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1. MATERIALS AND SPECIFIC METHODS 

Chemicals. Sodium Chloride (NaCl), Potassium chloride (KCl, 99.5%), sodium 

phosphate (NaH2PO4), Magnesium sulphate (MgSO4), Magnesium Chloride (MgCl2), 

Ethylenediaminetetraacetic acid (EDTA), Adenosine-5’-triphosphate (ATP) and Hepes 

were supplied by Sigma-Aldrich. Glucose and sucrose were from Riedel-de Haën. 

Ultrapure water was taken from a Milli-Q unit (Millipore, conductivity lower than 

18MΩ cm, organic residuum less than 2ppb). 

 

Lipids. The fluorescent probes 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-

(lissamine rhodamine B sulfonyl) (Rh-PE), 1-oleoyl-2-{6-[(7-nitro-2-1,3-

benzoxadiazol-4-yl)amino]hexanoyl}-sn-glycero-3-phosphocholine (NBD-PC), 1-

oleoyl-2-{6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]hexanoyl}-sn-glycero-3-

phosphoserine (ammonium salt) (NBD-PS) and N-[6-[(7-nitro-2-1,3-benzoxadiazol-4-

yl)amino]hexanoyl]-sphingosine-1-phosphocholine (NBD-SM),  were supplied by 

Avanti Polar Lipids. Lipids are dissolved in chloroform at 1mg/ml. Lipid solutions are 

stored at –20ºC.  

 

Antibodies. Monoclonal anti-human spectrin (α and β) (clone SB-S1) was purchased 

from Sigma-Alrich. The secondary fluorescent antibody Alexa Fluor 488 goat anti-

mouse IgG, IgA, IgM (H+L) was supplied by Invitrogen.  
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Erythroid membrane extract (EME). Human blood was obtained in fresh from 

healthy donors and stored in EDTA-containing tubes to avoid coagulation. Erythrocyte 

ghosts were prepared from extracted erythrocytes following the Steck and Kant protocol 

1with minor modifications described for enhancement of hemoglobin removal under 

hemolysis/resealing conditions2. The erythrocyte concentrate is obtained by washing out 

three times in PBS buffer (1 blood / 5 PBS (vol/vol); NaCl 150 mM, sodium phosphate 

5 mM, pH = 8). Then, cytoplasm contents are removed under hemolytic conditions in a 

hypotonic buffer (1 erythroid extract / 40 buffer (vol/vol); 1mM MgSO4, sodium 

phosphate 5 mM, pH = 8). Sealed ghosts were recuperated after centrifugation (22000g, 

10 minutes; 4ºC). The hard button enriched in proteases obtained at the tube bottom was 

carefully removed. The buffer washing out was repeated twice again in a dilution ramp 

at constant pH = 8 (1st: 1mM MgSO4, sodium phosphate 2.5 mM; 2nd: 1mM MgSO4, 

sodium phosphate 1.25 mM). The procedure was carried out at 4ºC. The erythroid 

membrane extract (EME) is obtained at a final concentration ca. 5mg/ml (estimated). 

Then, EMEs were vesiculated by passing the extract suspension 5 times through a 

gauge needle (No. 23) using a 50 mL syringe. Aliquots (20 µL) of the RBC membrane 

concentrate were stored at −20ºC. 

Spectrin/Ankyrin depletion from EME. Prior to vesiculation, membrane extracts 

were incubated for 30 minutes at 37ºC in low ionic strength buffer (EDTA 1 mM, 

Sodium phosphate 0.3 mM, pH = 8). After this first incubation spectrins are efficiently 

detached from the membranes, recuperating an insoluble membrane extract devoid of 

spectrin (EME Sp
-) after centrifugation (7000g, 30 minutes; 4ºC). Then, EME Sp

− was 

incubated again for 30 minutes at 37ºC in high ionic strength buffer (KCl 1M, EDTA 1 

mM, sodium phosphate 5 mM, pH = 8). This process causes ankyrin detachment, 

obtaining a final extract devoid of spectrin and ankyrin (EME Sp
−
 Ank

−) after 

centrifugation (8000g, 30 minutes; 4ºC). 

