Amide Analogs of CD1d Agonists Modulate *i*NKT cell-Mediated Cytokine Production

Justyna Wojno, [a],[b][d] John-Paul Jukes, [c] Hemza Ghadbane, [c] Dawn Shepherd, [c] Vincenzo Cerundolo,*.[c] Gurdyal S. Besra,*.[b] Liam R. Cox*.[a]

^[a]School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U. K.

^[b]School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U. K.

Medical Research Council Human Immunology Unit, Nuffield Department of Medicine, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3

9DS, U. K.

vincenzo.cerundolo@imm.ox.ac.uk; g.besra@bham.ac.uk; l.r.cox@bham.ac.uk

Supporting Information I

Synthesis of new CD1d ligands	S 6
α -GalCer 1 and α -GalCer Analogues 8–10	S 6
ThrCer 2 and ThrCer Analogues 11–13	S 8
General Experimental Details	S10
Synthesis of $(2S,3S,4R)$ -3,4-di- O -benzyl-1- O - $(2',3',4',6'$ -tetra- O -benzyl- α -D-	
galactopyranosyl)-2-(tricosanylaminocarbonylamino)octadecane-1,3,4-triol (19)	S 11
General procedure for catalytic hydrogenolysis	S 13
Synthesis of $(2S,3S,4R)$ -1- O - $(\alpha$ -D-galactopyranosyl)-2-(tricosanylaminocarbonylamino)	
octadecane-1,3,4-triol (9)	S14
Synthesis of $(2S,3S,4R)$ -2-amino-3,4- O -isopropylidene-1- O - $(2',3',4',6'$ -tetra- O -benzyl- α -D-	
galactopyranosyl)octadecane-1,3,4-triol (21)	S15
Synthesis of carbonic acid, 2,5-dioxo-1-pyrrolidinyl tetracosanyl ester	S16
Synthesis of $(2S,3S,4R)$ -3,4- O -isopropylidene-1- O - $(2',3',4',6'$ -tetra- O -benzyl- α -D-	
galactopyranosyl)-2-(tetracosanyloxycarbonylamino)octadecane-1,3,4-triol (23)	S17
Synthesis of $(2S,3S,4R)$ -1- O - $(\alpha$ -D-galactopyranosyl)-2-(tetracosanyloxycarbonylamino)	
octadecane-1,3,4-triol (10)	S18
Synthesis of $(2S,3S,4R)$ -3,4-di- O -acetyl-1- O - $(2',3',4',6'$ -tetra- O -acetyl- α -D-	
galactopyranosyl)-2-(hexacosanoylamino)octadecane-1,3,4-triol (24)	S19
Synthesis of $(2S,3S,4R)$ -3,4-di- O -acetyl-1- O - $(2',3',4',6'$ -tetra- O -acetyl- α -D-	
galactopyranosyl)-2-(hexacosanethioylamino)octadecane-1,3,4-triol (25)	S20
Synthesis of $(2S,3S,4R)$ -1- O - $(\alpha$ -D-galactopyranosyl)-2-(hexacosanethioylamino)	
octadecane-1,3,4-triol (8)	S21
Synthesis of (2S,3R,4R)-2-azido-3,4-di-O-benzyl-1-O-(2',3',4',6'-tetra-O-	
benzyl- α -D-galactopyranosyl)octadecane-1,3,4-triol (16)	S23
Synthesis of (2S,3S,4R)-2-amino-3,4-di-O-benzyl-1-O-(2',3',4',6'-tetra-O-	

benzyl-α-D-galactopyranosyl)octadecane-1,3,4-triol (17)	S24
Synthesis of $(2S,3S,4R)$ -3,4-di- O -benzyl-1- O - $(2',3',4',6'$ -tetra- O -benzyl- α -D-	
galactopyranosyl)-2-(hexacosanoylamino)octadecane-1,3,4-triol (18)	S25
Synthesis of $(2S,3S,4R)$ -1- O - α -D-galactopyranosyl-2-(hexacosanoylamino)	
octadecane-1,3,4-triol (α-GalCer) (1) from 18	S26
Synthesis of (2S,3S,4R)-2-azido-3,4-O-isopropylidene-1-O-(2',3',4',6'-tetra-O-	
benzyl-α-D-galactopyranosyl)octadecane-1,3,4-triol (20)	S28
Synthesis of (2S,3S,4R)-2-hexacosanoylamino-3,4-O-isopropylidene-1-O-(2',3',4',6'-	
tetra-O-benzyl-α-D-galactopyranosyl)octadecane-1,3,4-triol (22)	S29
Synthesis of $(2S,3S,4R)$ -1- O - α -D-galactopyranosyl-2-(hexacosanoylamino)	
octadecane-1,3,4-triol (α-GalCer) (1) from 22	S31
Synthesis of (2S,3S,4R)-2-amino-1-O-[4'-O-tert-butyldiphenylsilyl-2',3'-O-	
isopropylidene-L-threitol]-3,4-O-isopropylidene-octadecane-1,3,4-triol (26)	S32
Synthesis of (2S,3S,4R)-1-O-[4'-O-tert-butyldiphenylsilyl-2',3'-O-isopropylidene-L-	
threitol]-2-hexacosanoylamino-3,4-O-isopropylidene-octadecane-1,3,4-triol (27)	S 33
Synthesis of (2S,3S,4R)-1-O-[4'-O-tert-butyldiphenylsilyl-2',3'-O-isopropylidene-L-	
threitol]-2-hexacosanethioylamino-3,4-O-isopropylidene-octadecane-1,3,4-triol (28)	S34
Synthesis of $(2S,3S,4R)$ -2-hexacosanethioylamino-1- O -[L-threitol]-octadecane-1,3,4-triol (11)	S35
Synthesis of (2S,3S,4R)-1-O-[4'-O-tert-butyldiphenylsilyl-2',3'-O-isopropylidene-L-	
threitol]-3,4-O-isopropylidene-2-(tetracosanyloxycarbonylamino)octadecane-	
1,3,4-triol (29)	S36
Synthesis of (2S,3S,4R)-2-tetracosanyloxycarbonylamino-1-O-[L-threitol]-	
octadecane-1,3,4-triol (13)	S37

Synthesis of (2S,3S,4R)-1-O-[4'-O-tert-butyldiphenylsilyl-2',3'-O-isopropylidene-L-	
threitol]-3,4-O-isopropylidene-2-(tricosanylaminocarbonylamino)octadecane-	
1,3,4-triol (30)	S38
Synthesis of (2S,3S,4R)-1-O-[L-threitol]-2-(tricosanylaminocarbonylamino)	
octadecane-1,3,4-triol (12)	S40
Synthesis of (2S,3S,4R)-1-O-[L-threitol]-2-(hexacosanoylamino)	
octadecane-1,3,4-triol (ThrCer) (2) from 27	S41
Synthesis of (2S,3S,4R)-2-azido-1-O-[4'-O-tert-butyldiphenylsilyl-2',3'-O-isopropylidene-L-	
threitol]-3,4-O-isopropylidene-octadecane-1,3,4-triol	S42
Transactivation of NK cells	S44
Statistical Analysis	S44
References associated with Supporting Information	S45
Scanned NMR spectra for $(2S,3S,4R)$ -3,4-di- O -benzyl-1- O - $(2',3',4',6'$ -tetra- O -benzyl- α -D-	
galactopyranosyl)-2-(tricosanylaminocarbonylamino)octadecane-1,3,4-triol (19)	S48
Scanned NMR spectra for $(2S,3S,4R)$ -1- O - $(\alpha$ -D-galactopyranosyl)-2-	
(tricosanylaminocarbonylamino)octadecane-1,3,4-triol (9)	S76
Scanned NMR spectra for (2S,3S,4R)-2-amino-3,4-O-isopropylidene-1-O-(2',3',4',6'-tetra-O-	
benzyl-α-D-galactopyranosyl)octadecane-1,3,4-triol (21)	S91
Scanned NMR spectra for carbonic acid, 2,5-dioxo-1-pyrrolidinyl tetracosanyl ester	S93
Scanned NMR spectra for (2S,3S,4R)-3,4-O-isopropylidene-1-O-(2',3',4',6'-tetra-O-	
benzyl-α-D-galactopyranosyl)-2-(tetracosanyloxycarbonylamino)octadecane-	
1,3,4-triol (23)	S95
Scanned NMR spectra for $(2S,3S,4R)$ -1- O - $(\alpha$ -D-galactopyranosyl)-2-	
(tetracosanyloxycarbonylamino)octadecane-1,3,4-triol (10)	S116
Scanned NMR spectra for (2S 3S 4R)-3 4-di-Q-acetyl-1-Q-(2' 3' 4' 6'-tetra-Q-acetyl-q-D-	

galactopyranosyl)-2-(hexacosanoylamino)octadecane-1,3,4-triol (24)	S120
Scanned NMR spectra for (2S,3S,4R)-3,4-di-O-acetyl-1-O-(2',3',4',6'-tetra-O-acetyl-α-D-	
galactopyranosyl)-2-(hexacosanethioylamino)octadecane-1,3,4-triol (25)	S123
Scanned NMR spectra for $(2S,3S,4R)$ -1- O - $(\alpha$ -D-galactopyranosyl)-2-(hexacosanethioylamino)
octadecane-1,3,4-triol (8)	S146
Scanned NMR spectra for (2S,3S,4R)-2-amino-1-O-[4'-O-tert-butyldiphenylsilyl-2',3'-O-	
isopropylidene-L-threitol]-3,4- <i>O</i> -isopropylidene-octadecane-1,3,4-triol (26)	S154
Scanned NMR spectra for (2S,3S,4R)-1-O-[4'-O-tert-butyldiphenylsilyl-2',3'-O-	
isopropylidene-L-threitol]-2-hexacosanoylamino-3,4-O-isopropylidene-	
octadecane-1,3,4-triol (27)	S156
Scanned NMR spectra for (2S,3S,4R)-1-O-[4'-O-tert-butyldiphenylsilyl-2',3'-O-	
isopropylidene-L-threitol]-2-hexacosanethioylamino-3,4-O-isopropylidene-	
octadecane-1,3,4-triol (28)	S158
Scanned NMR spectra for (2S,3S,4R)-2-hexacosanethioylamino-1-O-[L-threitol]-	
octadecane-1,3,4-triol (11)	S160
Scanned NMR spectra for (2S,3S,4R)-1-O-[4'-O-tert-butyldiphenylsilyl-2',3'-O-	
isopropylidene-L-threitol]-3,4-O-isopropylidene-2-(tetracosanyloxycarbonylamino)	
octadecane-1,3,4-triol (29)	S179
Scanned NMR spectra for (2S,3S,4R)-2-tetracosanyloxycarbonylamino-1-O-[L-threitol]-	
octadecane-1,3,4-triol (13)	S197
Scanned NMR spectra for (2S,3S,4R)-1-O-[4'-O-tert-butyldiphenylsilyl-2',3'-O-	
isopropylidene-L-threitol]-3,4-O-isopropylidene-2-(tricosanylaminocarbonylamino)	
octadecane-1,3,4-triol (30)	S204
Scanned NMR spectra for (2S,3S,4R)-1-O-[L-threitol]-2-(tricosanylaminocarbonylamino)	
octadecane-1,3,4-triol (12)	S226

Synthesis of new CD1d Ligands

 α -GalCer and α -GalCer Analogues 8–10: Our first approach to α -GalCer 1 and its ureido analogue 9 is summarized in Scheme 1. Nishida and Kobayashi's dehydrative glycosylation methodology was used to install the α -glycosidic linkage; thus reaction of 2,3,4,6-tetra-O-benzylgalactose 143,4 with CBr₄/PPh₃ afforded the corresponding galactosyl bromide, which was reacted in situ with acceptor 15,5 in the presence of tetramethylurea (TMU) and Bu₄NBr, to provide the desired galactoside 16 as a single α-anomer (Scheme 1). Staudinger reduction of the azide in 16 with PMe₃ in wet THF^{6,7} afforded amine 17, which reacted with hexacosanovl chloride^{8,9} to provide amide 18. Formation of the corresponding urea 19 from amine 17 required the synthesis of an appropriate isocyanate, which would be accessed by a Curtius rearrangement on the corresponding acid azide. Since the hydrophobic A' binding pocket in CD1d optimally accommodates an acyl chain length containing 26 carbon atoms, 10 we chose to use tetracosanoic acid as our starting material as this would be provide a urea product containing 25 atoms in the acyl chain (24 carbons and one nitrogen). Since the α -GalCer analogue containing a C_{24} acyl chain displays similar biological activity to α -GalCer containing a C₂₆ chain, 11 differences in biological activity between a ureido analogue containing 25 atoms in the acyl chain (i.e. 9), and α -GalCer 1, would be a attributable to an amide-urea switch and not the slightly truncated alkyl chain length. Tricosanyl isocyanate was duly prepared from tetracosanoic acid following a procedure from Várová and co-workers, ¹² and used, without purification, in a reaction with amine 17 to provide urea 19 in 68% yield. Hydrogenolysis of the benzyl groups in amide 18 and urea 19 effected global deprotection and afforded our first target, urea **9**, alongside α -GalCer **1**, which would serve as the control in our biological studies (Scheme 1).

Scheme 1. Synthesis of α-GalCer 1 and urea 9. (a) 14, PPh₃, CBr₄, CH₂Cl₂, r.t., 3 h; then Me₂NC(O)NMe₂, Bu₄NBr, CH₂Cl₂; then 15, CH₂Cl₂, 3 Å MS, r.t., 3 d, 62%. (b) PMe₃, THF, r.t., 4 h, then H₂O, 1 h, 72%. (c) CH₃(CH₂)₂₄C(O)Cl, Et₃N, CH₂Cl₂, 0 °C to r.t., 8 h, 18 (54%). (d) CH₃(CH₂)₂₂NCO, toluene, reflux, 8 h, 19 (68%). (e) Pd(OH)₂ / C, H₂, THF, r.t., 22 h: 1 (68% from 17); 9 (73% from 17).

Since one of the benzyl ethers in the phytosphingosine unit of amide **18** and urea **19** proved to be particularly stubborn to remove, we investigated a phytosphingosine acceptor in which the internal 1,2-diol was protected as an isopropylidene acetal.¹³ Galactoside **20** was consequently accessed under our standard conditions in good yield and once again with complete α -stereoselectivity (Scheme 2). Subsequent Staudinger reduction provided amine **21**, which was acylated as before to provide amide **22**. Alternatively, reaction with a mixed carbonate, prepared from 1-tetracosanol and N,N'-disuccinimidyl carbonate, ¹⁴ provided carbamate **23**. A two-step acetal hydrolysis / debenzylation sequence on **22** and **23** proceeded uneventfully in both cases, to provide α -GalCer **1** and carbamate

derivative **10**, respectively. Finally the thioamide **8** was prepared from α -GalCer in a three-step sequence, involving peracetylation to provide **24**, thionation of the amide¹⁵ with Lawesson's reagent to afford thioamide **25**, followed by deacetylation under Zémplen conditions (Scheme 2).

Scheme 2. Improved synthesis of α-GalCer 1, and synthesis of carbamate 10 and thioamide 8. (a) PMe₃, THF, 3 h, r.t., then H₂O, 1 h, 93%. (b) CH₃(CH₂)₂₄C(O)Cl, Et₃N, CH₂Cl₂, 0 °C to r.t., 12 h, 22 (85%). (c) *N*-succinimidyl-tetracosanyl carbonate, Et₃N, CH₂Cl₂, r.t., 4 h, 23 (82%). (d) from 22: (i) TFA, CH₂Cl₂-H₂O, 10:1, 2 h, r.t.; (ii) Pd(OH)₂ / C, H₂, THF, 6 h, 1 (75%). (e) from 23: (i) TFA, CH₂Cl₂-MeOH, 2:1, 2 h, r.t.; (ii) Pd(OH)₂ / C, H₂, THF, 6 h, 10 (75%). (f) Ac₂O, pyridine, r.t., 10 h, 94%. (g) Lawesson's reagent, toluene, 80 °C, 4 h, 85%. (h) NaOMe, MeOH, r.t., 2 h, 90%.

