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Figure S1. TPD spectra following 1-propanol-OD adsorption on 10 ML thick
nanoporous WO, film that was deposited at 20 K and 65° angle of incidence. The 1-
propanol-OD, 1-propanol-OH, propene, D,0, H,O, propanal, and di-n-propanyl ether
spectra are obtained at m/e- = 32, 31, 41, 20, 18, 58 and 73 amu, respectively. The
contributions of l-propanol-OD fragments at 41, 18, 20 and 58 amu have been
subtracted using fragmentation pattern determined from the molecular desorption in
the multilayer region.
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Figure S2. TPD spectra following 1-propanol-OD adsorption on ordered WO,
/Pt(111) film at 20 K. The 1-propanol-OD, 1-propanol-OH, propene, D,O, H,O,
propanal, and di-n-propanyl ether spectra are obtained at m/e- = 32, 31, 41, 20, 18, 58
and 73 amu, respectively. The contributions of 1-propanol-OD fragments at 41, 18, 20
and 58 amu have been subtracted using fragmentation pattern determined from the
molecular desorption in the multilayer region.
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Figure S3. Reaction mechanisms for the dehydration of two ethanol molecules on the dioxo
O=W=0 moiety ofthe linear (WO,); cluster determined using DFT calculations.
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Figure S4. Reaction mechanisms for the dehydration of a single ethanol molecules on the
dioxo O=W=0 moiety of the linear (WO,), cluster determined using DFT calculations.
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Figure S5. Reaction mechanisms for the dehydration of a single ethanol molecules on the
monooxo W=0 moiety of the linear (WO,), cluster determined using DFT calculations.



First Order Kinetics of Sequential Reactions

Conversion of O=W=0 species as described in Equation 1 in the main text:

Reactions:

Concentrations:

Initial concentrations:

Rate equations:

Analytic solution:
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Expressions plotted on x and y axes in Figure 4 during the course of reaction
represented by reaction time, #:
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