Analysis of cytoskeletal protein components by gel electrophoresis. Proteins were 

analyzed by sodium dodecyl sulfate (7%) polyacrylamide gel electrophoresis (SDS-

PAGE)3. Figure S1 shows the running band obtained for the extract of erythrocyte 

membranes (EME) and revealed by coomassie brilliant blue. In this chromatogram, all 

the proteins composing the human RBC cytoskeleton were found. Particularly, we 

detect in EME (Fig. S1A) the membrane proteins α−,β−spectrin (at 240 and 220 kD, 
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respectively), ankyrin (visible as a weak line at 210kD), bands 3/4.1 (at 100 and 82 kD, 

respectively) and soluble actin (an intense line at 43kD). The analysis corresponding to 

EME Sp
−
 Ank

− (Fig. S1B) reveals effective extraction of the fibrilar proteins spectrin 

and actin and of the main membrane anchor ankyrin. 

 
 
Figure S1. Chromatographic SDS-PAGE of the erythroid membrane extracts (EME) 

and EME devoid of spectrin and ankyrin (EME Sp
−
 Ank

−). These runs correspond to the 
membrane extracts used in this work. 

 

Indirect inmunofluorescence. Freshly prepared erythGUVs were incubated for 1 hour 

in isosmolar buffer solution containing primary monoclonal anti-human α,β-spectrin  

(anti-body final concentration, 4 µg/ml, 75 mM NaCl, 40 mM glucose, 10 mM Hepes, 

1mM MgCl2, 1 mM KCl, pH = 7,4). The secondary fluorescent antibody Alexa Fluor 

488 goat anti-mouse IgG, IgA, IgM (H+L) (ca. 4 µg/ml, final) was subsequently 

incubated for 1 hour more. When no ATP is present, erythGUVs appear as an 

homogeneous fluorescent corona corresponding to the specific location of spectrin at 

the membrane site (Fig. 1E). In the presence of ATP (2 mM), the homogeneous 

fluorescence rapidly clusters into filament structures forming the observed spectrin 

network (Fig. 1A-D). 
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Fluorescent labelling of membrane extract with lipid probes. To specifically identify 

lipid-spectrin interactions, prior to spreading on the electroformation chamber erythroid 

membranes were labelled with fluorescent lipid dyes. For that, EME aliquots were 

incubated for 30 minutes in an Eppendorf tube previously containing a lipid film. These 

films are prepared by solvent evaporation from a chloroform solution containing 1µg of 

the fluorescent probes (Rh-PE, NBD-PC, NBD-PS or NBD-SM).  

 

 

2. GRAPH ANALYSIS 
 

 

A. Skeletonization: branch length and node coordination.  

The structure of a skeletal network can be rationalized from its underlying tree structure. 

A skeleton tree is formed by branches and junction nodes where three or more branches 

link together. In shape analysis, the topological skeleton of a given network represents 

the thinnest representation (one dimension) of the real thick structure. The skeleton 

usually emphasizes geometrical and topological properties of the shape, such as its 

coordination, connectivity, fractal dimension and order. Skeletonization algorithms 

compute the skeleton as lines equidistant to the boundaries of the thick object. We have 

developed a Matlab code first passing the real images through a binarization function 

(Matlab function: im2bw) and then by a skeletonization algorithm (bwmorph) which 

renders the 1D-topological representation of the original skeletal network as nodes and 

branches. Figure S2 shows a typical example case (S2A: original network; S2B: 

skeletonized image). Further, for a given node the coordination degree is defined as the 

number of branch connections it has to other nodes in the network. Figure S2C shows 

how the graphical algorithm Analyse Skeleton (a plug-in of ImageJ) discretizes the 

skeleton in Fig. 2B into nodes and branches (see caption for details).  