ThrCer and ThrCer analogues 11–13: Our attention turned to the synthesis of ThrCer 2 and its three analogues 11, 12 and 13. Ready access to an advanced intermediate, namely amine 26, using a slight modification of our previously established methodology, alongside that developed for generating the three α-GalCer analogues, provided straightforward access to the corresponding ThrCer analogues as summarized in Scheme 3. ThrCer 2 was synthesized from amine 26 in a three-step sequence involving acylation, followed by silyl ether deprotection and acetal hydrolysis.

Thionation of the acylation product 27 provided thioamide 28, which underwent the same two deprotection steps to afford our first ThrCer target, namely thioamide analogue 11. Alternatively, treatment of amine 26 with the mixed carbonate derived from the reaction of 1-tetracosanol with N,N'-disuccinimidyl carbonate, provided carbamate 29, and with tricosanyl isocyanate, furnished urea 30, and thence our final two targets, carbamate 13 and urea 12, after silyl deprotection and acetal hydrolysis (Scheme 3).

Scheme 3. Synthesis of ThrCer **2** and thioamide, urea and carbamate analogues. (a) CH₃(CH₂)₂₄C(O)Cl, Et₃N, CH₂Cl₂, 0 °C to r.t., 12 h, 85%. (b) Lawesson's reagent, toluene, 80 °C, 5 h, 88%. (c) Bu₄NF, THF, r.t., 4 h. (d) TFA, CH₂Cl₂–MeOH (10:1), r.t.; **2** (74% from **27**); **11** (73% from **28**); **12** (72% from **30**); **13** (70% from **29**). (e) *N*-succinimidyl-tetracosanyl carbonate, Et₃N, CH₂Cl₂, r.t., 5 h, **29** (86%). (f) CH₃(CH₂)₂₄NCO, toluene, reflux, 8 h, **30** (80%).

General Experimental

Infra-red spectra were recorded neat as thin films. The intensity of each band is described as s (strong), m (medium) or w (weak) and with the prefix v (very) and suffix br (broad) where appropriate. ¹H-NMR and ¹³C-NMR spectra were recorded in the solvent specified, at 500 and 125 MHz, 400 and 100 MHz, or 300 and 75 MHz, respectively. Chemical shifts are reported as δ values (ppm) referenced to the following solvent signals: CHCl₃, $\delta_{\rm H}$ 7.26; CDCl₃, $\delta_{\rm C}$ 77.0; CH₃OD, $\delta_{\rm H}$ 3.34; CD₃OD, $\delta_{\rm C}$ 49.9. The term, 'stack' is used to describe a region where resonances arising from nonequivalent nuclei are coincident, and multiplet, m, to describe a resonance arising from a single nucleus (or equivalent nuclei) in which coupling constants cannot be readily assigned. In analyzing AB systems, where the resonance pattern forms two well-separated groups, each of two lines, these are separately reported as "A of AB" and "B of AB", along with J_{A-B} . Connectivities were deduced from COSY90, HSQC and HMBC experiments. Mass spectra were recorded on a liquid chromatography time-of-flight (LCT) spectrometer utilizing electrospray ionization with a methanol mobile phase and are reported as (m/z) (%). HRMS were recorded on a LCT spectrometer using a lock mass incorporated into the mobile phase. Melting points were determined using open capillaries and are uncorrected.

Reactions were monitored by thin layer chromatography using pre-coated glass-backed silica plates (60A F_{254}) and visualized by UV detection (at 254 nm) or by staining with ammonium molybdate(IV)–cerium(IV) sulfate staining dip, or 5% phosphomolybdic acid in EtOH (MPA spray), or 1% α -naphthol, 5% H_2SO_4 in EtOH. Column chromatography was performed on silica gel (particle size 40–63 μ m mesh) using standard glass columns or using pre-packed cartridges (silica, particle size 40 μ m) [1 g (6 mL) cartridge size for purifying <30 mg of product, 2 g (12 mL) cartridge size for purifying 25–50 mg, 5 g (20 mL) cartridge size for purifying 50–100 mg of product].

All reactions were conducted in oven-dried (140 °C) or flame-dried glassware under a N_2 atmosphere, and at ambient temperature (20 to 25 °C) unless specified otherwise, with magnetic stirring. Volumes of 1 mL or less were measured and dispensed with gastight syringes. Evaporation and concentration under reduced pressure was performed at 50–500 mbar at 40 °C. Residual solvent was removed under high vacuum (1 mbar).

All reagents were obtained from commercial sources and used without further purification unless specified otherwise. Toluene and CH_2Cl_2 was freshly distilled under N_2 from CaH_2 . THF were freshly distilled under N_2 from sodium benzophenone ketyl. Dry MeCN was purchased as puriss., absolute grade, over 4 Å molecular sieves ($H_2O \le 0.001\%$), $\ge 99.5\%$ (GC) and used without further purification. All solutions are aqueous and saturated unless specified otherwise. Pyridine and Et_3N were distilled from KOH and stored over 4 Å molecular sieves.

(2S,3S,4R)-3,4-Di-O-benzyl-1-O-(2',3',4',6'-tetra-O-benzyl-α-D-galactopyranosyl)-2-(tricosanylaminocarbonylamino)octadecane-1,3,4-triol (19)

A screw-capped glass tube containing a solution of tetracosanoic acid (450 mg, 1.22 mmol) in (COCl)₂ (2.0 mL, 23 mmol) was closed tightly and heated at 70 °C for 2 h. The volatiles were then evaporated under a stream of argon and the tube then placed on a high vacuum line for at least 2 h to remove the residual volatiles. The resulting tetracosanoyl chloride was used directly in the next step without further purification: a solution of freshly prepared tetracosanoyl chloride (450 mg, 1.22)

mmol) in THF (5 mL) was added dropwise over 10 min to a solution of NaN₃ (300 mg, 4.62 mmol) in H₂O (0.5 mL) at 0 °C. The reaction mixture was stirred at r.t. for 5 h. The organic phase was then extracted with cold (~10 °C) THF (5 mL) and dried over Na₂SO₄. The drying agent was removed by filtration. The solvent was removed under reduced pressure to provide tetracosanoyl azide as a white solid, which was used immediately in the next step: a solution of tetracosanoyl azide (481 mg, 1.22 mmol (assuming quantitative conversion in the previous step)) in toluene (5 mL) was heated under reflux for 4 h, after which time, the reaction mixture was cooled to r.t. The resulting solution of tricosanyl isocyanate product was used directly without further purification in the next step: a solution of amine 17 (150 mg, 0.147 mmol) in toluene (5 mL) was added to a solution of tricosanyl isocyanate (1.22 mmol (assuming quantitative conversion)) in toluene (5 mL) at r.t. The reaction mixture was heated under reflux for 8 h and then concentrated under reduced pressure. Purification of the residue by flash column chromatography (20% EtOAc in hexane) afforded urea 19 as a pale yellow oil (140 mg, 68% based on amine): $R_f = 0.3$ (20% EtOAc in hexane); $[\alpha]_D^{20} = +25.2$ (c 1, CHCl₃); $v_{\text{max}}(\text{film}) / \text{cm}^{-1} 3363 \text{m} \text{ (N-H)}, 1670 \text{m} \text{ (C=O)}; \delta_{\text{H}}(500 \text{ MHz}, \text{CDCl}_3) 0.89 \text{ (t, } J 7.0, 6H, 2 \times 10^{-1} \text{ cm}^{-1})$ CH_2CH_3), 1.10–1.39 (stack, 65H, alkyl chain methylenes), 1.39–1.51 (m, 1H, alkyl chain CH_aH_b), 1.56-1.64 (m, 1H, C(5) H_aH_b), 1.64-1.73 (m, 1H, C(5) H_aH_b), 2.90-3.06 (stack, 2H, C H_aH_b NH), 3.33 $(dd, J 9.5, 5.0, 1H, C(6')H_aH_b), 3.55 (dd, J 9.5, 7.0, 1H, C(6')H_aH_b), 3.59-3.64 (m, 1H, H-4), 3.73$ $(dd, J 10.8, 3.1, 1H, C(1)H_aH_b), 3.80-3.88$ (stack, 3H, H-2, H-3, H-4'), 3.89 (dd, J 10.1, 2.7, 1H, H-3'), 3.98 (app. t, J 6.0, 1H, H-5'), 4.05 (dd, J 10.1, 3.6, 1H, H-2'), 4.11 (br dd, J 10.8, 4.5, 1H, $C(1)H_aH_b$), 4.38 (A of AB, J_{A-B} 12.0, 1H, $C(6')OCH_aH_bPh$), 4.45–4.48 (stack, 2H, $C(6')OCH_aH_bPh$, $C(4)OCH_aH_bPh)$, 4.54 (A of AB, J_{A-B} 11.3, 1H, $C(3)OCH_aH_bPh)$, 4.57 (A of AB, J_{A-B} 11.8, 1H, $C(2')OCH_aH_bPh)$, 4.75 (A of AB, J_{A-B} 11.8, 1H, $C(3')OCH_aH_bPh)$, 4.78 (B of AB, J_{B-A} 11.3, 1H, $C(3)OCH_aH_bPh)$, 4.79 (B of AB, J_{B-A} 11.7, 1H, $C(2')OCH_aH_bPh)$, 4.81 (B of AB, J_{B-A} 11.8, 1H, $C(3')OCH_aH_bPh)$, 4.87 (d, J 3.6, 1H, H-1'), 4.93 (B of AB, J_{B-A} 11.8, 1H, $C(4')OCH_aH_bPh)$, 5.00 (d, J

7.8, 1H, C(2)N*H*), 7.23–7.38 (stack, 30H, 6 × Ph), CH₂N*H* not observed; $\delta_{\rm C}(125~{\rm MHz},{\rm CDCl_3})$ 14.1 (CH₃, 2 × CH₂CH₃), [22.7, 26.0, 26.9, 29.4, 29.7, 29.9, 30.3, 31.9 (CH₂, alkyl chain methylenes, resonance overlap)], 40.3 (CH₂, CH₂NH), 51.7 (CH, C-2), 69.9 (CH₂, C-6'), 70.1 (CH, C-5'), 71.0 (CH₂, C-1), 71.9 (CH₂, C(4)OCH₂Ph), 73.1 (CH₂, C(3')OCH₂Ph), 73.4 (CH₂, C(2')OCH₂Ph), 73.6 (CH₂, C(6')OCH₂Ph), 73.8 (CH₂, C(3)OCH₂Ph), 74.6 (CH₂, C(4')OCH₂Ph), 75.0 (CH, C-3), 76.8 (CH, C-2'), 78.8 (CH, C-3'), 79.9 (CH, C-4'), 80.3 (CH, C-4), 99.8 (CH, C-1'), [127.5, 127.6, 127.67, 127.70, 127.84, 127.88, 127.9, 128.25, 128.28, 128.34, 128.37, 128.5 (CH, Ph, resonance overlap)], 137.39 (C, *ipso* Ph), 138.42 (C, *ipso* Ph), 138.48 (C, *ipso* Ph), 138.67 (C, *ipso* Ph), 138.72 (C, *ipso* Ph), 138.8 (C, *ipso* Ph), 158.8 (C, C=O); MS (TOF ES+) m/z 1408.0 ([M + Na]⁺, 100%); HRMS (TOF ES+) calcd for C₉₀H₁₃₂N₂O₉Na [M + Na]⁺ 1407.9831, found 1407.9844. The unreacted amine was also recovered (40 mg, 83%).

General procedure for catalytic hydrogenolysis: Pd(OH)₂/C or Pd/C (0.05 eq per benzyl group) was added to a solution of the benzylated compound in THF (0.01 M). H₂ gas was bubbled through the stirred suspension. The progress of the reaction was monitored by TLC. On completion, the reaction mixture was filtered through a plug of Celite, washed with THF and then CHCl₃/MeOH (90/10, v/v), and concentrated under reduced pressure to provide the crude product, which was purified by flash column chromatography.

(2S,3S,4R)-1-O- $(\alpha$ -D-Galactopyranosyl)-2-(tricosanylaminocarbonylamino)octadecane-1,3,4-triol (9)

Urea 9 was prepared from perbenzylated urea 19 (115 mg, 0.083 mmol) and Pd/C (26.5 mg, 10%) wet) in THF (10 mL) according to the general procedure for catalytic hydrogenolysis. After 22 h, work-up and purification by flash column chromatography (6% MeOH in CHCl₃) afforded urea 9 as an amorphous, white solid (51 mg, 73%): $R_f = 0.23$ (6% MeOH in CHCl₃); $[\alpha]_D^{18} = +28.0$ (c 0.5, CHCl₃); mp 154 - 155 °C; $v_{\text{max}}(\text{film})$ / cm⁻¹ 3363m (N-H), 1670m (C=O); $\delta_{\text{H}}(500 \text{ MHz},$ $CDCl_3:CD_3OD, 3:1) 0.68 (t, J 6.5, 6H, 2 \times CH_2CH_3), 1.06-1.10 (stack, 62H, alkyl chain methylenes),$ 1.22-1.27 (stack, 2H), 1.33-1.36 (m, 1H), 1.48-1.52 (m, 1H), 1.67-1.69 (stack, 2H), 2.83-2.96 (stack, 2H, CH₂NH), 3.28–3.31 (m, 1H, H-3), 3.33–3.36 (m, 1H, H-4), 3.49–3.63 (stack, 6H, H-3', 2 \times H-6', H-2', H-5', C(1) H_a H_b), 3.66 (dd, J 10.5, 4.5, 1H, C(1) H_a H_b), 3.72 (br d, J 2.5, 1H, H-4'), 3.97 $(dd, J 9.0, 4.5, 1H, H-2), 4.67 (d, J 3.5, 1H, H-1'); \delta_{c}(125 \text{ MHz}, CDCl_3:CD_3OD, 3:1) 13.5 (CH_3, 2 \times 10^{-3})$ CH₂CH₃), [22.3, 25.1, 25.5, 26.6, 29.0, 29.1, 29.3, 29.4, 29.8, 31.5, 32.7 (CH₂, alkyl chain methylenes, resonance overlap)], 39.8 (CH₂, CH₂NH), 50.6 (CH, C-2), 61.5 (CH₂, C-6'), 67.6 (CH₂, C-1), 68.6 (CH, C-2'), 69.4 (CH, C-4'), 70.0 (CH, C-3'), 70.5 (CH, C-5'), 72.1 (CH, C-4), 75.2 (CH, C-3), 99.4 (CH, C-1'), 158.9 (C, C=O); MS (TOF ES+) m/z 867.9 ([M + Na]⁺, 100%); HRMS (TOF ES+) calcd for $C_{48}H_{96}N_2O_9Na [M + Na]^+867.7014$, found 867.7026.

