 43.6 Å  length consisting of one I2 molecule embedded in 511 CCl4 molecules. This setup 

corresponded to the density of CCl4 at standard temperature and pressure (1.58 g/cm
3
). The 

classical equations of motion were integrated using the Gear predictor-corrector method with a 

time step of 1 fs, and the solvent molecules were kept rigid using quaternions 
12

. Freezing the 

vibrational degrees of freedom of CCl4 was in agreement with previous studies, which favoured 

the V-T energy transfer during the vibrational relaxation of I2 
11

.  

All interactions were assumed to be pairwise additive; for the intermolecular C-C, Cl-Cl, 

and C-Cl interactions, the OPLS parameters for Lennard-Jones 6-12 and Coulomb potentials 

were used 
13

. The I-C and I-Cl interactions were modeled by Lennard-Jones 6-12 potentials with 

parameters constructed using the usual Lorentz-Berthelot mixing rules, where I = 240 K and I 

= 3.8 Å  were determined from a fit of parameters for I-Ne and I-Ar interactions 
14

. The cutoff 

distance for terminating the van der Waals dispersion forces was set to be half of the box length. 

The electronic ground state (X state) of I2 was represented by a Morse potential VX with the 

parameters De = 12547 cm
-1

,  = 1.91 Å
-1

, and req = 2.67 Å  
15,16

. The purely repulsive excited 
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state ( state) was of the form V(r) = (r/Å )
-9.5

 with  = 8.61×10
7 

cm
-1

, and its dissociation 

limit was identical to that of the X-state 
17,18

. The potentials are shown in Fig. 1.  

The initial conditions for the photodissociation calculations were found by MD 

simulations performed in the canonical ensemble at T = 300 K using the Nose-Hoover thermostat 

19,20
. For these equilibration runs, the initial center-of-mass coordinates of the molecules 

corresponded to the positions of the unit cells in the cubic simulation box, and the momentum 

components of each atom were chosen randomly from a distribution with a Gaussian weighting. 

This choice did not bias the ensemble sampling because position randomization was obtained 

from a 20-ps initial run, before all atomic positions and velocities were saved for every 10 ps 

(each set of atomic positions and velocities constituted the initial conditions for the 

photodissociation calculations). The I2 molecule was kept rigid during the equilibration runs with 

a separation equal to the classical equilibrium distance req.  

The photodissociation trajectories were performed in the microcanonical ensemble to 

avoid non-collisional velocity scaling from the Nose-Hoover thermostat. A total of 272 initial 

conditions were used to run 200-ps photodissociation trajectories, where an instantaneous 

replacement of the X state by the  state potential mimicked an optical laser excitation of I2 

from the X state to the  state. Hence, at the first integration step, the total energy of the system 

increased by ~ 20000 cm
-1

 (the energy difference between the two electronic states at the 

distance req, see Fig. 1). In 32 trajectories the iodine atoms escaped the solvent cage and did not 

recombine within 200 ps. This corresponds to approximately 12 %, which match previous 

experimental results 
21

. 

In the classical treatment of the dynamics, any non-adiabatic transitions between the 

state and the X state, after laser excitation, could not occur. The non-adiabatic transition is an 

important quantum effect, especially in the asymptotic region of the two states, where the 

potentials are close enough to facilitate curve crossing 
22

. A simple surface hopping model was 

chosen in which an instantaneous deexcitation from the  state to the X state occurred once the 

energy difference between the two states equaled kBT ~ 208 cm
-1

 
14,23

. This criterion for a non-

adiabatic transition corresponded to a separation of ~5.2 Å  between the iodine atoms, which was 

nearly always reached before the iodine atoms re-approached, now in the X-state, due to 

collisions with solvent molecules (in approximately 6 % of the trajectories the iodine atoms 
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oscillated twice or more before reaching a separation of ~ 5.2 Å ). In order to maintain energy 

conservation “during” the transition, kBT was added to the kinetic energy associated with the 

vibrational degree of freedom, while the direction of the corresponding momentum vector was 

conserved. 