 



5 
 

Figure S2. A) original network. Scale bar: 5µm; B) skeletonization of A); C) after 
counting algorithm Analyse Skeleton of Image J; branches in orange; nodes as pink 
pixels.  

For a given skeleton, the statistical distribution of the branch lengths and the 

coordination of the nodes were determined using Analyse Skeleton. From a population 

of 28 different samples (see Fig. S3 for a representative gallery), the distributions of 

branch lengths, a ≈ 2.1 (±0.5) µm and node coordination (3-fold 70%; 4-fold 20%; 

others 10%) were statistically determined (the quantities between parentheses represent 

the standard deviation).  

 

Figure S3. Image gallery of the different skeleton morphologies found in experiments 
(top panel: 3D-tomagraphies of the artificial erythroid vesicles; medium: planar 

fixations at slide bottoms; the white scale bars correspond to 10µm) and their respective 
skeletonization by ImageJ (bottom panel). A) Typical unconnected trees found at 
defective ATP. In this case, the system organizes as a number of individual trees with a 
low degree of ramification and a reduced interconnectivity, defined by a low fractal 

dimension D = 1.09 ± 0.02 and a positive value of the Euler characteristic (χ >> 0; see 
Section C). This constitutes an open structure predominantly made of quasi-1D 
filaments. B) Typical network skeletons formed in excess ATP. In these cases, 
extensive linking between the different trees entails high 2D-networking (the average 
fractal dimension D = 1.35 (±0.05), standard deviation; N = 28), thus resulting in a 
discrete number of connected objects with a higher degree of internal connectivity 

(χ << 0) than isolated trees in A). The central panel (squared in red) represents the 
commonest topology based on relatively large filaments with low lateral grafting but 
high connectivity, thus resulting in closed network structures with a high degree of 
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reticulation (closed corrals). This can be considered the more typical network case 
found in experiments (Fig. 1 in the main text). 

 

B. Dimensional analysis 

The fractal dimension, D, is the topological characteristic that indicates how completely 

a graph appears to fill space4. For tree- and skeleton- graphs, the degree distribution is 

the probability distribution of the local density of coordination nodes calculated over the 

whole network (Nnodes). The degree distribution is a statistical quantity solely 

determined by the fractal dimension of the topological graph. If the degree distribution 

follows a power-law with the system size, the network is said scale-free, which implies 

a self-similar structure on all length scales: 

 ~ D

nodes
N L  (Eq. S1) 

where L represents a spatial length scale. 

This class of fractal scaling is easily determined by the box counting method, which is a 

gridding method measuring the power-law relation existing between the size of the grid 

box and the number of boxes required to cover the object. First, the function  

FracLac2.5 of ImageJ grids the skeleton into boxes of different size L. Then, the 

algorithm calculates the dependence between the linear size of the box (L) and the 

number of boxes needed to cover the network (M). A typical analysis case is shown in 

Figure S4, although this behavior is systematically found for the different skeletons 

observed experimentally. For a given skeleton graph, FracLac2.5 performs a statistical 

analysis exploring length scales with a growing size above a lower cut-off fixed as the 

minimal box necessary for the graphical resolution of a node and the emerging branches 

(3×3 pixels square; 0.3µm length). An application case of the box counting method 

applied to a real skeleton is depicted in Fig. S4A. At small lengths (L << a; grids1-2 in 

Fig. S4A-B), the tiny boxes cover just network elements but little space abroad (free 

space), thus giving an adequate measurement of the systemic topology of the network. 