(2S,3S,4R)-2-Amino-3,4-O-isopropylidene-1-O-(2',3',4',6'-tetra-O-benzyl- α -D-galactopyranosyl)octadecane-1,3,4-triol (21)

PMe₃ (930 µL of a 1.0 M soln in THF, 0.93 mmol) was added dropwise over 5 min to a solution of azide 20 (700 mg, 0.77 mmol) in THF (7 mL). The reaction mixture was stirred at r.t. for 3 h, after which time, H₂O (0.5 mL) was added. The reaction mixture was stirred for 1 h and then concentrated under reduced pressure. The residual H_2O was removed by co-evaporation with toluene (3 × 3 mL) to provide the crude product. Purification by flash column chromatography (25% EtOAc in hexane) afforded amine **21** as a colorless oil (632 mg, 93%): $R_f = 0.2$ (25% EtOAc in hexane); $[\alpha]_D^{20} = +35.6$ (c 1, CHCl₃); v_{max} (film) / cm⁻¹ 3372 br (N–H); δ_{H} (300 MHz, CDCl₃) 0.87 (t, J 7.0, 3H), 1.20–1.43 (stack, 24H), 1.37 (s, 3H), 1.42–1.57 (stack, 5H), 2.99–3.08 (m, 1H), 3.37 (dd, J 10.1, 7.6, 1H), $3.48 - 3.57 \; (\mathrm{stack}, \, 2\mathrm{H}), \, 3.81 - 3.98 \; (\mathrm{stack}, \, 5\mathrm{H}), \, 4.02 - 4.12 \; (\mathrm{stack}, \, 2\mathrm{H}), \, 4.38 \; (\mathrm{A} \; \mathrm{of} \; \mathrm{AB}, \, J_{\mathrm{A-B}} \; 11.8, \, 1\mathrm{H}), \, 3.81 - 3.98 \; (\mathrm{A} \; \mathrm{or} \; \mathrm{AB}, \, J_{\mathrm{A-B}} \; 11.8, \, 1\mathrm{H}), \, 3.81 - 3.98 \; (\mathrm{A} \; \mathrm{or} \; \mathrm{AB}, \, J_{\mathrm{A-B}} \; 11.8, \, 1\mathrm{H}), \, 3.81 - 3.98 \; (\mathrm{A} \; \mathrm{or} \; \mathrm{AB}, \, J_{\mathrm{A-B}} \; 11.8, \, 1\mathrm{H}), \, 3.81 - 3.98 \; (\mathrm{A} \; \mathrm{or} \; \mathrm{AB}, \, J_{\mathrm{A-B}} \; 11.8, \, 1\mathrm{H}), \, 3.81 - 3.98 \; (\mathrm{A} \; \mathrm{or} \; \mathrm{AB}, \, J_{\mathrm{A-B}} \; 11.8, \, 1\mathrm{H}), \, 3.81 - 3.98 \; (\mathrm{A} \; \mathrm{or} \; \mathrm{AB}, \, J_{\mathrm{A-B}} \; 11.8, \, 1\mathrm{H}), \, 3.81 - 3.98 \; (\mathrm{A} \; \mathrm{or} \; \mathrm{AB}, \, J_{\mathrm{A-B}} \; 11.8, \, 1\mathrm{H}), \, 3.81 - 3.98 \; (\mathrm{A} \; \mathrm{or} \; \mathrm{AB}, \, J_{\mathrm{A-B}} \; 11.8, \, 1\mathrm{H}), \, 3.81 - 3.98 \; (\mathrm{A} \; \mathrm{or} \; \mathrm{AB}, \, J_{\mathrm{A-B}} \; 11.8, \, 1\mathrm{H}), \, 3.81 - 3.98 \; (\mathrm{A} \; \mathrm{or} \; \mathrm{AB}, \, J_{\mathrm{A-B}} \; 11.8, \, 1\mathrm{H}), \, 3.81 - 3.98 \; (\mathrm{A} \; \mathrm{or} \; \mathrm{AB}, \, J_{\mathrm{A-B}} \; 11.8, \, 1\mathrm{H}), \, 3.81 - 3.98 \; (\mathrm{A} \; \mathrm{or} \; \mathrm{AB}, \, J_{\mathrm{A-B}} \; 11.8, \, 1\mathrm{H}), \, 3.81 - 3.98 \; (\mathrm{A} \; \mathrm{or} \; \mathrm{AB}, \, J_{\mathrm{A-B}} \; 11.8, \, 1\mathrm{H}), \, 3.81 - 3.98 \; (\mathrm{A} \; \mathrm{or} \; \mathrm{AB}, \, J_{\mathrm{A-B}} \; 11.8, \, 1\mathrm{H}), \, 3.81 - 3.98 \; (\mathrm{A} \; \mathrm{or} \; \mathrm{AB}, \, J_{\mathrm{AB}} \;$ $4.46 \; (\mathrm{B} \; \mathrm{of} \; \mathrm{AB}, \, J_{\mathrm{B-A}} \; 11.8, \; 1\mathrm{H}), \; 4.57 \; (\mathrm{d}, \, J \; 11.5, \; 1\mathrm{H}), \; 4.68 \; (\mathrm{d}, \, J \; 11.8, \; 1\mathrm{H}), \; 4.71-4.83 \; (\mathrm{stack}, \; 3\mathrm{H}), \; 4.83 \; (\mathrm{d}, \, J \; 11.8, \; 1\mathrm{H}), \; 4.83 \; (\mathrm{d}, \, J \; 11.8, \; J \;$ 4.91–4.93 (stack, 2H), 7.22–7.39 (stack, 20H), NH₂ not observed; $\delta_{\rm C}(100~{\rm MHz}, {\rm CDCl}_3)$ 14.1 (CH₃), 22.7 (CH₂), 25.9 (CH₃), 26.2 (CH₂), 28.3 (CH₃), [29.3, 29.7, 29.8 (CH₂, resonance overlap)], 31.9 (CH₂), 50.7 (CH), 69.0 (CH₂), 69.5 (CH), 72.3 (CH₂), 73.0 (CH₂), 73.3 (CH₂), 73.5 (CH₂), 74.8 (CH₂), 75.0 (CH), 76.8 (CH), 77.9 (CH), 79.0 (CH), 79.1 (CH), 99.0 (CH), 107.8 (C), [127.4, 127.5, 127.6, 127.7, 127.8 128.2, 128.3 (CH, resonance overlap)], 138.0 (C), [138.7, 138.8 (C, resonance overlap)]; MS (TOF ES+) m/z 880.8 ([M + H]⁺, 100%); HRMS (TOF ES+) calcd for $C_{55}H_{78}NO_8$ [M + H]⁺ 880.5727, found 880.5721.

Carbonic acid, 2,5-dioxo-1-pyrrolidinyl tetracosanyl ester

 N_sN' -Disuccinimidyl carbonate (190 mg, 0.75 mmol) was added to a solution of tetracosan-1-ol (177 mg, 0.50 mmol) and NEt₃ (210 μ L, 1.5 mmol) in dry CH₃CN (2.5 mL) at r.t. The resulting mixture was stirred at r.t. for 4 h and then concentrated under reduced pressure. The residue was diluted with NaHCO₃ solution (10 mL) and extracted with EtOAc (2 × 10 mL). The combined extracts were washed with brine (5 mL) and dried over Na₂SO₄. Evaporation of the solvent under reduced pressure provided the corresponding mixed carbonate as a white solid, which was used directly in the next step (248 mg, quant.): $R_f = 0.3$ (25% EtOAc in hexane); v_{max} (film) / cm⁻¹ 1711m (C=O), 1693m (C=O); δ_{H} (300 MHz, CDCl₃) 0.88 (t, J 7.0, 3H, CH₂CH₃), 1.16–1.46 (stack, 42H, alkyl chain methylenes), 1.51–1.80 (stack, 2H), 2.84 (s, 4H), 4.31 (t, J 6.6, 2H); δ_{C} (100 MHz, CDCl₃) 14.1 (CH₃, CH₂CH₃), 22.7 (CH₂), 28.4 (CH₂), [29.1, 29.36, 29.42, 29.5, 29.7 (CH₂, alkyl chain, resonance overlap)], 31.9 (CH₂), 71.7 (CH₂), 151.6 (C, OC=O), 168.7 (C, NC=O); MS (TOF ES+) m/z 518.5 ([M + Na]⁺, 100%); HRMS (TOF ES+) calcd for $C_{20}H_{53}NO_5Na$ [M + Na]⁺ 518.3821, found 518.3817.

(2S,3S,4R)-3,4-O-Isopropylidene-1-O-(2',3',4',6'-tetra-O-benzyl- α -D-galactopyranosyl)-2-(tetracosanyloxycarbonylamino)octadecane-1,3,4-triol (23)

A solution of carbonic acid, 2,5-dioxo-1-pyrrolidinyl tetracosanyl ester (50 mg, 0.10 mmol) in CH₂Cl₂ (0.5 mL) was added to a stirred solution of amine 21 (60 mg, 0.068 mmol) and NEt₃ (24 µL, 0.17 mmol) in CH₂Cl₂ (1 mL). The resulting mixture was stirred at r.t. until no mixed carbonate remained as determined by TLC (4 h). The mixture was then diluted with CH₂Cl₂ (8 mL) and washed sequentially with NaHCO₃ solution (10 mL) and brine (10 mL). The organic phase was dried over Na₂SO₄ and the solvent was evaporated under reduced pressure. Purification of the residue by flash column chromatography (5% EtOAc in toluene) provided carbamate 23 as a colorless oil (70 mg, 82%): $R_f = 0.3$ (10% EtOAc in hexane); $[\alpha]_D^{20} = +36.8$ (c 1, CHCl₃); v_{max} (film) / cm⁻¹ 1689m (C=O); $\delta_{\rm H}(500~{\rm MHz},{\rm CDCl_3})~0.88~({\rm t}, J~6.8, 6{\rm H}, 2\times{\rm CH_2C}H_3), 1.24-1.34~({\rm stack}, 64{\rm H}, {\rm alkyl~chain~methylenes},$ $C(CH_3)_2$, 1.39–1.51 (stack, 8H), 1.57–1.59 (stack, 3H), 1.63–1.67 (m, 1H), 3.45 (dd, J 9.3, 6.3, 1H, $C(6')H_aH_b$, 3.52 (dd, J 9.3, 6.5, 1H, $C(6')H_aH_b$), 3.66–3.70 (m, 1H, H-3), 3.77–3.84 (m, 1H, H-2), 3.91-3.98 (stack, 6H, H-3', H-4', H-5', C(1) H_aH_b , H-4', C(1") H_aH_b), 4.03–4.11 (stack, 3H, H-2', $C(1)H_aH_b$, $C(1")H_aH_b$, 4.38 (A of AB, J_{A-B} 11.8, 1H, $C(6")OCH_aH_bPh$), 4.49 (B of AB, J_{B-A} 11.8, 1H, $C(6')OCH_aH_bPh)$, 4.56 (A of AB, J_{A-B} 11.5, 1H, $OCH_aH_bPh)$, 4.67 (A of AB, J_{A-B} 11.7, 1H, ${\rm OC}H_a{\rm H_bPh}), \ 4.74 \ \ ({\rm A} \ \ {\rm of} \ \ {\rm AB}, \ J_{\rm A-B} \ \ 11.7, \ 1{\rm H}, \ {\rm C(2')OC}H_a{\rm H_bPh}), \ 4.78 \ \ ({\rm B} \ \ {\rm of} \ \ {\rm AB}, \ J_{\rm B-A} \ \ 11.7, \ 1{\rm H}, \ {\rm C(2')OC}H_a{\rm H_bPh}), \ 4.78 \ \ ({\rm B} \ \ {\rm of} \ \ {\rm AB}, \ J_{\rm B-A} \ \ 11.7, \ 1{\rm H}, \ {\rm OC}H_a{\rm H_bPh})$ OCH_aH_bPh), 4.83 (B of AB, J_{B-A} 11.7, 1H, C(2')OCH_a H_bPh), 4.92 (B of AB, J_{B-A} 11.5, 1H, $OCH_{A}H_{b}Ph$), 4.95 (d, J 3.6, 1H, H-1'), 5.32 (br d, J 9.5, 1H, NH), 7.23–7.35 (stack, 18H, Ph), 7.38–7.39 (stack, 2H, Ph); $\delta_{\rm C}(125~{\rm MHz},{\rm CDCl_3})$ 14.1 (CH₃, 2 × CH₂CH₃), 22.7 (CH₂), 25.9 (CH₂, CH₃, resonance overlap), 26.5 (CH₂), 28.2 (CH₃), 28.8 (CH₂), 29.1 (CH₂), [29.3, 29.4, 29.7, 29.8 (CH₂, alkyl chain, resonance overlap)], 32.0 (CH₂), 50.7 (CH), 65.1 (CH₂), 69.3 (CH₂), 69.7 (CH), 69.9 (CH₂), 73.1 (CH₂), 73.2 (CH₂), 73.6 (CH₂), 74.7 (CH₂), 74.9 (CH), 75.5 (CH), 76.8 (CH), 77.8 (CH), 79.0 (CH), 99.2 (CH, C-1'), 107.7 (C, $C({\rm CH_3})_2$), [127.5, 127.6, 127.8, 127.9 (CH, Ph, resonance overlap)], [128.23, 128.26, 128.34, 128.36, 128.4 (CH, Ph, resonance overlap)], 137.8 (C, *ipso* Ph), 138.6 (C, 2 × *ipso* Ph), 138.8 (C, *ipso* Ph), 155.9 (C, C=O); MS (TOF ES+) m/z 1283.0 ([M + Na]⁺, 100%); HRMS (TOF ES+) calcd for $C_{80}H_{125}NO_{10}Na$ [M + Na]⁺ 1282.9201, found 1282.9244.

(2S,3S,4R)-1-O- $(\alpha$ -D-Galactopyranosyl)-2-(tetracosanyloxycarbonylamino)octadecane-1,3,4-triol (10)

TFA (120 μ L) was added dropwise over 1 min to a solution of acetal **23** (60 mg, 0.048 mmol) in CH₂Cl₂ / CH₃OH (2:1, 0.6 mL). After stirring for 2 h at r.t., the reaction mixture was concentrated under reduced pressure and the residual TFA was removed by co-evaporation with Et₂O (3 × 3 mL) to provide the acetal hydrolysis product as a white solid (58 mg, quant.), which was treated with Pd(OH)₂/C (15 mg, 10% wet) and H₂ in THF (6 mL) according to the general hydrogenolysis procedure. After 6 h, work-up and purification by flash column chromatography (8% MeOH in CHCl₃) afforded carbamate **10** as an amorphous white solid (31 mg, 75%): $R_f = 0.3$ (8% MeOH in CHCl₃); $[\alpha]_{D}^{18} = +46.0$ (c 1, CHCl₃); mp 166 – 167 °C; v_{max} (neat) / cm⁻¹ 3388s br (OH), 1683m (C=O); δ_{H} (500 MHz, CDCl₃:CD₃OD, 2:1) 0.63 (t, J 6.8, 6H), 0.91–1.12 (stack, 66H), 1.22–1.48 (stack, 4H), 3.27–3.38 (stack, 2H), 3.39–3.58 (stack, 6H), 3.64–3.75 (stack, 4H), 3.77–3.84 (m, 1H),

4.65 (d, J 3.4, 1H), OH and NH resonances not observed; $\delta_{\rm C}(125~{\rm MHz},{\rm CDCl_3:CD_3OD},{\rm 2:1})$ 13.4, 22.2, 25.3, 25.4, 28.6, 28.7, 28.9, 29.2, 31.4, 32.1, 51.3, 61.4, 64.8, 67.1, 68.5, 69.4, 69.9, 70.4, 71.5, 74.4, 99.3, 156.9 (significant resonance overlap in the alkyl chain methylene resonances); MS (TOF ES+) m/z 882.4 ([M + Na]⁺, 100%); HRMS (TOF ES+) calcd for ${\rm C_{49}H_{97}NO_{10}Na}$ [M + Na]⁺ 882.7010, found 882.7000.