MD simulations allow us to compare the results of time-resolved X-ray liquidography 

and time-resolved spectroscopy. In Fig. S18a, the time evolution of the distribution function 

(r,t) of the I-I atomic pair obtained from the MD simulation is shown, with each function 

averaged over the vibrational period. The (r,t) curves can be converted to r
2
Sinst[r,t] for 

comparison with the experimental r
2
Sinst[r,t] curves. The r

2
Sinst[r,t] is basically the same as (r,t) 

except that the former is broadened by the convolution with Gaussian functions due to the 

damping term in the Fourier transform. It means that r
2
Sinst[r,t] can be obtained from (r,t) by 

using Eq. (16). As a result, the two maxima of (r,t) near the turning points of the potential 

energy surface of the X state are much less pronounced in the experimental r
2
Sinst[r,t] curves in 

Fig. S18a. The spread of (r,t) decreases with time as the ensemble of I2 molecules relaxes 

towards the bottom of the potential well of the X state. In other words, as the vibrational energy 

decreases, so does the accessible range of r.  

We obtained the time dependence of both the average energy <E> and the average I-I 

distance <r>, as shown in Fig. S18b and S18c. The decay of <E> was fit by a bi-exponential, 

giving the relaxation times of 
E
 = 9 ps and 

E
 = 71 ps (AE = 6248 cm

-1
 and BE = 3824 cm

-1
). 

Especially, the decay described by the slower component is in good agreement with result from 

the spectroscopic study (indicated by green cross-bars), confirming that the cooling of I2 in CCl4 

is well described by two relaxation components. The decay of the average I-I distance <r> was 

fit by a bi-exponential function with the relaxation times of 
r
 = 3 ps and 

r
 = 44 ps (Ar = 1.22 

Å  and Br = 0.22 Å ), in agreement with the bi-phasic decay behaviour observed in the 

experimental data. From the fittings of the <E> and <r> temporal profiles, we found that <E> 

and <r> exhibit bi-exponential decays different from each other and the amplitude ratio of the 

faster and slower components of the <r> decay is much larger than that of the <E> decay. This 

finding can be understood by considering the change in the accessible r range with respect to the 

change in energy E. When the energy decreases along the potential well, the accessible r range 

decreases more rapidly in the neighbourhood of the dissociation limit than in the lower-energy 
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range of the potential well because the slope of the potential energy versus r becomes steeper as 

the energy becomes lower from the dissociation limit (see Fig. 1). The relaxation times of <r>, 


r
 and

r
, from the MD simulation are shorter than the experimental values (16 ps and 76 ps) 

and the amplitude ratio of the fast and slow components (11:2) from the simulation is larger than 

the experimental value (2:1).  The quantitative difference between the distribution functions from 

the experiment and the simulation can be ascribed to the arbitrariness in the choice of the force 

field parameters, but the bi-phasic decay of the distribution functions is independent of this 

choice. We also note that the MD simulation neglects possible interference between the 

relaxation processes on the A/A’ state and on the X state. However, due to relatively fast energy 

loss on the X state, such interference would only affect the relaxation on the X state at very early 

times (most likely resulting in slightly longer decay times). 

 

Comparison of the experimental and theoretical radial distribution functions 

As the I-I distance changes in the low r region (1 – 5 Å ), the experimental data also show 

changes in the interatomic distance at r values larger than 5 Å . To examine the origin of these 

changes, a series of MD simulations were performed using MOLDY 
24

 while varying the I-I 

distance from 2.3 to 4.2 Å  (with an interval of 0.1 Å ). One I2 molecule and 256 CCl4 molecules 

were used in the MD simulations. The simulation was done with a canonical ensemble and the 

temperature was set to be 300 K by a Nose-Hoover thermostat. The Lennard-Jones potential was 

used and its parameters are summarized in Table S2. The pair distributions, g(r), for I-Cl and I-C 

atomic pairs were extracted from MD simulations (Fig. S19a and S19b) and transformed to S(q) 

by Eq. (11). Then, r
2
S[r] is obtained by the Fourier transform with a damping term and a 

sharpening function as shown in Fig. S19c. The difference between r
2
S[r] curves of the 

elongated I2 molecule (with an I-I distance of 2.3 – 4.2 Å ) and the ground-state I2 molecule (with 

the I-I distance of 2.65 Å ) gives a contour map of theoretical difference cage term, r
2
ΔScage[r]. 

