Supporting Information

Nitrogen-doped Carbon Nanotube/Graphite Felt as Advanced Electrode Materials for Vanadium Redox Flow Batteries

Shuangyin Wang, Xinsheng Zhao, Thomas Cochell, and Arumugam Manthiram* Materials Science and Engineering Program The University of Texas at Austin, Austin, TX 78712

1. Experiment details

Growth of N-CNT/GF and CNT/GF. N-CNT/GF was synthesized using a single-injection chemical vapor deposition (CVD) system, utilizing ferrocene (2.5 wt %) as a growth catalyst dissolved in ethylenediamine as an N-CNT source solution. Synthesis was carried out at 800 °C under an inert gas flow and steady source solution injection in a horizontal quartz tube reactor chamber, in which the graphite felt was pre-placed in the center of the reactor as the growth substrate. After the reaction was allowed to proceed, the reactor chamber was cooled to 400 °C, and air was admitted for 1 h in order to burn off any amorphous carbon species. In addition, CNT/GF was also grown in a similar way, but using toluene as the source solution instead of ethylenediamine.

Physical characterization. X-ray photoelectron spectroscopic (XPS) data were collected to determine the atomic compositions and provide insights into the atomic arrangement of N-CNT. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images were collected with a Hitachi S5500 STEM microscope at 30 kV. The Raman spectra were collected with a Raishaw spectrometer.

Battery testing. The graphite felt-based materials were used as the electrode materials in the vanadium redox flow battery. A Nafion 117 membrane was sandwiched between two graphitic carbon felt electrodes and the assembly was clamped by two graphite polar plates with straight

flow channels. 1.0 M V^{2+/}V³⁺ in 2.0 M H₂SO₄ solution and 1.0 M (VO)^{2+/} (VO₂)⁺ in 2.0 M H₂SO₄ solution, serving as negative and positive electrolytes, respectively, were circulated through the corresponding half-cell at a flow rate of 15 mL/min. The active area of the single cell was 5 cm² and the volume of the electrolyte solution was 20 mL for each half-cell. Charge–discharge cycling tests were conducted with an Arbin BT 2000 battery cycler (Arbin instruments). A maximum voltage of 1.7 V and a minimum voltage of 0.8 V for charge and discharge were employed to avoid corrosion of the carbon felts and graphite plates.

2. Supplementary Results

Figure S1. TEM image of N-CNT before acid treatment. Residual metal nanoparticles formed by the decomposition of ferrocene are observed.

Figure S2. XPS survey spectrum of undoped CNT.

Figure S3. CV curves of CNT and N-CNT in 1 M H_2SO_4 at a scan rate of 50 mV/s.

Figure S4. (A) Continuous Charge-Discharge cycles of VRFBs with GF (black) and N-CNT/GF (red) as electrode materials at a constant current density of 20 mA cm⁻²; (B) The plot of the capacity decay (retention) against the cycle number.

Table S1. Efficiencies of the different electrode materials charged and discharged at a current density of 10 mA cm^{-2}

Sample	CE (%)	VE (%)	EE (%)
GF	72.6	93.9	68.2
CNT/GF	77.5	94.1	72.9
N-CNT/GF	81.3	94.7	77.0