(2S,3S,4R)-3,4-Di-O-acetyl-1-O-(2',3',4',6'-tetra-O-acetyl-α-D-galactopyranosyl)-2-(hexacosanoylamino)octadecane-1,3,4-triol (24)

Ac₂O (300 μL, 3.2 mmol) was added dropwise over 1 min to a solution of α-GalCer 1 (90 mg, 0.11 mmol) in pyridine (2 mL) and the reaction mixture was stirred at r.t. for 10 h, after which time, the volatiles were removed under reduced pressure. The residue was diluted with CH₂Cl₂ (10 mL), washed sequentially with H₂O (5 mL), NaHCO₃ solution (10 mL), brine (3 mL) and then dried over Na₂SO₄. The drying agent was removed by filtration and the filtrate was concentrated under reduced pressure. The crude product was purified by flash column chromatography (25% EtOAc in hexane) to afford hexa-acetate **24** as a white solid (110 mg, 94%): R_f = 0.3 (20% EtOAc in hexane); [α]²⁰_D = +8.4 (c 0.5, CHCl₃); mp 43 – 44 °C; v_{max} (film) / cm⁻¹ 1745s (C=O), 1683w (C=O); δ_{H} (300 MHz, CDCl₃) 0.87 (t, J 6.7, 6H), 1.12–1.40 (stack, 68H), 1.56–1.72 (stack, 4H), 1.98 (s, 3H), 1.99 (s, 3H), 2.04 (s, 3H), 2.06 (s, 3H), 2.09 (s, 3H), 2.13 (s, 3H), 2.27 (t, J 7.4, 2H), 3.39 (dd, J 10.6, 2.2, 1H), 3.64 (dd, J 10.7, 2.6, 1H), 3.97–4.14 (stack, 4H), 4.31–4.41 (m, 1H), 4.90 (d, J 3.7, 1H), 5.13 (dd, J 10.8, 3.7, 1H), 5.25–5.36 (stack, 2H), 5.44 (d, J 3.1, 1H), 6.39 (d, J 9.7, 1H); δ_{c} (100 MHz, CDCl₃) 14.1 (CH₃),

[20.60, 20.66, 20.72, (CH₃), resonance overlap], 20.1 (CH₃), 22.7 (CH₂), 25.6 (CH₂), 25.7 (CH₂), [29.29, 29.35, 29.40, 29.7 (CH₂, resonance overlap)], 31.9 (CH₂), 36.7 (CH₂), 47.8 (CH), 61.8 (CH₂), 66.7 (CH), 67.2 (CH₂), 67.5 (CH), 67.9 (CH), 70.5 (CH), 73.4 (CH), 97.1 (CH), 169.7 (C), 170.1 (C), 170.4 (C), 170.7 (C), 171.1 (C), 172.9 (C), some resonance overlap in *C*=O region; MS (TOF ES+) *m/z* 1132.8 ([M + Na]⁺, 100%); HRMS (TOF ES+) calcd for C₆₂H₁₁₁NO₁₅Na [M + Na]⁺ 1132.7851, found 1132.7860.

(2S,3S,4R)-3,4-Di-O-acetyl-1-O-(2',3',4',6'-tetra-O-acetyl- α -D-galactopyranosyl)-2-(hexacosanethioylamino)octadecane-1,3,4-triol (25)

Lawesson's reagent (60 mg, 0.15 mmol) was added to a solution of amide **24** (110 mg, 0.10 mmol) in toluene (2 mL) at r.t. The reaction mixture was stirred at 80 °C for 4 h and then the solvent was removed under reduced pressure. The residue was diluted with CH_2Cl_2 (10 mL), washed sequentially with H_2O (5 mL), NaHCO₃ solution (10 mL), brine (2 mL) and then dried over Na₂SO₄. The drying agent was removed by filtration and the filtrate was concentrated under reduced pressure. Purification of the residue by flash column chromatography (20% EtOAc in hexane) provided thioamide **25** as a pale yellow solid (96 mg, 85%): R_f = 0.3 (15% EtOAc in hexane); $[\alpha]_D^{20}$ = +46.0 (c 1, CHCl₃); mp 47 – 48 °C; v_{max} (film) / cm⁻¹ 1747s (C=O); δ_H (500 MHz, CDCl₃) 0.87 (t, J 6.8, 6H, 2 × CH₂CH₃), 1.21–1.37 (stack, 68H, alkyl chain methylenes), 1.58–1.69 (stack, 2H, H-5), 1.71–1.82 (stack, 2H, H-3"), 1.99 (s, 3H, C(O)CH₃), 2.00 (s, 3H, C(O)CH₃), 2.03 (s, 3H, C(O)CH₃), 2.07 (s, 3H, C(O)CH₃), 2.12 (s, 3H, C(O)CH₃), 2.66–2.78 (stack, 2H, H-2"), 3.40 (dd, J 10.7, 1.9, 1H, 2.08 (s, 3H, C(O)CH₃), 2.12 (s, 3H, C(O)CH₃), 2.66–2.78 (stack, 2H, H-2"), 3.40 (dd, J 10.7, 1.9, 1H,

C(1) H_aH_b), 3.65 (dd, J 10.7, 2.7, 1H, C(1) H_aH_b), 3.97–4.07 (stack, 2H, C(6') H_aH_b , H-5'), 4.08–4.14 (m, 1H, C(6') H_aH_b), 4.75–4.81 (m, 1H, H-4), 4.93 (d, J 3.6, 1H, H-1'), 5.08–5.16 (stack, 2H, (including 5.10 (dd, J 10.8, 3.7, 1H, H-2')), H-2', H-2), 5.37 (dd, J 10.8, 3.4, 1H, H-3'), 5.40–5.42 (m, 1H, H-4'), 5.49 (dd, J 10.0, 2.4, 1H, H-3), 8.66 (d, J 9.2, 1H, N-H); δ_C (125 MHz, CDCl₃) 14.11 (CH₃, 2 × CH₂CH₃), [20.50, 20.54, 20.62, 20.66, 20.95 (CH₃, C(O)CH₃), resonance overlap], [22.6, 25.5, 27.5, 28.9, 29.2, 29.3, 29.4, 29.5, 29.7, 31.9 (CH₂, alkyl chain methylenes, resonance overlap)], 47.0 (CH₂, C-2"), 53.7 (CH, C-2), 61.7 (CH₂, C-6'), 65.3 (CH₂, C-1), 67.0 (CH, C-5'), 67.3 (CH, C-3'), 67.8 (CH, C-2'), 68.0 (CH, C-4'), 69.8 (CH, C-3), 73.6 (CH, C-4), 96.8 (CH, C-1'), 169.7 (C, C(3)C=O), 170.0 (C, C(4')C=O), 170.3 (C, C(3')C=O), 170.4 (C, C(6')C=O), 170.5 (C, C(2')C=O), 171.5 (C, C(4)C=O), 207.0 (C, C=S); MS (TOF ES+) m/z 1148.9 ([M + Na]⁺, 100%); HRMS (TOF ES+) calcd for $C_{62}H_{111}NO_{14}SNa$ [M + Na]⁺ 1148.7623, found 1148.7631.

(2S,3S,4R)-1-O-(α-D-Galactopyranosyl)-2-(hexacosanethioylamino)octadecane-1,3,4-triol (8)

NaOMe (10 μL of a 0.5 M soln in MeOH, 0.005 mmol) was added to a solution of hexa-acetate **25** (25 mg, 0.022 mmol) in MeOH (2.5 mL). After stirring at r.t. for 2 h, the reaction mixture was neutralized by the addition of acidic ion-exchange resin (Dowex H CR-S, pre-washed with MeOH (100 mL) and CHCl₃ (50 mL)). The solution was filtered and the resin washed with MeOH (25 mL) and CHCl₃/MeOH (25 mL, 9:1). The filtrate was concentrated under reduced pressure. Purification of the residue by flash column chromatography (8% MeOH in CHCl₃) provided thioamide **8** as a pale

yellow solid (17 mg, 90%): $R_f = 0.2$ (8% MeOH in CHCl₃); $[\alpha]_D^{20} = +43.2$ (c 1, CHCl₃:CH₃OH, 2:1); mp 136 – 137 °C; v_{max} (film) / cm⁻¹ 3368m br (O–H); δ_H (400 MHz, CDCl₃:CD₃OD, 2:1) 0.84 (t, J 6.9, 6H), 1.14–1.44 (stack, 69H), 1.45–1.78 (stack, 3H), 2.56-2.66 (stack, 2H), 3.50–3.58 (m, 1H), 3.65–3.83 (stack, 8H), 3.90 (d, J 2.9, 1H), 3.96 (dd, J 10.9, 4.3, 1H), 4.85 (app. q, J 4.3, 1H) 4.94 (d, J 3.7, 1H), OH resonances not observed; δ_C (100 MHz, CDCl₃:CD₃OD, 2:1) 14.3 (CH₃), 23.1 (CH₂), 26.4 (CH₂), 29.6 (CH₂), [29.9, 30.0, 30.1, 30.17, 30.21 (CH₂, resonance overlap)], 32.4 (CH₂), 32.7 (CH₂), 47.1 (CH₂), 56.8 (CH), 62.3 (CH₂), 66.8 (CH₂), 69.5 (CH), 70.4 (CH), 70.8 (CH), 71.4 (CH), 72.6 (CH), 73.9 (CH), 100.2 (CH), 206.1 (C); MS (TOF ES+) m/z 896.8 ([M + Na]⁺, 100%); HRMS (TOF ES+) calcd for C₅₀H₉₉NO₈SNa [M + Na]⁺ 896.6989, found 896.6998.

First-Generation Approach to α-GalCer 1

(a) (i) **14**, PPh₃, CBr₄, CH₂Cl₂, r.t., 3 h; (ii) Me₂NC(O)NMe₂, Bu₄NBr, CH₂Cl₂, then **15**, CH₂Cl₂, 3 Å MS, r.t., 3 d, 62%. (b) PMe₃, THF, r.t., 4 h, then H₂O, 1 h, 72%. (c) CH₃(CH₂)₂₄C(O)Cl, Et₃N, CH₂Cl₂, 0 °C to r.t., 8 h, **18** (54%). (d) Pd / C, H₂, THF, r.t., 22 h, **1** (68% from **17**).

(2S,3R,4R)-2-Azido-3,4-di-O-benzyl-1-O-(2',3',4',6'-tetra-O-benzyl- α -D-galactopyranosyl)octadecane-1,3,4-triol $(16)^{17}$

Galactoside 16 was prepared according a slightly modified procedure to that reported in the literature: 18 PPh₃ (1.46 g, 5.55 mmol) and CBr₄ (1.84 g, 5.55 mmol) were added sequentially to a solution of 2,3,4,6-tetra-O-benzyl-α-D-galactose 14^{4,19} (1.00 g, 1.85 mmol) in CH₂Cl₂ (10 mL) at r.t. The reaction mixture was stirred for 3 h. In separate flasks, a solution of tetramethyl urea (TMU) (1.2) mL) and Bu₄NBr (1.79 g, 5.55 mmol) in CH₂Cl₂ (5 mL), and a solution of azide 15⁵ (1.46 g, 2.78 mmol) in CH₂Cl₂ (5 mL), were stirred over activated 3 Å MS for 30 min, after which time, these solutions were added dropwise (15 min) via syringe sequentially (TMU/Bu₄NBr solution first) to the solution containing the glycosyl donor. The reaction mixture was stirred at r.t. for 3 d until the donor was no longer being consumed (as judged by TLC). The reaction mixture was then filtered through a silica plug, washed with CH₂Cl₂ (1.2 L) and concentrated under reduced pressure to provide the crude product, which was purified by flash column chromatography (8% EtOAc in hexane) to provide glycoside **16** as a colorless oil (1.21 g, 62%, α -anomer only): $R_f = 0.3$ (8% EtOAc in hexane); $[\alpha]^{18}_{D} =$ +22 (c 1.4, CH₂Cl₂) (lit.¹⁷ [α]²⁰_D = +26 (c 1.4, CH₂Cl₂)); ν_{max} (film)/cm⁻¹ 2097m (N₃); δ_{H} (500 MHz, $CDCl_3$) 0.90 (t, J 6.9, 3H, CH_2CH_3), 1.20-1.35 (stack, 23H, alkyl chain methylenes), 1.35-1.45 (m, 1H, alkyl chain CH_aH_b), 1.50-1.58 (m, 1H, C(5) H_aH_b), 1.63-1.71 (m, 1H, C(5) H_aH_b), 3.47-3.54 (stack, 2H, $C(6')H_aH_b$, 3.60-3.63 (m, 1H, H-4), 3.71-3.76 (stack, 3H, $C(1)H_aH_b$, H-2, H-3), 3.94-3.98 (stack, 2H, H-4', H-5'), 3.98-4.04 (stack, 2H, H-3', $C(1)H_0H_0$), 4.08 (dd, J 10.0, 3.5, 1H, H-2'), 4.37 (A of AB, J_{A-B} 11.8, 1H, C(6')OC H_aH_bPh), 4.45 (B of AB, J_{B-A} 11.8, 1H, C(6')OC H_aH_bPh), 4.48 (A of AB, J_{A-B} 11.6, 1H, C(4)OCH_aH_bPh), 4.57-4.59 (stack, 2H, C(4)OCH_aH_bPh, C(4')OCH_aH_bPh), 4.63 (A of AB, $J_{\text{A-B}}$ 11.3, 1H, C(3)OC H_aH_b Ph), 4.67 (B of AB, $J_{\text{B-A}}$ 11.3, 1H, C(3)OC H_aH_b Ph), 4.69 (A of AB, $J_{\text{A-B}}$ 11.3, 1H, C(3)OC H_aH_b Ph), 4.69 (A of AB, $J_{\text{A-B}}$ 11.3, 1H, C(3)OC H_aH_b Ph), 4.69 (A of AB, $J_{\text{A-B}}$ 11.3, 1H, C(3)OC H_aH_b Ph), 4.69 (A of AB, $J_{\text{A-B}}$ 11.3, 1H, C(3)OC H_aH_b Ph), 4.69 (A of AB, $J_{\text{A-B}}$ 11.3, 1H, C(3)OC H_aH_b Ph), 4.69 (A of AB, $J_{\text{A-B}}$ 11.3, 1H, C(3)OC H_aH_b Ph), 4.69 (A of AB, $J_{\text{A-B}}$ 11.3, 1H, C(3)OC H_aH_b Ph), 4.69 (A of AB, $J_{\text{A-B}}$ 11.3, 1H, C(3)OC H_aH_b Ph), 4.69 (A of AB, $J_{\text{A-B}}$ 11.3, 1H, C(3)OC H_aH_b Ph), 4.69 (A of AB, $J_{\text{A-B}}$ 11.3, 1H, C(3)OC H_aH_b Ph), 4.69 (A of AB, $J_{\text{A-B}}$

12.0, 1H, C(2')OCH_aH_bPh), 4.74 (A of AB, $J_{A,B}$ 11.5, 1H, C(3')OCH_aH_bPh), 4.81 (B of AB, $J_{B,A}$ 12.0, 1H, C(2')OCH_aH_bPh), 4.84 (B of AB, $J_{B,A}$ 11.5, 1H, C(3')OCH_aH_bPh), 4.91 (d, J 3.5, 1H, H-1'), 4.95 (d, J 11.5, 1H, C(4')OCH_aH_bPh), 7.22-7.40 (stack, 30H, 6 × Ph); δ_{C} (125 MHz, CDCl₃) 14.1 (CH₃, CH₂CH₃), [22.6, 25.3, 29.3, 29.6, 29.9, 31.9 (CH₂, alkyl chain, resonance overlap)], 61.9 (CH, C-2), 68.4 (CH₂, C-1), 68.9 (CH₂, C-6'), 69.6 (CH, C-5'), 71.9 (CH₂, C(4)OCH₂Ph), 73.0 (CH₂, C(3')OCH₂Ph), 73.1 (CH₂, C(2')OCH₂Ph), 73.3 (CH₂, C(6')OCH₂Ph), 73.6 (CH₂, C(3)OCH₂Ph), 74.7 (CH₂, C(4')OCH₂Ph), 75.0 (CH, C(4')), 76.3 (CH, C(2')), 78.7 (CH, C(3')), 78.8 (CH, C(3)), 79.2 (CH, C(4)), 98.6 (CH, C(1')), [127.3, 127.4, 127.56, 127.60, 127.7, 127.8, 128.1, 128.2 (CH, Ph, resonance overlap)], 137.9 (C, *ipso* Ph), 138.0 (C, *ipso* Ph), 138.3 (C, *ipso* Ph), 138.58 (C, *ipso* Ph), 138.63 (C, *ipso* Ph), 138.7 (C, *ipso* Ph); MS (TOF ES+) m/z 1068.8 ([M + Na]*, 100%); HRMS (TOF ES+) calcd for C₆₆H₈₃N₃O₈Na [M + Na]* 1068.6078, found 1068.6063; and then unreacted azide 15 (445 mg, 45%). Data for 16 were in agreement with those reported in the literature for 16 prepared by a different route.¹⁷