Figure S19d shows r
2
ΔScage[r] as a function of I-I distance in the solute I2 molecule. The 

r
2
ΔScage[r] at large r values obtained from the MD simulation clearly shows a peak shift with the 

change of the I-I distance. With the decrease of the I-I distance towards the equilibrium distance 

in the ground state, the negative peak at around 6 Å  becomes narrower, and the positive peak 

between 7 and 8 Å  shifts to 7 Å . 
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The theoretical cage term was calculated by a linear combination (Eq. (20)) of the I-I 

distribution based on the experimental interatomic distance distribution contour map in Fig. 3A 

and the MD simulation result in Fig. S19d. For example, at a given t and r, the theoretical cage 

terms, r
2
ΔScage[r], were calculated as the sum of interatomic distributions at various I-I distances 

(ri) from the MD simulations, r
2
SMDi[r], weighted by the experimental radial distribution curves, 

r
2
SEXP[ri,t], at corresponding ri’s: 

2 2 2

exp[ , ] [ ] [ , ]
i

I I

cage MD i

r

r S r t r S r r S r t


   
           (20) 

Fig. 5b shows the change of the theoretical solute-solvent distance distribution (i.e. cage 

term) as a function of time based on the experimental I-I distribution of the solute molecules. 
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Fig. S1. Difference scattering curves ΔS(q,t) for I2 in CCl4 recorded with 100 picosecond x-ray 

pulses.  The curves show the change in scattering induced by a 0.5 ps laser pulse at 530 nm. Note 

the weak signal at negative delays due to the laser-truncated x-ray pulse. These signals comprise 

three states of iodine, their associated solvent cages plus solvent heating from recombining 

iodine atoms. 
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Fig. S2. Difference radial distribution function ΔS[r,t] for I2 in CCl4 obtained from the Fourier 

transform of ΔS(q,t). For interatomic distances r above 6 Å , the signal is approaching that from 

the (pure) heated solvent. Eliminating the solvent term is essential for precise estimates of the 

solute dynamics. At early times, only a fraction of the x-ray pulse probes the laser-triggered 

event, which explains why the difference signal is small at negative times. The red dotted curves 

include the correction for this partial temporal overlap by (roughly) normalizing the curves with 

respect to the number of x-ray photons that probe the excited molecules (erf function).  After 50 

ps the red and black curves coincide for the 100 ps x-ray pulse. 
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Fig. S3. Typical difference scattering curves for solute and solvent contributions. (a) The signals 

S[r, 426 ps] from the I2/CCl4 solution (black curve) and that from thermally excited pure CCl4 

(red curve). (b) The signal S[r, 426 ps] of I2 alone obtained from subtracting the solvent 

contribution from the total signal. Note the negative peak from the depletion of I2 in the ground 

(X) state and the positive peak corresponding to the A/A’ state.  
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Fig. S4. S[r, t] curves of I2 molecules alone after the correction from solvent heating as shown 

in Fig. S3 (I2 in CCl4). Again at early times, only a fraction of the x-ray pulse probes the laser-

triggered molecules and thus the difference signal is small. The red dotted curves correct for this 

partial temporal overlap (erf function). Note how the depth of the I2 hole at 2.6 Ang decreases 

with time from the reformation of I2 in the ground state. 
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Fig. S5. A scheme to correct for the asymmetric x-ray spectrum of the U17 undulator, the 

correction for the polychromatic x-rays inherent in pink beam experiments. (a)The x-ray pulse 

used in the experiment has a 3 % bandwidth with a characteristic half-Gaussian shape in energy. 

(b) The polychromaticity of the x-ray spectrum shifts the r-scale in the Fourier transformed data 

(red curve). The black curve is a monochromatic trial function which, after convolution with the 

U17 spectrum, gives the observed curve in blue. 
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Fig. S6. S[r,t] curves for I2 in CCl4 polychromatically corrected as shown in Fig. S5. The red 

dotted curves include the correction for the partial overlap of the laser illumination and x-ray 

pulse at early times by normalizing the curves with respect to the the number of x-ray photons 

influenced by laser illumination. 
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Fig. S7. Deconvolution concept. The x-ray temporal pulse width is larger or comparable to the 

time scale of the process of interest. The dynamic features are thus blurred in the experimental 

data due to the convolution of the sample signal with the temporal profile of the x-ray pulse. (a) 

Experimental data r
2
ΔS[r,t] in r space for various time delays. The red line indicates the position 

of r = 3.1 Å . (b) Upper figure is r
2
ΔS[r,t] versus time at r = 3.1 Å . The sample signal is 

constructed using the deconvolution procedure. For each r value, r
2
S[r, t] changes as a function 

of t. This function r
2
S[r, t] is the result of the convolution of the sample signal r

2
Sinst[r, t] with 

the x-ray temporal profile Ix-ray(t). The goal is to reconstruct r
2
Sinst[r, t]. r