At a crossover region (L ≈ a; grid3), some boxes start to cover not only skeleton but 

also a significant fraction of free space. At larger box sizes (L >> a; grid4), each box 

touches several skeleton elements covering the free space around in a way such that the 

whole 2D-space is practically wrapped up by the box grid. The fractal dimension is 

measured as the power law exponent for the number (M) of boxes of linear size L 
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needed to cover the network (because M varies inversely with the average number of 

vertices within a box thus Eq. S1 rewrites as M ~ L
−D).  
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Figure S4. A) Fractal analysis of a typical spectrin skeleton (a = 2.5 ± 0.1 µm) (0: the 
same skeleton as in B; 1-4: box-gridding at different spatial scales). By performing 
grids of size L, FracLac2.5 (ImageJ) counts the number of boxes M needed to cover the 
network. The numbers indicate the location of the different counting boxes in B). B) 
Typical fractality M-L plot of the real skeleton in A) (characteristic mesh size a = 2.1 ± 

0.2 µm). Two distinct self-similar regimes are clearly discernable: small-world 

filamentous sub-structure (DS ≈ 1.35 at L/a < 1); big-world network supra-structure (DS 

≈ 1.85 at L/a > 1). C) Statistical analysis of the fractal dimension of the two regimes 
(top panel) and of the crossover length between them (bottom panel) performed over a 
population of 28 different skeleton networks. 

 

At length scales smaller than the characteristic mesh size (L < a), the skeletal topology 

follows power-law behavior M ~ L−D with DS = 1.35 (±0.10; standard deviation, N = 28; 

Fig. S4B), characteristic for a nearly one-dimensional self-similar graph at distances 

shorter than the filament length a. Actually, Figure S4 shows as in the small-world (L < 

a) the skeleton consists of a succession of linear contours with sporadic ramifications 

giving rise to a surface network with a fractionary fractal dimension. The nearer is D to 

the euclidean dimension (d = 2 for a membrane structure) the higher is space 

completion. Consequently, a panoramic view should provide the big-world description 
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as a network skeleton nearly filling the surface space in the membrane (d = 2), thus in 

the limit L >> a one measures a fractal exponent close to spatial dimension, DB = 1.85 

(±0.05).  

 

C. Connectivity analysis: Euler characteristic 

The connectivity of skeleton networks is usually quantified by the Euler characteristic 

χ, a topological invariant describing the mesh shape regardless of the way it is bent5, 6. 

This characteristic is defined as the difference between the number of connected 

skeleton objects (Nsk) minus the number of connections (Nc) forming either open trees 

and closed corrals in the network (χ = Nsk − Nc). A positive value unequivocally 

corresponds to high degree of network disconnection into weakly branched skeletons 

and predominantly opened structures. Conversely, a high network connectivity is 

characterised by a highly negative χ−value, indicating a sole (or a few) connected 

skeleton(s) defining a high number of enclosed corrals inside. 

In the present work, the Euler connectivity was calculated using the skeletonization 

protocols in Section A (ImageJ), further passing the binarised images by a Matlab 

algorithm (bmweuler)
7
  coded for counting connected objects and corrals. The Euler 

characteristic of the different skeleton structures systematically resulted in negative 

values corresponding to a low number of isolated skeletons with a high degree of 

connection inside. Typical values, calculated for individual skeletons are shown in 

Figure S3. A statistically average value of the Euler characteristic χ = −33 (±21) is 

calculated over a population of 28 different connected skeletons.  

 

D. Lacunarity 

The lacunarity deals with the degree of gappiness, or visual homogeneity, of a 

connected structure
8
. For a network, the lacunarity parameter Λ is calculated as the 

standard deviation of the local density of empty space ("lacunae") with respect to its 

average value. In practice, one counts black pixels inside boxes of different size L in a 

grid (Np
(j)). Then, the standard deviation (δNp) is referred to the average value calculated 

over the whole grid (Np = ∑j Np
(j)). For each L, lacunarity is computed as9: 

 ( )
dæ ö÷ç ÷çL = + ÷ç ÷÷çè ø

2

1 P

P

N
l

N
 (Eq. S2) 
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Usually, lacunarity is considered a measure of the distribution of empty space in an 

image. For skeletal network, consequently Λ informs how homogenously is the space 

covered by the skeleton at different scales. If an image with fractal geometry displays 

high diversity of gap sizes and object shapes, lacunarity is high. Contrarily, if the fractal 

structure is homogeneously distributed across the space, the gap distribution is then 

invariant and the lacunarity converges to unity. An unitary lacunarity indicates 

structural homogeneity whilst Λ > 1 is indicative of non-uniformity. Based on the above 

definition, the present analysis was performed using a Matlab code
10

. 