(2S,3S,4R)-2-Amino-3,4-di-O-benzyl-1-O-(2',3',4',6'-tetra-O-benzyl- α -D-galactopyranosyl)octadecane-1,3,4-triol $(17)^{17}$

Amine 17 was prepared according a different procedure to that reported in the literature: 17 PMe₃ (455 μ L of a 1.0 M soln in THF, 0.46 mmol) was added dropwise over 5 min to a solution of azide 16 (433 mg, 0.414 mmol) in THF (3.5 mL). The reaction mixture was stirred at r.t. for 4 h, after which time, H_2O (3 mL) was added. The reaction mixture was stirred for 1 h and then concentrated under reduced pressure. The residual H_2O was removed by co-evaporation with toluene (3 × 3 mL) to provide the

crude product, which was purified by flash column chromatography (35% EtOAc in hexane) to afford amine **17** as a white solid (300 mg, 72%), which was used directly without further purification. Selected data: $R_f = 0.3$ (35% EtOAc in hexane); MS (TOF ES+) m/z 1020.5 ([M + H]⁺, 100%); HRMS (TOF ES+) calcd for $C_{66}H_{86}NO_8$ [M + H]⁺ 1020.6353, found 1020.6357. Data for **17** were in agreement with those reported in the literature for **17** prepared by a different route.¹⁷

(2S,3S,4R)-3,4-Di-O-benzyl-1-O-(2',3',4',6'-tetra-O-benzyl- α -D-galactopyranosyl)-2-(hexacosanoylamino)octadecane-1,3,4-triol $(18)^{20}$

A screw-capped glass tube containing a solution of hexacosanoic acid (240 mg, 0.580 mmol) in (COCl)₂ (2.0 mL, 23 mmol) was closed tightly and heated at 70 °C. After 2 h, the volatiles were removed under a stream of N₂ and the residual solvent removed on the vacuum line (1 h) to provide hexacosanoyl chloride as a pale yellow oil, which was used directly in the next step without further purification (265 mg, quant.): a solution of freshly prepared hexacosanoyl chloride (265 mg, 0.58 mmol) in CH₂Cl₂ (1.5 mL) was added dropwise over 2 min to an ice-cooled solution of amine **17** (500 mg, 0.49 mmol) and NEt₃ (136 μ L, 0.98 mmol) in CH₂Cl₂ (3.5 mL) at 0 °C. The reaction mixture was stirred at r.t. for 8 h and then diluted with CH₂Cl₂ (20 mL), washed sequentially with NaHCO₃ solution (20 mL), brine (4 mL) and then dried over Na₂SO₄. The drying agent was removed by filtration and the filtrate concentrated under reduced pressure. Purification of the residue by flash column chromatography (12% EtOAc in hexane) afforded amide **18** as a white solid (370 mg, 54%): R_f = 0.3 (15% EtOAc in hexane); $[\alpha]^{20}_D$ = +31.2 (c 1, CHCl₃) (lit.²⁰ $[\alpha]^{24}_D$ = +18.8 (c 0.9, CHCl₃); mp 75 – 76 °C (lit.²⁰ mp 74 – 75 °C); v_{max} (film)/cm⁻¹ 1647m (C=O); δ_H (300 MHz, CDCl₃) 0.88 (t, J 6.9, 6H), 1.16-

1.34 (stack, 69H), 1.37-1.57 (stack, 2H), 1.58-1.72 (m, 1H), 1.85-2.00 (stack, 2H), 3.36-3.43 (m, 1H), 3.44-3.53 (stack, 2H), 3.69-3.76 (m, 1H), 3.83-3.96 (stack, 4H), 3.99-4.08 (stack, 2H), 4.09-4.20 (m, 1H), 4.32-4.47 (stack, 2H), 4.48-4.67 (stack, 4H), 4.70-4.86 (stack, 6H), 4.92 (d, J 11.7, 1H), 6.12 (d, J 8.7, 1H), 7.20-7.37 (stack, 30H); $\delta_{\rm C}$ (75 MHz, CDCl₃) 14.1 (CH₃), 14.7 (CH₃), [22.7, 25.7, 26.1, 29.3, 29.4, 29.7, 31.9, 36.7 (CH₂, resonance overlap)], 50.3 (CH), 69.6 (CH₂), 69.96 (CH₂), 70.05 (CH), 71.7 (CH₂), 71.8 (CH₂), 72.9 (CH₂), 73.4 (CH₂), 73.6 (CH₂), 73.7 (CH), 74.8 (CH₂), 74.9 (CH), 78.6 (CH), 78.9 (CH), 80.1 (CH), 99.6 (CH), [127.4, 127.6, 127.8, 128.2, 128.3 (CH, resonance overlap)], [137.5, 138.4, 138.5, 138.6 (C, resonance overlap)], 172.8 (C); MS (TOF ES+) m/z 1421.6 ([M + Na]⁺, 100%). Data for **18** were in agreement with those reported in the literature for **18** prepared by a different route.²⁰

(2S,3S,4R)-1-O- α -D-galactopyranosyl-2-(hexacosanoylamino)octadecane-1,3,4-triol (α -GalCer) $(1)^{21,22}$

α-GalCer (1) was prepared according a slightly modified procedure to that reported in the literature:²¹ Amide 1 (α-GalCer) was prepared from perbenzylated amide 18 (180 mg, 0.129 mmol) and Pd/C (85 mg, 10% wet) in THF (10 mL) according to the general procedure. After 22 h, work-up and purification by flash column chromatography (8% MeOH in CHCl₃) afforded amide 1 as an amorphous white solid (75 mg, 68%): $R_f = 0.3$ (10% MeOH in CHCl₃); $[\alpha]_D^{20} = +15.2$ (c=1, CHCl₃:CH₃OH, 2:1) (lit.²³ $[\alpha]_D^{23} = +43.6$ (c=1, pyridine); mp 188 – 189 °C (lit.²² mp 189 – 190 °C); v_{max} (film) / cm⁻¹ 3313br (OH), 1642m (C=O); δ_H (400 MHz, CDCl₃:CD₃OD, 2:1) 0.83 (t, J=1 6.7, 6H, 2 × CH₂CH₃), 1.16-1.40 (stack, 68H, alkyl chain methylenes), 1.45-1.63 (stack, 4H), 2.16 (app. t, J=1 7.8, 2H), 3.46-3.57 (stack, 2H), 3.60-3.79 (stack, 6H), 3.80-3.87 (m, 1H), 3.90 (d, J=1 2.5, 1H), 4.11-4.18

(m, 1H), 4.86 (d, J 3.7, 1H), OH and NH resonances not observed; $\delta_{\rm C}(100~{\rm MHz},{\rm CDCl_3:CD_3OD},{\rm 2:1})$ 14.3 (CH₃), 23.1 (CH₂), 26.29 (CH₂), 26.32 (CH₂), [29.8, 29.9, 30.0, 30.09, 30.13, 30.2 (CH₂, resonance overlap)], 32.4 (CH₂), 32.9 (CH₂), 36.9 (CH₂), 50.9 (CH), 62.3 (CH₂), 67.8 (CH₂), 69.4 (CH), 70.3 (CH), 70.8 (CH), 71.2 (CH), 72.5 (CH), 75.1 (CH), 100.2 (CH), 175.1 (C); MS (TOF ES+) m/z 880.7 ([M + Na]⁺, 100%); HRMS (TOF ES+) calcd for C₅₀H₉₉NO₉Na [M + Na]⁺ 880.7218, found 880.7198. Data for **1** were in agreement with those reported for this compound prepared from **22** and also with those reported in the literature.²²

Second-Generation Approach to α-GalCer (1)

(a) (i) **14**, PPh₃, CBr₄, CH₂Cl₂, r.t., 3 h; (ii) Me₂NC(O)NMe₂, Bu₄NBr, CH₂Cl₂, then acceptor, CH₂Cl₂, 3 Å MS, r.t., 3 d, 71%. (b) PMe₃, THF, r.t., 3 h, then H₂O, 1 h, 93%. (c) CH₃(CH₂)₂₄C(O)Cl, Et₃N, CH₂Cl₂, 0 °C to r.t., 12 h, 85%. (d) (i) TFA, CH₂Cl₂-H₂O, 10:1, 2 h, r.t.; (ii) Pd(OH)₂ / C, H₂, THF, 8 h, 75%.

(2S,3S,4R)-2-Azido-3,4-O-isopropylidene-1-O-(2',3',4',6'-tetra-O-benzyl- α -D-galactopyranosyl)octadecane-1,3,4-triol $(20)^{22}$

Glycoside 20 was prepared according a different procedure to that reported in the literature:²² Ph₃P (1.46 g, 5.55 mmol) and CBr₄ (1.84 g, 5.55 mmol) were added sequentially to a solution of 2,3,4,6tetra-O-benzyl-α-D-galactose 14^{4,19} (1.00 g, 1.85 mmol) in CH₂Cl₂ (10 mL) at r.t. The reaction mixture was stirred for 3 h. In separate flasks, a solution of tetramethylurea (TMU) (1.2 mL) and Bu₄NBr (1.79 g, 5.55 mmol) in CH₂Cl₂ (5 mL), and a solution of (2S,3S,4R)-2-azido-3,4-Oisopropylidene-octadecane-1,3,4-triol^{6,24} (1.07 g, 2.78 mmol) in CH₂Cl₂ (5 mL) were stirred over activated 3 Å MS for 30 min, after which time, these solutions were added dropwise (15 min) and sequentially (TMU/Bu₄NBr solution first) to the solution containing the glycosyl donor. The reaction mixture was stirred at r.t. for 3 d until there was no evidence by TLC that the donor was still being consumed. The reaction mixture was then filtered through a silica plug, washing with CH₂Cl₂ (1.2 L) and then concentrated under reduced pressure. Purification of the residue by flash column chromatography (10% EtOAc in hexane) afforded glycoside 20 as a colorless oil (1.56 g, 71%, αanomer only): $R_{\rm f} = 0.2$ (10% EtOAc in hexane); $[\alpha]_{\rm D}^{22} = +24.8$ (c 1, CHCl₃); lit.²² $[\alpha]_{\rm D}^{\rm r.t.} = +32.1$ (c $2.0, \text{CHCl}_3); \ \nu_{\text{max}}(\text{film}) \ / \ \text{cm}^{-1} \ 2099s \ (\text{N}_3); \ \delta_{\text{H}}(500 \ \text{MHz}, \text{CDCl}_3) \ 0.87 \ (\text{t}, \textit{J} \ 6.8, \ 3\text{H}, \text{CH}_2\text{C}H_3), \ 1.20-1.42 \ \text{CH}_3 \ \text{CH}_2 \ \text{CH}_3) \ \text{CH}_2 \ \text{CH}_3 \ \text{CH}_2 \ \text{CH}_3 \ \text{CH}_3 \ \text{CH}_2 \ \text{CH}_3) \ \text{CH}_2 \ \text{CH}_3 \ \text{$ (stack, 29H, alkyl chain methylenes, $C(CH_3)_2$), 1.47-1.64 (stack, 3H), 3.44-3.54 (stack, 3H, $C(6')H_2$, H-2), 3.71 (dd, J 10.8, 6.7, 1H, C(1) H_a H_b), 3.91-3.94 (m, 1H, H-4'), 3.95-4.12 (stack, 6H, H-2', H-3', H-5', C(1) H_aH_b , H-3, H-4), 4.39 (A of AB, J_{A-B} 11.9, 1H, OC H_aH_b Ph), 4.47 (B of AB, J_{B-A} 11.9, 1H, OCH_aH_bPh), 4.56 (A of AB, J_{A-B} 11.5, 1H, OCH_aH_bPh), 4.70 (A of AB, J_{A-B} 12.0, 1H, OCH_aH_bPh), 4.71 (A of AB, J_{A-B} 11.8, 1H, OC H_aH_bPh), 4.79 (B of AB, J_{B-A} 12.0, 1H, OC H_aH_bPh), 4.84 (B of AB, J_{B-A} 11.8, 1H, OC H_aH_bPh), 4.93 (d, J 3.6, 1H, H-1'), 4.94 (B of AB, J_{B-A} 11.5, 1H, OC H_aH_bPh), 7.22-7.33 (stack, 16H, Ph), 7.36-7.38 (stack, 4H, Ph); $\delta_{\rm C}$ (125 MHz, CDCl₃) 14.1 (CH₃, CH₂CH₃), 22.7 (CH₂), 25.7 (CH₃, 1 × C(CH₃)₂), 26.6 (CH₂), 28.1 (CH₃, 1 × C(CH₃)₂), [29.3, 29.60, 29.65, 29.69 (CH₂, alkyl chain, resonance overlap)], 31.9 (CH₂), 59.8 (CH, C-2), 69.1 (CH₂, C-6'), 69.6 (CH₂, C-1), 69.9 (CH), 72.9 (CH₂, CH₂Ph), 73.3 (CH₂, CH₂Ph), 73.4 (CH₂, CH₂Ph), 74.7 (CH₂, CH₂Ph), 75.3 (CH, C-4'), 75.4 (CH), 76.6 (CH), 77.8 (CH, C-4), 78.7 (CH), 98.8 (CH, C-1'), 108.2 (C, C(CH₃)₂), [127.4, 127.5, 127.60, 127.64, 127.7 (CH, Ph, resonance overlap)], [128.20, 128.25, 128.29, 128.35 (CH, Ph, resonance overlap)], 138 (C, *ipso* Ph), 138.7 (C, *ipso* Ph), 138.9 (C, 2 × *ipso* Ph, resonance overlap); MS (TOF ES+) m/z 928.7 ([M+Na]⁺, 100%); HRMS (TOF ES+) calcd for C₅₅H₇₅N₃O₈Na [M+Na]⁺ 928.5452, found 928.5470. The unreacted azide was also recovered (394 mg, 37%). Data for **20** were in agreement with those reported in the literature for **20**, prepared by a different route.²²

(2S,3S,4R)-2-Hexacosanoylamino-3,4-O-isopropylidene-1-O-(2',3',4',6'-tetra-O-benzyl- α -D-galactopyranosyl)octadecane-1,3,4-triol $(22)^{22}$