2
Sinst[r, t] is 

expressed as a sum of three exponentials and the pre-exponential factors and the time constants 

were used as least-squares fitting parameters to minimize the discrepancy between the 

convoluted curve and the experimental r
2
S[r, t]. 
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Fig. S8. Experimental data r
2
S[r, t] for I2 in CCl4 (black) and the convolution (red) of the 

optimized r
2
Sinst[r,t] with the Ix-ray(t). The good agreement between black and red curves assures 

that the deconvolution was successfully done. 
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Fig. S9. Deconvoluted r
2
Sinst[r, t] for I2 in CCl4. Note the broad positive intensity at early times. 
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Fig. S10. r
2
ΔΔSinst[r,t] for I2 in CCl4 obtained by subtracting r

2
ΔSinst[r,426 ps] from r

2
ΔSinst[r,t] 

to remove the contribution from the A/A’ state and dissociated iodine atoms remaining at 426 ps. 
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Fig. S11. r
2
ΔΔSinst[r,t] for I2 in CCl4 obtained by subtracting the contribution from the population 

decay of A/A’ (1.2 ns). 
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Fig. S12. a) 1
st
 LSV (left singular vector) from SVD of the data for I2 in CCl4 at late time delays 

and the singular values (inset). b) 1
st
 RSV (right singular vector) and the single exponential fit 

with 1.2 ± 0.1 ns lifetime. c) Solvent contribution as a function of time and its exponential fit. 

The lifetime is fitted as 1.2 ± 0.2 ns. 
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Fig. S13. The effect of the damping and sharpening terms on r
2
S[r]. (a) Calculated difference 

scattering intensities of a I2 molecule when it has only one distance of 2.67 Å  without any 

dispersion (i.e. a -function) (black) and when the intrinsic distribution of I-I distance with 0.2 Å  

FWHM Gaussian distribution is considered (red). Upper curves are ΔS(q) and lower curves are 

qΔS(q). (b) Fourier transformation of (a). The two curves are quite similar, indicating that the 

effect of the intrinsic I-I distance distribution is negligible compared to the size of an iodine atom 

seen by x-rays. (c) Comparison of the FT curves in (b) and a Gaussian peak with 0.6 Å  FWHM 

(blue), indicating that the FT curve is well represented by a Gausssian function with 0.6 Å  

FWHM. (d) Comparison of the FT curves and Gaussian distribution with 0.2 Å  FWHM (blue).  
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Fig. S14. r
2
Sinst[r,t] for I2 in CCl4 with the negative peak at 2.67 Å  eliminated by adding a 

Gaussian. 

 



S34 

 

1 2 3 4 5 6

 

1 2 3 4 5 6

 

 a) b)

r (Å ) r (Å )

1 ps

6 ps

11 ps

16 ps

21 ps

26 ps

31 ps

36 ps

46 ps

56 ps

66 ps

76 ps

1 ps
6 ps

11 ps
16 ps
21 ps
26 ps
31 ps
36 ps
46 ps
56 ps
66 ps
76 ps
86 ps
96 ps

106 ps
116 ps
126 ps
136 ps
146 ps
156 ps
166 ps
176 ps
186 ps
196 ps
206 ps
216 ps
226 ps
246 ps
266 ps
286 ps
306 ps
326 ps
376 ps
426 ps

r2
Δ

S
[r

,t
]

r2
Δ

S
[r

,t
]

 

Fig. S15. Deconvoluted r
2
Sinst[r, t] for I2 in CCl4 from various functions: two exponentials 

(magenta), three exponentials (red), four exponentials (black) and a stretched exponential (blue). 

(a) All time delays from 1 ps to 426 ps. (b) Enlarged for early time delays up to 76 ps. 
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Fig. S16. The effect of the width of the Gaussian peak on the average I-I distance change for I2 in 

CCl4. (a) r
2
Sinst[r,t] in case of adding a normal Gaussian peak. (b) r

2
Sinst[r,t] in case of adding a 

wider Gaussian peak than in (a). (c) r
2
Sinst[r,t] in case of adding a narrower Gaussian peak than 

in (a). (d) <r(t)> corresponding to (a). (e) <r(t)> corresponding to (b). (f) <r(t)> corresponding to 

(c). 
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Fig. S17. Comparison of the deconvoluted signals for I2 in CCl4 by two different deconvolution 

methods: the least-mean-square method (black) and the constrained iterative method (red).  
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Fig. S18. Molecular dynamics simulation of the vibrational cooling process of I2 in CCl4. (a) 

Time evolution of the distribution function (r,t) of the I-I atomic pair obtained by  MD 

simulation (black, dashed line). The I-I distance distribution function r
2
S[r,t] converted from 

