Relative Phase Change of Nearby Resonances in

Temporally Delayed Sum Frequency Spectra

Fadel Y. Shalhout, Sergey Malyk, and Alexander V. Benderskii*

Department of Chemistry, University of Southern California, Los Angeles, CA 90089

Supporting Information

Table 1. List of parameters obtained by fitting experimental PPP spectra at 0 fs and 300 fs IRvisible delay (shown in Figure 1 of the main text) to Eq. (2) of the main text.

IR-Vis Delay (fs)	A_{NR} $(\mathrm{a.u})$.	ω_{g} $\left(\mathrm{cm}^{-1}\right)$	σ_{g} $\left(\mathrm{cm}^{-1}\right)$	ϕ_{NR} (rad)	$B\left(\mathrm{r}^{+}\right)$ $(\mathrm{a} . \mathrm{u})$.	$B\left(\mathrm{r}^{-}\right)$ $(\mathrm{a} . \mathrm{u})$.	$\Gamma\left(\mathrm{r}^{+}\right)$ $\left(\mathrm{cm}^{-1}\right)$	$\Gamma\left(\mathrm{r}^{-}\right)$ $\left(\mathrm{cm}^{-1}\right)$	$\omega\left(\mathrm{r}^{+}\right)$ $\left(\mathrm{cm}^{-1}\right)$	$\omega\left(\mathrm{r}^{-1}\right)$ $\left(\mathrm{cm}^{-1}\right)$
0	0.07	2902	296	-1.5	-1.0	-0.63	20.0	16.5	2915	2975
300	0.04	2940	300	0.39	0.38	-0.28	14.3	14.0	2907	2979

Table 2. List of parameters obtained by fitting simulated PPP spectra at 0 fs and 300 fs IRvisible delay (shown in Figure 3 of the main text) to Eq. (2) of the main text.

IR-Vis Delay (fs)	A_{NR} $(\mathrm{a} . \mathrm{u})$.	ω_{g} $\left(\mathrm{cm}^{-1}\right)$	σ_{g} $\left(\mathrm{cm}^{-1}\right)$	ϕ_{NR} (rad)	$B\left(\mathrm{r}^{+}\right)$ $(\mathrm{a} . \mathrm{u})$.	$B\left(\mathrm{r}^{-}\right)$ $(\mathrm{a} . \mathrm{u})$.	$\Gamma\left(\mathrm{r}^{+}\right)$ $\left(\mathrm{cm}^{-1}\right)$	$\left.\Gamma \mathrm{r}^{-}\right)$ $\left(\mathrm{cm}^{-1}\right)$	$\omega\left(\mathrm{r}^{+}\right)$ $\left(\mathrm{cm}^{-1}\right)$	$\omega\left(\mathrm{r}^{-}\right)$ $\left(\mathrm{cm}^{-1}\right)$
0	0.09	2904	206	-1.7	-1.0	-0.63	18.6	16.3	2917	2974
300	0.05	2917	237	-2.6	0.39	-0.50	16.7	13.6	2922	2979

Table 3. Wavelength λ and pulse duration τ parameters used in Eqs. (9) and (10) to simulate the electric fields of the visible and IR pulses.

	$\lambda(\mathrm{nm})$	$\tau(\mathrm{fs})$
IR	3440	80
Visible	796	50

Table 4. The amplitudes B, line widths Γ and central frequencies ω of the resonant response for the symmetric $\left(\mathrm{r}^{+}\right)$and asymmetric ($\left.\mathrm{r}^{-}\right) \mathrm{CH}_{3}$-stretch vibrational modes, as well as the amplitude and phase of the nonresonant background used in the simulations (Eq. (8) of the main text).

IR-Vis Delay (fs)	A_{NR} (a.u. $)$	ϕ_{NR} (deg)	$B\left(\mathrm{r}^{+}\right)$ $($a.u. $)$	$B\left(\mathrm{r}^{-}\right)$ $($a.u. $)$	$\Gamma\left(\mathrm{r}^{+}\right)$ $\left(\mathrm{cm}^{-1}\right)$	$\Gamma\left(\mathrm{r}^{-}\right)$ $\left(\mathrm{cm}^{-1}\right)$	$\omega\left(\mathrm{r}^{+}\right)$ $\left(\mathrm{cm}^{-1}\right)$	$\omega\left(\mathrm{r}^{-}\right)$ $\left(\mathrm{cm}^{-1}\right)$
0	130	245	-0.1	-0.07	12	10	2915	2964
300	1.5×10^{8}	190	0.1	0.07	12	8	2915	2975

Note: the nonresonant background amplitude A_{NR} for the 300 fs delayed case is large because it represents interaction with the (very weak) leading edge of the visible pulse (see Figure 2 of the main text). The amplitude of the visible pulse at -300 fs could not be quantified as it was below our detection limit, and thus the spectra for the 300 fs delay are fit using A_{NR} as an independent adjustable parameter.