Amide **22** was prepared according a different procedure to that reported in the literature:²² A screw-capped glass tube containing a solution of hexacosanoic acid (100 mg, 0.25 mmol) in (COCl)₂ (2.0 mL, 23 mmol) was closed tightly and heated at 70 °C. After 2 h, the volatiles were evaporated under a stream of argon and the tube then placed on a high vacuum line for at least 2 h to remove the residual

volatiles. The resulting hexacosanoyl chloride was used directly without further purification: a solution of freshly prepared hexacosanoyl chloride (105 mg, 0.25 mmol) in CH₂Cl₂ (0.5 mL) was added dropwise over 2 min to a solution of amine 21 (132 mg, 0.15 mmol) and NEt₃ (42 µL, 0.30 mmol) in CH₂Cl₂ (1.0 mL) at 0 °C. The reaction mixture was stirred at r.t. for 12 h and then diluted with CH₂Cl₂ (10 mL), washed sequentially with NaHCO₃ solution (10 mL), brine (2 mL) and then dried over Na₂SO₄. The drying agent was removed by filtration and the filtrate concentrated under reduced pressure. Purification of the residue by flash column chromatography provided amide 22 as a white solid (160 mg, 85%): $R_f = 0.3$ (10% EtOAc in hexane); $[\alpha]_D^{20} = +41.6$ (c 1, CHCl₃); lit.²² $[\alpha]_D^{\text{r.t.}}$ = +44.2 (c 0.85, CHCl₃); mp 87 – 88 °C; $\nu_{\text{max}}(\text{film}) / \text{cm}^{-1} 1648 \text{m} (C=O)$; $\delta_{\text{H}}(500 \text{ MHz}, \text{CDCl}_3) 0.87 \text{ (t,}$ J 6.9, 6H, CH₂CH₃), 1.15-1.34 (stack, 71H, alkyl chain methylenes, 1 × C(CH₃)₂), 1.39 (s, 3H, 1 × $C(CH_3)_2$, 1.40-1.47 (stack, 2H, including $C(3'')H_3H_b$), 1.48-1.56 (stack, 2H), 1.93-2.01 (m, 1H, $C(2^{"})H_aH_b$, 2.01-2.09 (m, 1H, $C(2^{"})H_aH_b$), 3.37 (dd, J 9.4, 5.7, 1H, $C(6^{'})H_aH_b$), 3.54 (dd, J 9.4, 7.0, 1H, $C(6')H_aH_b$), 3.60 (br d, J 9.7, 1H, $C(1)H_aH_b$), 3.88-3.93 (stack, 3H, H-3', H-4', H-3 or H-4), 3.97 (app t, J 6.3, 1H, H-5'), 4.01-4.12 (stack, 4H, H-2', C(1) H_aH_b , H-2, H-3 or H-4), 4.36 (A of AB, J_{A-B} 11.8, 1H, C(6')OC H_a H_bPh), 4.47 (B of AB, J_{B-A} 11.8, 1H, C(6')OCH_aH_bPh), 4.57 (A of AB, J_{A-B} 11.6, $1 \text{H, C}(4') \text{OC} H_a \text{H}_b \text{Ph}), \, 4.65 \,\, (\text{A of AB}, \, J_{A-B} \,\, 11.5, \,\, 1 \text{H, C}(2') \text{OC} H_a \text{H}_b \text{Ph}), \, 4.73 \,\, (\text{A of AB}, \, J_{A-B} \,\, 11.8, \,\, 1 \text{H, C}(2') \text{OC} H_a \text{H}_b \text{Ph}), \, 4.73 \,\, (\text{A of AB}, \, J_{A-B} \,\, 11.8, \,\, 1 \text{H, C}(2') \text{OC} H_a \text{H}_b \text{Ph}), \, 4.73 \,\, (\text{A of AB}, \, J_{A-B} \,\, 11.8, \,\, 1 \text{H}), \, 4.73 \,\, (\text{A of AB}, \, J_{A-B} \,\, 11.8, \,\, 1 \text{H}), \, 4.73 \,\, (\text{A of AB}, \, J_{A-B} \,\, 11.8, \,\, 1 \text{H}), \, 4.73 \,\, (\text{A of AB}, \, J_{A-B} \,\, 11.8, \,\, 1 \text{H}), \, 4.73 \,\, (\text{A of AB}, \, J_{A-B} \,\, 11.8, \,\, 1 \text{H}), \, 4.73 \,\, (\text{A of AB}, \, J_{A-B} \,\, 11.8, \,\, 1 \text{H}), \, 4.73 \,\, (\text{A of AB}, \, J_{A-B} \,\, 11.8, \,\, 1 \text{H}), \, 4.73 \,\, (\text{A of AB}, \, J_{A-B} \,\, 11.8, \,\, 1 \text{H}), \, 4.73 \,\, (\text{A of AB}, \, J_{A-B} \,\, 11.8, \,\, 1 \text{H}), \, 4.73 \,\, (\text{A of AB}, \, J_{A-B} \,\, 11.8, \,\, 1 \text{H}), \, 4.73 \,\, (\text{A of AB}, \, J_{A-B} \,\, 11.8, \,\, 1 \text{H}), \, 4.73 \,\, (\text{A of AB}, \, J_{A-B} \,\, 11.8, \,\, 1 \text{H}), \, 4.73 \,\, (\text{A of AB}, \, J_{A-B} \,\, 11.8, \,\, 1 \text{H}), \, 4.73 \,\, (\text{A of AB}, \, J_{A-B} \,\, 11.8, \,\, 1 \text{H}), \, 4.73 \,\, (\text{A of AB}, \, J_{A-B} \,\, 11.8, \,\, 1 \text{H}), \, 4.73 \,\, (\text{A of AB}, \, J_{A-B} \,\, 11.8, \,\, 1 \text{H}), \, 4.73 \,\, (\text{A of AB}, \, J_{A-B} \,\, 11.8, \,\, 1 \text{H}), \, 4.73 \,\, (\text{A of AB}, \, J_{A-B} \,\, 11.8, \,\, 1 \text{H}), \, 4.73 \,\, (\text{A of AB}, \, J_{A-B} \,\, 11.8, \,\, 1 \text{H}), \, 4.73 \,\, (\text{A of AB}, \, J_{A-B} \,\, 11.8, \,\, 1 \text{H}), \, 4.73 \,\, (\text{A of AB}, \, J_{A-B} \,\, 11.8, \,\, 1 \text{H}), \, 4.73 \,\, (\text{A of AB}, \, J_{A-B} \,\, 11.8, \,\, 1 \text{H}), \, 4.73 \,\, (\text{A of AB}, \, J_{A-B} \,\, 11.8, \,\, 1 \text{H}), \, 4.73 \,\, (\text{A of AB}, \, J_{A-B} \,\, 11.8, \,\, 1 \text{H}), \, 4.73 \,\, (\text{A of AB}, \, J_{A-B} \,\, 11.8, \,\, 1 \text{H}), \, 4.73 \,\, (\text{A of AB}, \, J_{A-B} \,\, 11.8, \,\, 1 \text{H}), \, 4.73 \,\, (\text{A of AB}, \, J_{A-B} \,\, 11.8, \,\, 1 \text{H}), \, 4.73 \,\, (\text{A of AB}, \, J_{A-B} \,\, 11.8, \,\, 1 \text{H}), \, 4.73 \,\, (\text{A of AB}, \, J_{A-B} \,\, 11.8, \,\, 1 \text{H}), \, 4.73 \,\, (\text{A of AB}, \, J_{A-B} \,\, 11.8, \,\, 1 \text{H}), \, 4.73 \,\, (\text{A of AB}, \, J_{A-B} \,\, 11.8, \,\, 1 \text{H}), \, 4.73 \,\, (\text{A of AB}, \, J_{A-B} \,\, 11.8, \,\, 1 \text{H}), \, 4.73 \,\, (\text{A of AB}, \,$ $C(3')OCH_aH_bPh)$, 4.79 (B of AB, J_{B-A} 11.5, 1H, $C(2')OCH_aH_bPh$), 4.80 (B of AB, J_{B-A} 11.8, 1H, $C(3')OCH_aH_bPh)$, 4.89 (d, J 3.7, 1H, H-1'), 4.91 (B of AB, J_{B-A} 11.6, 1H, $C(4')OCH_aH_bPh)$, 6.24 (d, J8.9, 1H, NH), 7.21-7.38 (stack, 20H, Ph); $\delta_{C}(125 \text{ MHz}, \text{CDCl}_{3})$ 14.1 (CH₃, CH₂CH₃), 22.6 (CH₂), 25.6 (CH_2) , 25.9 $(CH_3$, 1 × $C(CH_3)_2$), 26.5 (CH_2) , 28.2 $(CH_3$, 1 × $C(CH_3)_2$), 28.9 (CH_2) , [29.31, 29.37, 29.45, 29.55, 29.57, 29.62, 29.66, 29.68 (CH₂, alkyl chain, resonance overlap)], 31.9 (CH₂), 36.7 (CH₂, C-2''), 48.7 (CH, C-2), 69.5 (CH₂, C-6'), 69.9 (CH, C-5'), 70.6 (CH₂, C-1), 73.0 (CH₂, $C(3')OCH_2Ph)$, 73.46 (CH₂, $C(2')OCH_2Ph)$, 73.54 (CH₂, $C(6')OCH_2Ph)$, 74.6 (CH₂, $C(4')OCH_2Ph)$, 74.7 (CH, C-4'), 75.4 (CH, C-3 or C-4), 76.8 (CH, C-2'), 77.8 (CH, C-3 or C-4), 78.9 (CH, C-3'), 99.7 (CH, C-1'), 107.8 (C, (CH₃)₂C), [127.4, 127.5, 127.7, 127.8, 127.85, 127.91 (CH, Ph, some resonance overlap)], [128.2, 128.31, 128.34, 128.36, 128.40 (CH, Ph, some resonance overlap)], 137.5 (C, *ipso* Ph on C-6'), 138.3 (C, *ipso* Ph), 138.4 (C, *ipso* Ph), 138.6 (C, *ipso* Ph on C-3'), 172.4 (C, C=O); MS (TOF ES+) m/z 1281.0 ([M + Na]⁺, 100%); HRMS (TOF ES+) calcd for $C_{81}H_{127}NO_9Na$ [M + Na]⁺ 1280.9409, found 1280.9417. Data for **22** were in agreement with those reported in the literature for **22** which had been prepared using different reagents.²²

(2S,3S,4R)-1-O- $(\alpha$ -D-Galactopyranosyl)-2-(hexacosanoylamino)octadecane-1,3,4-triol $(\alpha$ -GalCer) $(1)^{21,22}$

α-GalCer (1) was prepared from a different precursor to that reported in the literature:²¹ TFA (150 μL) was added dropwise over 1 min to a solution of acetal 22 (120 mg, 0.095 mmol) in CH₂Cl₂ / H₂O (10:1, 0.9 mL). After stirring for 2 h at r.t., the reaction mixture was concentrated under reduced pressure and the residual TFA was removed by co-evaporation with Et₂O (3 × 3 mL) to provide the crude acetal hydrolysis product as a white solid (116 mg, quant.), which was treated with Pd(OH)₂/C (30 mg, 10% wet) in THF (10 mL) according to the general hydrogenolysis procedure. After 8 h, work-up and purification by flash column chromatography (8% MeOH in CHCl₃) afforded amide 1 as a white solid (61 mg, 75%). Data for 1 were in agreement with those reported for this compound prepared from 22 and also with those reported in the literature.²²

(2S,3S,4R)-2-Amino-1-*O*-[4'-*O*-tert-butyldiphenylsilyl-2',3'-*O*-isopropylidene-L-threitol]-3,4-*O*-isopropylidene-octadecane-1,3,4-triol (26)

PMe₃ (0.7 mL of a 1.0 M soln in THF, 0.7 mmol) was added dropwise over 2 min to a solution of (2S,3S,4R)-2-azido-1-O-[4'-O-tert-butyldiphenylsilyl-2',3'-O-isopropylidene-L-threitol]-3,4-Oisopropylidene-octadecane-1,3,4-triol (500 mg, 0.65 mmol) in THF / H₂O (7 mL, 15:1). The reaction mixture was stirred at r.t. for 4 h and then concentrated under reduced pressure. The residual H₂O was removed by co-evaporation with toluene $(3 \times 3 \text{ mL})$ to provide the crude amine product. Purification of the residue by flash column chromatography (30% EtOAc in hexane) afforded amine 26 as a colorless oil (433 mg, 90%): $R_f = 0.3$ (30% EtOAc in hexane); $[\alpha]_D^{20} = +45.6$ (c 1, CHCl₃); ν_{max} (film) $/ \text{ cm}^{-1} 3076\text{w}, 1113\text{s}, 1083\text{s}, 702\text{s}; \delta_{H}(300 \text{ MHz}, \text{CDCl}_{3}) 0.88 \text{ (t, } J 7.0, 3\text{H)}, 1.08 \text{ (s, } 9\text{H)}, 1.20-1.43$ (stack, 35H), 1.49–1.63 (stack, 3H), 3.58–3.75 (stack, 4H), 3.76–3.88 (stack, 3H), 3.91–3.99 (stack, 2H), 4.10–4.24 (stack, 2H), 7.34–7.47 (stack, 6H), 7.64–7.72 (stack, 4H); δ_c (100 MHz, CDCl₃): 14.1 (CH₃), 19.2 (CH₂), 22.7 (CH₂), 25.7 (CH₃), 26.4 (CH₂), [26.8, 27.0, 27.1, 28.2 (CH₃, some resonance overlap], [29.3, 29.7 (CH₂, some resonance overlap)], 31.9 (CH₂), 60.0 (CH), 64.2 (CH₂), 72.4 (CH₂), 80.0 (CH₂), 75.8 (CH), 77.8 (CH), 77.9 (2 × CH), 108.2 (C), 109.4 (C), [127.7, 129.7 (CH, some resonance overlap)], 133.2 (C), 135.6 (CH, some resonance overlap); MS (TOF ES+) m/z 740.6 ([M + H^+ , 100%); HRMS (TOF ES+) calcd for $C_{44}H_{74}NO_6Si [M + H]^+$ 740.5285, found 740.5293.

(2*S*,3*S*,4*R*)-1-*O*-[4'-*O*-tert-Butyldiphenylsilyl-2',3'-*O*-isopropylidene-L-threitol]-2-hexacosanoylamino-3,4-*O*-isopropylidene-octadecane-1,3,4-triol (27)

A screw-capped glass tube containing a solution of hexacosanoic acid (163 mg, 0.41 mmol) in (COCl)₂ (2.0 mL, 23 mmol) was closed tightly and heated at 70 °C for 2 h. The volatiles were then evaporated under a stream of argon and the tube then placed on a high vacuum line for at least 2 h to remove the residual volatiles. The resulting hexacosanoyl chloride was used directly without further purification: a solution of freshly prepared hexacosanoyl chloride (187 mg, 0.41 mmol) in CH₂Cl₂ (1 mL) was added dropwise over 2 min to a solution of amine 26 (250 mg, 0.34 mmol) and NEt₃ (95 μL, 0.68 mmol) in CH₂Cl₂ (3 mL) at 0 °C. The reaction mixture was stirred at r.t. for 12 h and then diluted with CH₂Cl₂ (10 mL), washed sequentially with NaHCO₃ solution (10 mL), brine (2 mL) and then dried over Na₂SO₄. The drying agent was removed by filtration and the filtrate concentrated under reduced pressure. Purification of the residue by flash column chromatography provided amide 27 as a colorless oil (323 mg, 85%): $R_f = 0.3$ (10% EtOAc in hexane); $[\alpha]_D^{20} = +11.8$ (c 1, CHCl₃); ν_{max} (film) / cm⁻¹ 1646m (C=O); δ_{H} (300 MHz, CDCl₃) 0.88 (t, J 7.0, 6H), 1.06 (s, 9H), 1.16–1.36 (stack, 69H, including (1.32 (s, 3H)), 1.40 (s, 3H), 1.41 (s, 3H), 1.42 (s, 3H), 1.45–1.66 (stack, 6H), 2.05–2.18 (stack, 2H), 3.49–3.67 (stack, 3H), 3.74–3.89 (stack, 4H), 4.00–4.23 (stack, 4H), 5.71 (br d, J 9.2, 1H), 7.34–7.48 (stack, 6H), 7.63–7.72 (stack, 4H); $\delta_c(100 \text{ MHz}, \text{CDCl}_3)$ 14.1 (CH₃), 22.7 (CH₂), 25.7 (CH_2) , 25.8 (CH_3) , 26.5 (CH_3) , 26.9 (CH_3) , 27.1 (CH_3) , 27.2 (CH_3) , 28.1 (CH_3) , 29.1 (CH_2) , [29.33, 29.37, 29.38, 29.43, 29.67, 29.68, 29.69, 29.71, 29.73 (CH₂, some resonance overlap)], 31.9 (CH₂), 37.0 (CH₂), 48.2 (CH), 64.2 (CH₂), 71.3 (CH₂), 72.6 (CH₂), 76.0 (CH), 77.8 (CH), 77.9 (CH), 78.1 (CH), 107.9 (C), 109.5 (C), [127.75, 127.76, 129.79, 129.82, (CH, some resonance overlap)], 133.1 (C), [135.61, 135.62 (CH, some resonance overlap)], 172.4 (C); MS (TOF ES+) *m/z* 1140.5 ([M + Na]⁺, 100%); HRMS (TOF ES+) calcd for C₇₀H₁₂₃NO₇Na [M + Na]⁺ 1140.8967, found 1140.8977.