Figure S5 plots the average results obtained as average values from a skeleton 

population (N = 28; error bars corresponds to the standard deviation over the different 

images). At small scales, the present skeleton graphs show relatively high lacunarity, as 

expected for a distorted structure with a non-uniform distributions of gaps ("lacunae")11. 

As larger scales are "zoomed" into the big-world (increasing the box size, L), distortions 

become uniformly distributed and lacunarity converges to a low value close to unity, Λ 

≈ 1.004, compatible with an homogenous distribution of the skeleton elements and the 

free space.  

0,1 1 10
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Figure S5. Lacunarity analysis of spectrin skeletons. The different images are square-

sectioned in grids of size L. For a given skeleton, the parameter Λ is calculated as a 
function of L using Eq. S2. Each L-value is averaged over the population of 28 
skeletons used in this work (the error bar is a standard deviation). 

 

E. Order parameter  

Disorder in a skeleton network is quantified by an order parameter S defined as12: 

 ( )θ= −22 cos 1
i

S  Eq. S3 
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where θi measures the orientation of the i−branch with respect to an horizontal axis. 

If S = 0, there is no preferred direction in average corresponding to an isotropic 

distribution. Conversely, S = 1 corresponds to a totally ordered structure with a 

preferential direction. 

 

Figure S6. Typical orientation analysis of the spectrin skeleton shown in the figure 

(White line is 5µm. See text for details).  

 

Figure S6 shows a distribution histogram of the orientational angles θ with respect to 

the horizontal axis as determined by OrientationJ (ImageJ) for a typical spectrin 

skeleton. A broad orientational distribution typical of a highly disordered network is 

reported in the present case. However, two sparse maxima are observed separated by ca. 

120º, as expected from the predominant triangular coordination. Similar results are 

found for the other skeletons along our image repertoire, unequivocally, a proof of the 

high topological polydispersity of the present artificial networks. 
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3. FLUCTUATION ANALYSIS 
 

 

A. Ultrafast flickering spectroscopy. In a typical flickering experiment, thermal 

fluctuations are tracked as local changes of the vesicle radius δR observed at the 

equatorial plane. In our set-up, fluctuating erythGUVs (sized typically R ≈ 10 µm) are 

visualized using phase contrast microscopy (Nikon EclipseTi, oil-immersion objective 

100×). The flickering dynamics is recorded by an ultrafast CMOS camera (Photron 

FastCAM SA3, 200 kfps maximum rate, 1 Mpixel)13. At optimal illumination, the 

acquisition rate was fixed at 5 kfps. Then, each vesicle profile is digitalised and the 

fluctuation function, δR(x,ti), obtained at each time with respect to the instantaneous 

circular radius R0, calculated as the centre-of-mass of the circular contour. The 

deformation function δR/R is expanded in series of discrete Fourier modes: 

 ( )
d

z = = +å sin cos
q qq

R
a qx b qx

R
      Eq. S4 

where q(l) = l/R (with l = 2, 3, 4, . . . ). 

The Fourier series is in practice truncated at l ≈ 50, where the calculated amplitudes 

vanish below the experimental uncertainty. From the above mode decomposition, the 

fluctuation amplitudes are defined in the reciprocal space as: 

 ( )z
+

= +2 2

q q q
t a b       Eq. S5 

where the sign + indicates the absolute value. 

