Alcohol Dehydration on Monooxo W=O and Dioxo O=W=O Species

Zhenjun Li,¹ Břetislav Šmíd,² Yu Kwon Kim,³ Vladimír Matolín,² Bruce D. Kay,¹* Roger Rousseau,^{1*} and Zdenek Dohnálek¹*

¹ Chemical and Materials Sciences Division, Fundamental and Computational Sciences Directorate and Institute for Integrated Catalysis, Pacific Northwest National Laboratory, PO Box 999, Mail Stop K8-88, Richland, Washington 99352, USA

² Charles University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 18000 Prague 8, Czech Republic

³ Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 443-749, South Korea

Corresponding Authors

Bruce.Kay@pnnl.gov; Roger.Rousseau@pnnl.gov; Zdenek.Dohnalek@pnnl.gov

Figure S1. TPD spectra following 1-propanol-OD adsorption on 10 ML thick nanoporous WO₃ film that was deposited at 20 K and 65° angle of incidence. The 1-propanol-OD, 1-propanol-OH, propene, D₂O, H₂O, propanal, and di-n-propanyl ether spectra are obtained at $m/e^- = 32$, 31, 41, 20, 18, 58 and 73 amu, respectively. The contributions of 1-propanol-OD fragments at 41, 18, 20 and 58 amu have been subtracted using fragmentation pattern determined from the molecular desorption in the multilayer region.

Figure S2. TPD spectra following 1-propanol-OD adsorption on ordered WO₃ /Pt(111) film at 20 K. The 1-propanol-OD, 1-propanol-OH, propene, D₂O, H₂O, propanal, and di-n-propanyl ether spectra are obtained at $m/e^- = 32$, 31, 41, 20, 18, 58 and 73 amu, respectively. The contributions of 1-propanol-OD fragments at 41, 18, 20 and 58 amu have been subtracted using fragmentation pattern determined from the molecular desorption in the multilayer region.

Reaction Coordinate

Reaction Coordinate

 $CH_2CH_2 + H-O-H$

CH₃CH₂OH

Reaction Coordinate

First Order Kinetics of Sequential Reactions

Conversion of O=W=O species as described in Equation 1 in the main text:

Rate equations:

$$\frac{d[WO_2]}{dt} = -k_1[WO_2]$$
$$\frac{d[WO]}{dt} = k_1[WO_2] - k_2[WO]$$
$$\frac{d[W]}{dt} = k_2[WO]$$

Analytic solution:

$$[WO_{2}] = [WO_{2}]_{0} \exp(-k_{1}t)$$
$$[WO] = \frac{k_{1}}{k_{2} - k_{1}} \left(\exp(-k_{1}t) - \exp(-k_{2}t)\right) [WO_{2}]_{0}$$
$$[W] = \left(1 + \frac{k_{1} \exp(-k_{2}t) - k_{2} \exp(-k_{1}t)}{k_{2} - k_{1}}\right) [WO_{2}]_{0}$$

Expressions plotted on x and y axes in Figure 4 during the course of reaction represented by reaction time, *t*:

$$x = \frac{[WO_2] + [WO]}{[WO_2]_0} = \left(\frac{k_1 \exp(-k_2 t) - k_2 \exp(-k_1 t)}{k_2 - k_1}\right)$$
$$y = \frac{[WO_2]}{[WO_2]_0} = \exp(-k_2 t)$$