(2S,3S,4R)-1-O-[4'-O-tert-Butyldiphenylsilyl-2',3'-O-isopropylidene-L-threitol]-2-hexacosanethioylamino-3,4-O-isopropylidene-octadecane-1,3,4-triol (28)

Lawesson's reagent (81 mg, 0.2 mmol) was added to a solution of the amide **27** (145 mg, 0.13 mmol) in toluene (2 mL) at r.t. The reaction mixture was stirred at 80 °C for 5 h and then the solvent was removed under reduced pressure. The residue was diluted with CH₂Cl₂ (10 mL), washed sequentially with H₂O (5 mL), NaHCO₃ solution (10 mL), brine (2 mL) and then dried over Na₂SO₄. The drying agent was removed by filtration and the filtrate was concentrated under reduced pressure. Purification of the residue by flash column chromatography (15% EtOAc in hexane) provided thioamide **28** as a pale yellow oil (130 mg, 88%): $R_f = 0.3$ (15% EtOAc in hexane); $[\alpha]_D^{20} = +36.8$ (c 0.5, CHCl₃); v_{max} (film) / cm⁻¹ 1258s, 1083s, 736s, 702s; δ_{H} (300 MHz, CDCl₃) 0.88 (t, J 7.0, 6H), 1.06 (s, 9H), 1.17–1.35 (72H, stack, including (1.31 (s, 3H)), 1.39 (s, 3H), 1.41 (s, 3H), 1.42 (s, 3H), 1.44–1.58 (stack, 3H), 2.49–2.67 (stack, 2H), 3.49–3.58 (m, 1H), 3.61–3.72 (stack, 2H), 3.74–3.91 (stack, 5H), 4.05–4.21 (stack, 2H), 4.28–4.35 (dd, J 7.7, 5.9, 1H), 4.77–4.88 (m, 1H), 7.30–7.49 (stack, 6H), 7.60–7.75 (stack, 4H); δ_{C} (100 MHz, CDCl₃) 14.1 (CH₃), 22.7 (CH₂), 25.6 (CH₃), 26.7

(CH₂), 26.9 (CH₃), 27.0 (CH₃), 27.2 (CH₃), 27.7 (CH₃), 29.0 (CH₂), [29.37, 29.42, 29.56, 29.59, 29.61, 29.7 (CH₂, some resonance overlap)], 31.9 (CH₂), 47.6 (CH₂), 54.6 (CH), 64.2 (CH₂), 69.7 (CH₂), 72.6 (CH₂), 75.5 (CH), 77.7 (CH), 77.8 (CH), 77.9 (CH), 108.1 (C), 109.5 (C), [127.8, 129.8, (CH, some resonance overlap)], 133.1 (C), 135.6 (CH, some resonance overlap), 205.5 (C); MS (TOF ES+) *m/z* 1156.8 ([M + Na]⁺, 100%); HRMS (TOF ES+) calcd for C₇₀H₁₂₃NO₆SiSNa [M + Na]⁺ 1156.8738, found 1156.8749.

(2S,3S,4R)-2-Hexacosanethioylamino-1-O-[L-threitol]-octadecane-1,3,4-triol (11)

Bu₄F (1.0 M solution in THF, 120 μL, 0.12 mmol) was added to a solution of silyl ether **28** (125 mg, 0.11 mmol) in THF (1 mL) at r.t. After 4 h, NH₄Cl solution (10 mL) was added. The phases were separated and the aqueous phase was extracted with CH₂Cl₂ (3 × 10 mL). The solvent was removed under reduced pressure to provide the resulting primary alcohol as a white solid (98 mg, quant.), which was dissolved in CH₂Cl₂ / CH₃OH (10:1, 1.1 mL) and treated with TFA (0.5 mL; dropwise addition over 1 min). After stirring for 2 h at r.t., the reaction mixture was concentrated under reduced pressure and the residual TFA was removed by co-evaporation with Et₂O (3 × 4 mL). Purification of the residue by flash column chromatography (5% CH₃OH in CHCl₃) afforded pentaol **11** as a pale yellow solid (65 mg, 73%): R_f = 0.3 (8% CH₃OH in CHCl₃); [α]_D the insolubility of this amphiphilic compound at r.t. prevented us from obtaining reliable optical rotation data; mp 96 – 97 °C; ν_{max} (film) / cm⁻¹ 3324s br (O–H); δ_{H} (500 MHz, CDCl₃:CD₃OD, 2:1) 0.83 (t, *J* 7.0, 6H, 2 × CH₂CH₃), 1.11–1.41 (stack, 69H, alkyl chain methylenes), 1.43–1.74 (stack, 3H), 2.60 (t, *J* 8.1, 2H,

C(3") H_2), 3.48–3.54 (stack, 3H, C(1') H_2 , H-4), 3.55–3.63 (stack, 3H, C(4') H_2 , H-3'), 3.64–3.72 (stack, 2H, C(1) H_a H_b, H-3), 3.74–78 (m, 1H, H-2'), 3.80–3.86 (m, 1H, C(1) H_a H_b), 4.83–4.88 (m, 1H, H-2); δ_C (125 MHz, CDCl₃:CD₃OD, 2:1) 14.2 (CH₃, 2 × CH₂CH₃), 22.9 (CH₂), 26.2 (CH₂), 29.3 (CH₂), [29.6, 29.7, 29.8, 30.0 (CH₂, alkyl chain, resonance overlap)], 32.2 (CH₂), 32.7 (CH₂, C-5), 46.9 (CH₂, C-2"), 56.1 (CH, C-2), 63.7 (CH₂, C-4'), 69.6 (CH₂, C-1), 70.6 (CH, C-2'), 72.2 (CH, C-3'), 73.0 (CH₂, C-4), 73.2 (CH₂, C-1'), 74.1 (CH, C-3), 205.9 (C, C=S); MS (TOF ES+) m/z 838.7 ([M + Na]⁺, 100%); HRMS (TOF ES+) calcd for C₅₀H₉₀NO₈SNa [M + Na]⁺ 838.6934, found 838.6946.

(2S,3S,4R)-1-O-[4'-O-tert-Butyldiphenylsilyl-2',3'-O-isopropylidene-L-threitol]-3,4-O-isopropylidene-2-(tetracosanyloxycarbonylamino)octadecane-1,3,4-triol (29)

A solution of carbonic acid, 2,5-dioxo-1-pyrrolidinyl tetracosanyl ester (110 mg, 0.21 mmol) in CH₂Cl₂ (0.5 mL) was added to a stirred solution of amine **26** (104 mg, 0.14 mmol) and NEt₃ (42 μ L, 0.3 mmol) in CH₂Cl₂ (1 mL). The resulting mixture was stirred at r.t. until no mixed carbonate remained as determined by TLC (5 h). The mixture was then diluted with CH₂Cl₂ (10 mL) and washed sequentially with NaHCO₃ solution (10 mL) and brine (10 mL). The organic phase was dried over Na₂SO₄ and the solvent was evaporated under reduced pressure. Purification of the residue by flash column chromatography (10% EtOAc in toluene) provided carbamate **29** as a colorless oil (135 mg, 86%): $R_f = 0.3$ (10% EtOAc in hexane); $[\alpha]_{D}^{22} = +28.8$ (c = 0.5, CHCl₃); v_{max} (film) / cm⁻¹ 1687m (C=O); δ_H (500 MHz, CDCl₃) 0.88 (t, J = 7.1, 6H, 2 × CH₂CH₃), 1.06 (s, 9H, C(CH₃)₃), 1.26–1.34 (stack,

70H, alkyl chain methylenes), 1.40 (s, 6H, $C(CH_3)_2$), 1.42 (s, 3H, $C(CH_3)_2$), 1.59 (s, 3H, $C(CH_3)_2$), 3.52–3.65 (stack, 3H, $C(1)H_aH_b$, $C(1)H_aH_b$), 3.74–3.81 (stack, 3H, $C(4)H_aH_b$, $C(1)H_aH_b$), 3.82–3.90 (stack, 2H, H-3', H-2), 3.98 (m, 1H, $C(1)H_aH_b$), 4.00–4.11 (stack, 3H, H-3, H-4, $C(1)H_aH_b$), 4.14–4.20 (m, 1H, H-2'), 4.97 (br d, J 9.5, 1H, NH), 7.36–7.46 (stack, 6H, Ph), 7.66–7.70 (stack, 4H, Ph); $\delta_C(125 \text{ MHz}, \text{CDCl}_3)$ 14.1 (CH₃, C-18, C-24"), 19.2 (C, $(CH_3)_3CSi$), 22.7 (CH₂), 25.8 (CH₃, $C(CH_3)_2$), 25.9 (CH₂), 26.4 (CH₂), 26.8 (CH₃, $C(CH_3)_3$), 27.0 (CH₃, $C(CH_3)_2$), 27.2 (CH₃, $C(CH_3)_2$), 28.1 (CH₃, $C(CH_3)_2$), 28.9 (CH₂), 29.1 (CH₂), 29.4 (CH₂), [29.6, 29.7 (CH₂, alkyl chains, some resonance overlap)], 31.9 (CH₂), 50.3 (CH, C-2), 64.1 (CH₂, C-4'), 65.2 (CH₂, C-1''), 71.6 (CH₂, C-1), 72.6 (CH₂, C-1'), 75.9, (CH, C-3), 77.7 (CH, C-2'), 77.8 (CH, C-4), 78.2 (CH, C-3'), 107.8 (C, (CH₃)₂C), 109.4 (C, (CH₃)₂C), [127.7, 129.75, 129.79, (CH, Ph, some resonance overlap)], 133.2 (C, ipso Ph), 135.6 (CH, Ph, some resonance overlap), 156.0 (C, C=O); MS (TOF ES+) m/z 1142.7 ([M + Na]⁺, 100%); HRMS (TOF ES+) calcd for $C_{60}H_{121}NO_8SiNa$ [M + Na]⁺ 1142.8759, found 1142.8767.

(2S,3S,4R)-2-Tetracosanyloxycarbonylamino-1-O-[L-threitol]-octadecane-1,3,4-triol (13)

Bu₄F (1.0 M solution in THF, 180 μ L, 0.18 mmol) was added to a solution of silyl ether **29** (179 mg, 0.16 mmol) in THF (1.5 mL) at r.t. After 4 h, NH₄Cl solution (10 mL) was added. The phases were separated and the aqueous phase was extracted with CH₂Cl₂ (3 × 10 mL). The solvent was removed under reduced pressure to provide the crude primary alcohol as a white solid (141 mg, quant.), which was dissolved in CH₂Cl₂ / CH₃OH (10:1, 1.2 mL) and treated with TFA (0.6 mL; dropwise addition over 1 min). After stirring for 2 h at r.t., the reaction mixture was concentrated

under reduced pressure and the residual TFA was removed by co-evaporation with Et₂O (3 × 4 mL) to provide the crude product, which was purified by flash column chromatography (10% CH₃OH in CHCl₃); to afford pentaol **13** as a pale yellow solid (90 mg, 70%): R_f = 0.3 (10% CH₃OH in CHCl₃); [α]_D the insolubility of this amphiphilic compound at r.t. prevented us from obtaining reliable optical rotation data; mp 55 - 56 °C; v_{max} (film) / cm⁻¹ 3340m br (O–H), 1683s (C=O); δ_{H} (400 MHz, CDCl₃:CD₃OD, 2:1) 0.83 (t, J 7.2, 6H), 1.16–1.45 (stack, 65H), 1.46–1.68 (stack, 5H), 3.12-3.20 (m, 1H), 3.49-3.64 (stack, 8H), 3.67–3.79 (stack, 2H), 3.85–4.07 (stack, 3H), OH resonances not observed; δ_{C} (100 MHz, CDCl₃:CD₃OD, 2:1) 14.2 (CH₃), 20.1 (CH₂), 23.0 (CH₂), 24.1 (CH₂), 26.2 (CH₂), [29.5, 29.7, 30.0, 30.4, (CH₂, some resonance overlap)], 32.3 (CH₂), 32.9 (CH₂), 52.1 (CH), 63.9 (CH₂), 65.8 (CH₂), 70.8 (CH), 71.2 (CH₂), 72.5 (CH), 72.8 (CH), 73.4 (CH₂), 75.5 (CH), 157.7 (C); MS (TOF ES+) m/z 824.8 ([M + Na]⁺, 100%); HRMS (TOF ES+) calcd for C₅₀H₉₉NO₈SNa [M + Na]⁺ 809.6955, found 824.6940.

(2*S*,3*S*,4*R*)-1-*O*-[4'-*O*-tert-Butyldiphenylsilyl-2',3'-*O*-isopropylidene-L-threitol]-3,4-*O*-isopropylidene-2-(tricosanylaminocarbonylamino)octadecane-1,3,4-triol (30)

A solution of amine **26** (155 mg, 0.21 mmol) in toluene (1.5 mL) was added to a solution of tricosanyl isocyanate (121 mg, 0.33 mmol; prepared as reported above in the synthesis of urea **19**) in toluene (1 mL) at r.t. The reaction mixture was heated under reflux for 8 h and then concentrated under reduced pressure to provide the crude product. Purification of the residue by flash column

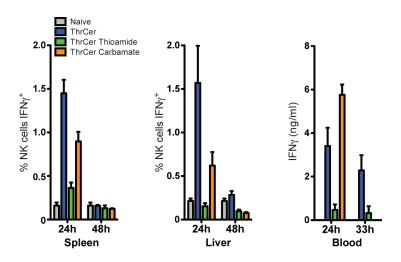
chromatography (15% EtOAc in hexane) afforded urea 30 as a pale yellow oil (186 mg, 80% based on amine): $R_f = 0.3$ (10% EtOAc in hexane); $[\alpha]^{22}_{D} = +48.8$ (c 1, CHCl₃); v_{max} (film) / cm⁻¹ 1632m (C=O); $\delta_{H}(500 \text{ MHz}, \text{CDCl}_3) 0.88 \text{ (t, } J 7.1, 6\text{H, } 2 \times \text{CH}_2\text{C}H_3), 1.06 \text{ (s, } 9\text{H, } \text{C(C}H_3)_3), 1.21-1.32 \text{ (stack, } 68\text{H, } 1.06\text{ (s, } 9\text{H, } 1.06\text$ alkyl chain methylenes), 1.39 (s, 3H, 1 × C(C H_3)₂), 1.40 (s, 3H, 1 × C(C H_3)₂), 1.41 (s, 3H, 1 × $C(CH_3)_2$, 1.61 (s, 3H, 1 × $C(CH_3)_2$), 3.03–3.17 (stack, 2H, $C(1'')H_aH_b$), 3.53–3.60 (stack, 2H, $C(1')H_aH_b$, $C(1)H_aH_b$, 3.65 (dd, J 10.5, 3.2, 1H, $C(1')H_aH_b$), 3.72–3.80 (stack, 3H, $C(4')H_aH_b$) $C(1)H_0H_0$, 3.82–3.87 (m, 1H, H-3'), 3.92–3.97 (m, 1H, H-2), 4.04–4.11 (stack, 2H, H-3, H-4), 4.13-4.18 (m, 1H, H-2'), 4.31 (br s, 1H, CH₂NH), 4.49 (br d, J 9.2, 1H, CHNH), 7.37-7.46 (stack, 6H, Ph), 7.64–7.70 (stack, 4H, Ph); $\delta_{C}(125 \text{ MHz}, \text{CDCl}_{3})$ 14.1 (CH₃, 2 × CH₂CH₃), 19.2 (C, C(CH₃)₃), 22.7 (CH₂), 25.8 (CH₃, 1 × C(CH₃)₂), 26.4 (CH₂), 26.8 (CH₃, C(CH₃)₃), 26.9 (CH₂), 27.1 (CH₃, 1 × $C(CH_3)_2$, 27.2 $(CH_3, 1 \times C(CH_3)_2)$, 28.1 $(CH_3, 1 \times C(CH_3)_2)$, 29.1 (CH_2) , [29.4, 29.7 (CH_2) , alkyl chain, resonance overlap)], 30.2 (CH₂), 31.9 (CH₂), 40.6 (CH₂, C-1"), 49.7 (CH, C-2), 64.3 (CH₂, C-4'), 72.0 (CH₂, C-1), 72.7 (CH₂, C-1'), 76.3 (CH, C-3), 77.3 (CH, C-2'), 77.9 (CH, C-4), 78.2 (CH, C-3'), 107.8 (C, $C(CH_3)_2$), 109.5 (C, $C(CH_3)_2$), 127.8 (CH, Ph), 129.8 (CH, Ph), 133.1 (C, ipso Ph), 135.6 (CH, Ph), 157.4 (C, C=O); MS (TOF ES+) m/z 1127.7 ([M + Na]⁺, 100%); HRMS (TOF ES+) calcd for $C_{68}H_{120}N_2O_7SiNa [M + Na]^+ 1127.8763$, found 1127.8737.