 

B. Amplitude spectrum. A comprehensive description of the reduction methods used 

to analyze the experimental shape fluctuations of GUV’s can be found in the state-of-art 

work by Pécrèaux et al. 
14. The specific procedures used for the analysis of the 

fluctuation spectra were protocolised as Auxiliary Material in the previous Ref.15. Here, 

we just reproduce the more relevant aspects related to the q-dependence of the 

fluctuation spectrum measured at the equatorial plane. Experimentally, from the 

amplitudes in Eq. S5 one obtains the spectrum of the equatorial fluctuations as: 

 ( ) ( ) ( )z z=
eq x q q

P q t t       Eq. S6 

where the time average is calculated over a time series typically containing 5000 

frames. Consequently one actually measures14 (Error! Bookmark not defined.): 
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 ( ) ( )
p

¥

- ¥

= ò
1

2eq x y
P q P dqq       Eq. S7 

where P(q) is the fluctuation spectrum of the radial fluctuations characterised by a 

wavevector q = (qx, qy). For fluid membranes one usually considers the classical 

Helfrich spectrum of the tension/bending modes16. When projected on the equatorial 

plane one gets: 

  ( )
p s k

¥

- ¥

=
+

ò 2 4

1

2
B

eq x y

k T
P q dq

q q
      Eq. S8 

This ansatz can be expanded in simple fractions as: 

    

( )
( )p ps k s k

k

p p ss s k

¥ ¥

- ¥ - ¥

¥ ¥

- ¥ - ¥

= = =
+ +

= -
+

ò ò

ò ò

2 4 2 2

2 2

1 1

2 2

1 1

2 2

B B

eq x y y

B B

y y

k T k T
P q dq dq

q q q q

k T k T
dq dq

q q

      Eq. S9 

since q2 = qx
2 + qy

2, direct integration over qy leads to: 

 ( )
( )s s k

é ù
ê ú
ê ú= -ê ú
ê ú+
ê úë û

2

1 1

2
B

eq x

x
x

k T
P q

q q

      Eq. S10 

 This expression leads to two limit behaviors for the curvature fluctuations: the 

capillary-like regime, Pcap ≈ kBT/σqx, found at low q (< qcap ≈ (σ/κ)½) and high σ, and 

conversely, the bending regime well above qcap, where curvature fluctuations show a 

dependence Pbend ≈ kBT/κqx
3, dominated by bending elasticity κ.  

 

C. Shear contribution: effective lateral tension. The fixed connectivity provided by 

the skeleton network might entail solid-like character to the membrane where it is 

attached. Consequently, a finite shear component (µ > 0) should emerge as an additional 

rigidity contribution to elastic modes. In the flat membrane, shear effects cause a 

renormalization of the bending constant to higher values at the microscopic limit of 

small wavevectors (q → 0)17, 18. In this regime, the effective bending rigidity of the solid 

membrane is given by17, 19-21: 

 ( ) 1

0

3

4
B

eff

k T
q q

m
k k

p

-» +       Eq. S11 

Consequently, the flexural modes of the undulating membrane are affected by the shear 
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term in Eq. S11 which introduces a q
−3-dependent contribution to the usual Helfrich 

spectrum; in the q → 0 limit one has19 (Error! Bookmark not defined.): 

  ( )
2 3 43 4

B

B

k T
P q

q k T q qs m p k
»

+ +
      Eq. S12 

For very rigid membranes (µ >> σ) the shear mode dominates, thus the equatorial 

spectrum might be found to vary as: 

 ( )
( )

1 2 2
3

41 1
0

2 33 4

B B

eq x y

x
B

k T k T
P q dq

qk T q

p

p m
m p

¥

- ¥

® » »ò       Eq. S13 

which defines a renormalization from the usual Peq(qx) ~ qx
−3 dependence of the bending 

modes to a P(qx → 0) ~ qx
−2 regime, typical of shear modes. 

In vesicles, the surface is curved thus the shear energy is already quadratic in the normal 

displacements, and it is not sensitive to the above renormalization effects20 (Error! 