(r,t) (blue, solid line) are plotted together for comparison. The potential energy curve 

corresponding to the X state is also shown (red, dashed line). (b) The density (E,t) of the 
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vibrational energy as a function of time. Fit of the average energy <E> (blue, solid line) to a bi-

exponential function, f(t) = A  exp(–t/) + Bexp(–t/

) + 222 cm

-1
 (red, dashed line), gives 

the relaxation times 

 = 9 ps and 


 = 71 ps. The average vibrational energy of I2 at T = 300 K 

is 222 cm
-1

, as indicated by the cyan, dash-dotted line. The simulated results agree with the 

experimental data from Harris et al 
25

 (green crossbar). Note that the relaxation is not completed 

within 200 ps. (c) Time dependence of the radial distribution function r
2
S[r,t]. Fit of the average 

distance <r> (blue, solid line) to a bi-exponential function, g(t) = Ar exp(–t/r
) + Br exp(–t/

r
) + 

2.67 Å  (red, dashed line), gives the relaxation times r
 = 3 ps and 

r
 = 44 ps. The equilibrium 

distance (green, dash-dotted line) is also shown. 
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Fig. S19. MD simulation results. (a) The pair distribution function between the C atom in the solvent and 

the I atom. The blue curve and red curve are for I-I distance at 4.0 Å  and 3.1 Å , and the black curve is for 

an I-I distance of 2.65 Å . (b) The pair distribution function between Cl atoms in solvent and I atom. The 

blue curve and red curve are for I-I distance at 4.0 Å  and 3.1 Å , and black curve is for I-I distance at 2.65 

Å . (c) r
2

cageS[r] is converted from g(r)–1 calculated from MD simulation. (d) r
2
ΔScage[r] obtained by 

subtracting r
2
Scage[r] of I2 in the ground-state configuration from r

2
ΔScage[r] at other distances. With the 

decrease of I-I distance towards the equilibrium distance in the ground state, the width of negative peak at 

around 6 Å  is narrowed, and positive peak between 7 and 8 Å  is shifted to 7 Å .  
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Fig. S20. Difference scattering curves ΔS(q,t) for I2 in cyclohexane. 
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Fig. S21. Difference radial distribution function ΔS[r,t] for I2 in cyclohexane.  
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Fig. S22. S[r, t] curves of pure I2 obtained by subtraction of the solvent contribution for I2 in 

cycohexane. 
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Fig. S23. Experimental data r
2
S[r, t] for I2 in cyclohexane (black) and the convolution (red) of 

the optimized r
2
Sinst[r,t] with the Ix-ray(t). The good agreement between black and red curves 

assures that the deconvolution was successfully done. 
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Fig. S24. The generation of mock data. (a) Mock S(q,t) calculated by Eq. (21) from model 

r,t). (b) Fourier transform of the mock data, r
2
S[r,t]. (c) Solvent heating signals were 

removed from b). 
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Fig. S25. Analysis of mock data by deconvolution and other subsequent procedures used for the 

real experimental data. (a) The r
2
S[r,t] for the reference data directly converted from the model 

r,t) (black) and the analyzed mock data after deconvolution (red). (b) Radial distribution 

function r
2
S[r,t] curves for the reference data (black) and the analyzed mock data (red). (c) <r(t)> 

for the reference data (black circle) and analyzed mock data (red square). Both <r(t)> can be fit 

well by double exponentials with lifetimes of 23 ps and 91 ps for the reference (black line) and 

25 ps and 81 ps for analyzed mock data (red line), respectively. 
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Table. S1. Fitting results of the bond length relaxation for I2 in CCl4 in Fig. S16. 

 
Functions Offset (Å ) k1 (ps) k2 (ps) β 

a double 2.66 ± 0.002 15.8 ± 0.2 76.0 ± 1.5  

 
stretched 2.67 ± 0.004 24.1 ± 0.8 

 
0.69 ± 0.02 

     
 

b double 2.66 ± 0.001 13.5 ± 0.1 70.0 ± 0.1  

 
stretched 2.67 ± 0.003 20.3 ± 0.7 

 
0.65 ± 0.02 

     
 

c double 2.66 ± 0.003 19.7 ± 0.6 85.6 ± 6.0  

 
stretched 2.67 ± 0.004 29.7 ± 0.9 

 
0.75 ± 0.03 

 

 

Table. S2. Lennard-Jones parameters for I2 and CCl4. 

 
σ (Å) ɛ (kJ/mol) 

I-I 4.10 2.0 

I-C 3.95 0.6 

I-Cl 3.79 1.4 

C-C 3.80 0.2 

C-Cl 3.64 0.5 

Cl-Cl 3.47 1.13 
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