Bookmark not defined.). For rigid vesicles, a wavevectors above qC ≈ (3µkBT/4π)½ / κ, 

theory predicts18, 21 (Error! Bookmark not defined.,Error! Bookmark not defined.): 

 ( ) 2

0

0

9

16
B

eff

k T
q q

m
k k

pk

-» +       Eq. S14 

Consequently, for solid-like vesicles in the high q-regime, the shear term is expected to 

take the same quadratic dependence as the tension contribution, i.e. the spectrum of the 

curvature modes is expected in these cases to vary as the classical Helfrich spectrum:  

 ( ) ( ) 2 4

B

sk eff

sk sk

k T
P q

q qs k
»

+
    Eq. S15 

with κsk > κ0 (due to structural stiffening) and the shear-dependent effective tension: 

  
( )

0

0

9

16

eff B

sk

k Tm
s s

pk
» +       Eq. S16 

When the membrane skeleton is present, we can fit the experimental spectra to the 

equatorial projection of the Helfrich spectrum in Eq. S10, thus obtaining the effective 

values for the mechanical parameters (Eqs. S15-S16). 

 

D. Fluctuation spectrum: Figure S7 (and Fig. 3A) plots typical experimental spectrum 

of the membrane fluctuations obtained for the two vesicle classes. Similar results were 



14 
 

obtained for different vesicles in a population of 20 different specimens taken from 

several synthesis batches.  
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Figure S7. Experimental spectra of the membrane fluctuations of erythGUV’s: A) in 
the absence of ATP and B) in the presence of ATP (2 mM) an subsequent skeleton 
formation. The lines represent the best fit to the equatorial projection of the Helfrich 
spectrum (Eq.S10). The statistics in the bottom panel corresponds to the fitting 

parameters (left: bending modulus κ; right: effective tension σeff as defined in Eqs. S15-
S16) obtained over vesicles populations (N = 20). 
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Following Pécrèaux’s schema, data are fitted to Eq. S10 and the parameters obtained for 

each vesicle. After statistics (see histograms in Fig. S7), we obtain: κ0 = 90 (±5) kBT, σ0 

= 0.17 (±0.02) µN/m for the bare vesicles and κsk = 120 (±11) kBT, σsk = 1.1 (±0.2) 

µN/m when skeleton is formed (quantities between parentheses correspond to standard 

deviations; N = 20). From Eq. S16, we estimate a value µ = 400 (±200) µN/m for the 

shear modulus of the artificial skeleton. The shear modulus has been experimentally 

measured for the native red cell cytoskeleton. Using micropipetes22-25  , optical 

tweezers26, 27  and flickering spectroscopy28, different authors coincide to assign a value 

µnat ≈ 6µN/m. Higher values (in the range µnat ≈ 13-22µN/m) were earlier reported from 

red cell stretching experiments performed under optical traps29. From the experimental 

value, µ ≈400 µN/m, the quadratic shear-regime described by Eq.S13 is expected at 

wavevectors above qC ≈ 0.4µm−1, close to the lowest spherical harmonic possible in a 

typical vesicle (R ≈ 10 µm), qlow ≈ 2/R ≈ 0.2 µm−1. This stimation confirms the validity 

of the approximated spectrum in Eqs. S15-S16.  

The high value of the shear modulus estimated from experiments, µart ≈ 102µN/m, 

(practically two order of magnitude larger than the value measured for the native 

spectrin cytoskeleton) assigns a higher intrinsic rigidity to the reconstituted macroscopic 

filaments with respect to the elemental spectrin tetramers (SpT) constituting the original 

cytoskeleton network. This difference suggests a larger persistence length for the 

macroscopic bundles than for elemental spectrin filaments. This points to actin as the 

filament component responsible for such a reinforced stiffness. From a structural 

standpoint, actin filamentsare known to show a high conformational persistence (lp ≈ 

2µm)30, producing very rigid structures able to impinge marked structural stiffening to 

the topological network where they are embedded31. On the opposite side, spectrin units 

fold into triple helical coiled-coils (Rg ≈ 20-30nm) compatible with a low intrinsic 

rigidity dominated by entropic elasticity32. Single molecule nanomechanical studies 

performed by AFM dynamometry confirm the picture, revealing indeed a shallow 

unfolding potential33. This confirms an entropic origin for the shear elasticity of native 

spectrin networks, µ ≈ ksp 
34. For entropic coils the spring constant takes a value of the 

order of ksp ≈ kBT/Rg
2
 ≈ 10 µN/m, in qualitative agreement with mechanical 

experiments, thus µnat ≈ 6-20 µN/m, in agreement with mechanical experiments22-28. 

Because shear stiffness causes effective tension to increase (Eq. S16), and conversely, 

higher lateral tension induces higher shear rigidity, µ ≈ (√3ksp/4)⋅(1+√3σ/ksp) (Error! 
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Bookmark not defined.), the presence of the rigid skeleton is expected to principally 

cause lateral structural stiffening detected as a significant increase of the effective 

lateral tension. In flickering experiments, this effect might appear visible as a 

dominance of the capillary regime in the equatorial fluctuation spectra, Psk(q) ≈ 

kBT/σ(eff)
q, as experimentally observed (see Fig. 3A). 

 

E. Autocorrelation function. The amplitude autocorrelation functions G(t) = <ζq(0) 

ζq(t)> are numerically calculated over sequences of 5000 frames, typically, using a 

MATLAB code. To minimize the pixelization noise, the dynamical analysis was 

restricted to the first modes (l < 12); here, the smallest resolved distance is of the order 

of q
−1

max ≈ 1µm (lmax = 12), well above the pixel size (0.1 µm). The normalised 

autocorrelation functions match a stretched-exponential profile as: 

 ( ) ( )
bé ù

- Gê ú
ê úë û

~ exp
q

G t t       Eq. S17 

characterised by a stretching exponent 0.5 < β < 1.0, typical of rigid membranes13, 35 and 

the q-dependent relaxation rate of the tension-bending modes36: 

 
3

4q

q qs k

h

+
G =       Eq. S18 

where the numerator defines the elastic response of the membrane (σ is the surface 

tension and κ the bending modulus; in the presence of rigid skeleton, the effective 

tension, σsk = σ(eff), is dependent on the shear modulus as given in Eq. S16). The 

denominator accounts for the viscous dissipation imposed by bulk friction (η is the bulk 

viscosity of the solvent).  

Using time-resolved experimental data, from the time series of the Fourier amplitudes 

ζq(t), one calculates the normalized autocorrelation functions as: 

 ( ) ( ) ( )z z= 0
q q q

G t t       Eq. S19 

Figure S8 plots the experimental autocorrelation functions obtained for different 

fluctuation modes in a given vesicle. Meaningfully, a clear increase of the relaxation 

rates is observed upon skeleton formation after ATP addition. This acceleration has 

been attributed to the mechanical stiffening imposed by the spectrin skeleton, which 

represents a solid-like topological network with a finite shear rigidity and a lateral 

tension much higher than the bare lipid bilayer (which is intrinsically fluid). Similar 

results were obtained for the different vesicles in same population as in Section D. 
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Figure S8. Experimental autocorrelation functions obtained for erythGUV's: A) in the 
the absence of ATP and B) in the presence of ATP (1mM) an subsequent skeleton 
formation. The numbers indicate the fluctuation mode (l; q = l/R). The lines represent 
the best fits to Eq. S18. 

 

The analysis of the experimental autocorrelation functions in terms of Eqs. S17-18 

allows for a quantitative determination of the relaxation rates Γq. From the dispersion 

plots (see insets in Fig. S8), the numerical values of the mechanical parameters can be 

obtained by fitting to Eq. S18. The equivalent data in the inset of Fig. 3B (main text) 

correspond to a statistical average over the 20 different vesicles considered in this study 

(the error bars represent a standard deviation). After statistics, the average relaxation 

frequencies are found compatible with the mechanical parameters calculated from the 
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static spectra (the straight lines in the inset of Fig. 3B correspond the predictions from 

Eq. S18 for the values of σeff and κ found in Section D). 
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