(2S,3S,4R)-1-O-[L-Threitol]-2-(tricosanylaminocarbonylamino)octadecane-1,3,4-triol (12)

Bu₄F (1.0 M solution in THF, 170 μL, 0.17 mmol) was added to a solution of silyl ether **30** (167 mg, 0.15 mmol) in THF (1.5 mL) at r.t. After 4 h, NH₄Cl solution (10 mL) was added. The phases were separated and the aqueous phase was extracted with CH₂Cl₂ (3 × 10 mL). The solvent was removed under reduced pressure to provide a white solid (primary alcohol product, 130 mg, quant.), which was dissolved in CH₂Cl₂ / CH₃OH (10:1, 1.2 mL). TFA (0.6 mL) was added dropwise over 1 min. After stirring for 2 h at r.t., the reaction mixture was concentrated under reduced pressure and the residual TFA was removed by co-evaporation with Et₂O (3 \times 4 mL) to provide the crude product, which was purified by flash column chromatography (10% CH₃OH in CHCl₃) to afford the pentaol 12 as a white solid (85 mg, 72%): $R_f = 0.3$ (10% CH₃OH in CHCl₃); $[\alpha]_D$ the insolubility of this amphiphilic compound at r.t. prevented us from obtaining reliable optical rotation data; mp 131 – 132 °C; $v_{\text{max}}(\text{film}) / \text{cm}^{-1} 3344 \text{s} \text{ br (O-H)}, 1607 \text{s (C=O)}; \delta_{\text{H}}(400 \text{ MHz}, \text{CDCl}_3:\text{CD}_3\text{OD}, 2:1) 0.84 (t, J 6.9, t)$ 6H), 1.15–1.55 (stack, 67H), 1.58–1.69 (m, 1H), 2.99–3.15 (stack, 2H), 3.46–3.66 (stack, 8H), 3.71–3.80 (stack, 2H), 3.93–3.99 (m, 1H), OH and NH resonances not observed; $\delta_c(100 \text{ MHz})$ $CDCl_3:CD_3OD, 2:1)$ 14.3 (CH₃), 23.2 (CH₂), 26.4 (CH₂), 27.4 (CH₂), [29.8, 29.9, 30.1, 30.2, 30.3 (CH₂, resonance overlap)], 30.7 (CH₂), 32.4 (CH₂), 33.5 (CH₂), 40.7 (CH₂), 51.2 (CH₁), 64.1 (CH₂), 70.7 (CH), 72.1 (CH₂), 72.5 (CH), 73.5 (CH), 73.9 (CH₂), 75.9 (CH), 159.9 (C); MS (TOF ES+) m/z 809.8 ($[M + Na]^+$, 100%); HRMS (TOF ES+) calcd for $C_{50}H_{00}NO_8SNa$ $[M + Na]^+$. 809.6959, found 809.6950.

The synthesis of ThrCer (2) has been reported previously;^{6,25} however the literature routes employ slightly different protecting group strategies. The synthesis of 2 from 27 is therefore described below.

(2S,3S,4R)-1-O-[L-Threitol]-2-(hexacosanoylamino)octadecane-1,3,4-triol (2)⁶


Bu₄F (1.0 M solution in THF, 120 μ L, 0.12 mmol) was added to a solution of silyl ether **27** (123 mg, 0.11 mmol) in THF (1 mL) at r.t. After 4 h, NH₄Cl solution (10 mL) was added. The phases were separated and the aqueous phase was extracted with CH₂Cl₂ (3 × 10 mL). The solvent was removed under reduced pressure to provide the corresponding primary alcohol as a white solid (97 mg, quant.), which was dissolved in CH₂Cl₂ / CH₃OH (10:1, 1.1 mL) and treated with TFA (0.5 mL; dropwise addition over 1 min). After stirring for 2 h at r.t., the reaction mixture was concentrated under reduced pressure and the residual TFA was removed by co-evaporation with Et₂O (3 × 4 mL). Purification of the residue by flash column chromatography (5% CH₃OH in CHCl₃) afforded ThrCer **2** as a white yellow solid (65 mg, 74%). Data for **2** were in agreement with those reported in the literature.⁶

(2S,3S,4R)-2-Azido-1-*O*-[4'-*O*-tert-butyldiphenylsilyl-2',3'-*O*-isopropylidene-L-threitol]-3,4-*O*-isopropylidene-octadecane-1,3,4-triol

Tf₂O (235 µL, 1.40 mmol) was added dropwise over 10 min to a solution of 1-O-tertbutyldiphenylsilyl-2,3-O-isopropylidene-L-threitol^{26,27} (561 mg, 1.40 mmol) and 2,6-di-tertbutylpyridine (346 µL, 1.54 mmol) in CH₂Cl₂ (14 mL) at 0 °C. After 30 min, the reaction mixture was diluted with CH₂Cl₂ (15 mL) and the resulting solution washed sequentially with cold H₂O (2 × 30 mL) and brine (10 mL), dried (Na₂SO₄) and filtered. Removal of the solvent under reduced pressure provided the corresponding triflate, 1-O-tert-butyldiphenylsilyl-2,3-O-isopropylidene-4-Otrifluoromethanesulfonyl-L-threitol, as a colorless oil $[R_f = 0.7 (15\% \text{ EtOAc in hexanes})]$, which was used immediately in the next etherification step: A solution of (2S,3S,4R)-2-azido-3,4-Oisopropylidene-octadecane-1,3,4-triol⁶ (505 mg, 1.32 mmol) in THF (10 mL) was treated with NaH (60% in mineral oil, 56.0 mg, 1.40 mmol) at 0 °C. After 1 h, a solution of the triflate (assuming 100%) conversion, 1.40 mmol) in THF (5 mL) was added dropwise over 5 min. The resulting solution was stirred at this temperature for 1 h and then at r.t. for 12 h. The reaction was then quenched by the addition of MeOH (2 mL) followed by NaHCO₃ solution (10 mL). The phases were separated and the aqueous phase was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic fractions were washed with brine (15 mL) and dried (Na₂SO₄), filtered and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography (eluent: 5% EtOAc in hexanes) to provide (2S,3S,4R)-2-azido-1-O-[4'-O-tert-butyldiphenylsilyl-2',3'-O-isopropylidene-L-threitol]-3,4-Oisopropylidene-octadecane-1,3,4-triol as a colorless oil (819 mg, 81%): $R_f = 0.6$ (10% EtOAc in hexane); $[\alpha]_{D}^{21} = +10.0 \ (c\ 1, \text{CHCl}_3); \ v_{\text{max}}(\text{film}) \ / \ \text{cm}^{-1}\ 2098s \ (N_3); \ \delta_{\text{H}}(300\ \text{MHz}, \text{CDCl}_3)\ 0.88 \ (t, J\ 7.0, 3H), 1.08 \ (s, 9H), 1.20-1.43 \ (\text{stack}, 35H), 1.49-1.63 \ (\text{stack}, 3H), 3.58-3.75 \ (\text{stack}, 4H), 3.76-3.88 \ (\text{stack}, 3H), 3.91-3.99 \ (\text{stack}, 2H), 4.10-4.24 \ (\text{stack}, 2H), 7.34-7.47 \ (\text{stack}, 6H), 7.64-7.72 \ (\text{stack}, 4H); \\ \delta_{\text{C}}(100\ \text{MHz}, \text{CDCl}_3) \ 14.1 \ (\text{CH}_3), 19.2 \ (\text{C}), 22.7 \ (\text{CH}_2), 25.7 \ (\text{CH}_3), 26.4 \ (\text{CH}_2), 26.8 \ (\text{CH}_3), 27.0 \ (\text{CH}_3), 27.1 \ (\text{CH}_3), 28.2 \ (\text{CH}_3), [29.3, 29.7 \ (\text{CH}_2, \text{some resonance overlap})], 31.9 \ (\text{CH}_2), 60.0 \ (\text{CH}), 64.2 \ (\text{CH}_2), 72.4 \ (\text{CH}_2), 80.0 \ (\text{CH}_2), 75.8 \ (\text{CH}), 77.8 \ (\text{CH}), 77.9 \ (2 \times \text{CH}), 108.2 \ (\text{C}), 109.4 \ (\text{C}), 127.7 \ (\text{CH}), 129.7 \ (\text{CH}), 133.2 \ (\text{C}), 135.6 \ (\text{CH}); \text{MS} \ (\text{TOF ES+}) \ m/z \ 788.7 \ ([\text{M} + \text{Na}]^+, 100\%); \text{HRMS} \ (\text{TOF ES+}) \ calcd \ for \ \text{C}_{44}\text{H}_{71}\text{N}_3\text{O}_6\text{SiNa} \ [\text{M} + \text{Na}]^+ 788.5010, \ found \ 788.5015.$

Transactivation of NK cells

The production of IFN-γ by NK cells was determined following i.v. delivery of 1 μg lipids to C57 BL/6 mice, as previously described.^{28.} Single cell suspensions were generated from the spleen and liver of mice at either 24 h or 48 h post injection. Abs for flow cytometry were from eBioscience (NK1.1, DX5, TCRb, B220, IFN-γ) and intracellular cytokine staining was carried out according to the manufacturer's protocol. Flow cytometry was performed on a CyAn (Dako) and analysed using FlowJo software.

Supplementary Figure 1. Wildtype C57 BL/6 mice (n = 3/group) were injected i.v. with 1 μ g ThrCer, ThrCer-thioamide (11) or ThrCer-carbamate (13). The transactivation of NK cells in the spleen and liver were determined by IFN- γ intracellular cytokine staining using FACS. In addition, IFN- γ levels in blood serum were determined by ELISA at 24 h and 33 h post-injection.

Statistical Analysis

All statistical analyses were preformed using Graphpad Prism software version 5.0. Student's t-test with two-tailed analysis was used to compare the level of significance between data sets. All p-values <0.05 were considered significant.

References

- (1) Nishida, Y., Shingu, Y., Dohi, H., and Kobayashi, K. (2003) One-Pot α-Glycosylation Method Using Appel Agents in *N*,*N*-Dimethylformamide, *Org. Lett.* 5, 2377–2380.
- (2) Shingu, Y., Nishida, Y., Dohi, H., and Kobayashi, K. (2003) An easy access to halide ion-catalytic α-glycosylation using carbon tetrabromide and triphenylphosphine as multifunctional reagents, *Org. Biomol. Chem. 1*, 2518–2521.
- (3) Prepared by NBS-mediated hydrolysis of phenyl 2,3,4,6-tetra-*O*-benzyl-1-thio-α-D-galactose: Marco-Contelles, J., Gallego, P., Rodríguez-Fernández, M., Khiar, N., Destabel, C., Bernabé, M., Martínez-Grau, A., and Chiara, J. L. (1997) Synthesis of Aminocyclitols by Intramolecular Reductive Coupling of Carbohydrate Derived δ- and ε-Functionalized Oxime Ethers Promoted by Tributyltin Hydride or Samarium Diiodide, *J. Org. Chem.* 62, 7397–7412.
- (4) Ohlsson, J., and Magnusson, G. (2000) Galabiosyl donors; efficient synthesis from 1,2,3,4,6-penta-*O*-acetyl-β-D-galactopyranose, *Carbohydr. Res.* 329, 49–56.
- (5) Kratzer, B., Mayer, T. G., and Schmidt, R. R. (1998) Synthesis of D-erythro-ceramide-1-phosphoinositol and its aminoglucosylated derivative Intermediates in GPI-anchor biosynthesis, *Eur. J. Org. Chem.* 291–298.
- (6) Garcia-Diaz, Y. R., Wojno, J., Cox, L. R., and Besra, G. S. (2009) Synthesis of threitol ceramide and [14C]threitol ceramide, non-glycosidic analogues of the potent CD1d antigen α-galactosyl ceramide, *Tetrahedron: Asymmetry* 20, 747–753.
- (7) Nyffeler, P. T., Liang, C.-H., Koeller, K. M., and Wong, C.-H. (2002) The chemistry of amine-azide interconversion: Catalytic diazotransfer and regioselective azide reduction, *J. Am. Chem. Soc.* 124, 10773–10778.
 - (8) Hexacosanoyl chloride was prepared from hexacosanoic acid and oxalyl chloride as reported previously: ref 6.
- (9) Adams, R., and Ulich, L. H. (1920) The use of oxalyl chloride and bromide for producing acid chlorides, acid bromides or acid anhydrides. III, *J. Am. Chem. Soc.* 42, 599–611.
- (10) Cao, Z., Yuan, Y., Jeyabalan, G., Du, Q., Tsung, A., Geller, D. A., and Billiar, T. R. (2009) Preactivation of NKT cells with α -GalCer protects against hepatic ischemia-reperfusion injury in mouse by a mechanism involving IL-13 and adenosine A_{2A} receptor, Am. J. Physiol. Gastrointest. Liver Physiol. 297, G249–G258.
- (11) Kawano, T., Cui, J., Koezuka, Y., Toura, I., Kaneko, Y., Motoki, K., Ueno, H., Nakagawa, R., Sato, H., Kondo, E., Koseki, H., and Taniguchi, M. (1997) CD1d-Restricted and TCR-Mediated Activation of Vα14 NKT Cells by Glycosylceramides, *Science* 278, 1626–1629.
- (12) Holas, T., Vávrová, K., Šíma, M., Klimentová, J., and Hrabálek, A. (2006) Synthesis and transdermal permeation-enhancing activity of carbonate and carbamate analogs of Transkarbam 12, *Bioorg. Med. Chem.* 14, 7671–7680.
- (13) This acceptor was prepared by diazo transfer of phytosphingosine using imidazole-1-sulfonyl azide hydrochloride, see: Goddard-Borger, E. D., and Stick, R. V. (2007) An efficient, inexpensive, and shelf-stable diazotransfer reagent: Imidazole-1-sulfonyl azide hydrochloride, Org. Lett. 9, 3797–3800, rather than TfN_3 , which we have used previously, see ref 6, followed by acetal formation, see: Fan, Q.-H., Ni, N.-T., Li, Q., Zhang, L.-H., and Ye, X.-S. (2006) New One-Carbon Degradative Transformation of β -Alkyl- β -azido Alcohols, Org. Lett. 8, 1007–1009.
- (14) Ghosh, A., Duong, T. T., McKee, S. P., and Thompson, W. J. (1992) N,N'-Disuccinimidyl Carbonate: A Useful Reagent for Alkoxycarbonylation of Amines, *Tetrahedron Lett.* 33, 2781–2784.
- (15) Knapp, S., Vocadlo, D., Gao, Z., Kirk, B., Lou, J., and Withers, S. G. (1996) NAG-thiazoline, An *N*-Acetyl-β-hexosaminidase Inhibitor That Implicates Acetamido Participation, *J. Am. Chem. Soc.* 118, 6804–6805.
- (16) This improved synthesis employs an isopropylidene acetal in place of the benzylidene acetal, which we had used previously to protect the internal 1,2-diol in the threitol portion of the molecule, see: ref 6.
- (17) Graziani, A., Passacantilli, P., Piancatelli, G., and Tani, S. (2000) 2-Deoxy-disaccharide approach to natural and unnatural glycosphingolipids synthesis, *Tetrahedron: Asymmetry 11*, 3921–3937.

- (18) Matto, P., Modica, E., Franchini, L., Facciotti, F., Mori, L., de Libero, G., Lombardi, G., Fallarini, S., Panza, L., Compostella, F., and Ronchetti, F. (2007) A General and Stereoselective Route to α or β -Galactosphingolipids via a Common Four-Carbon Building Block, *J. Org. Chem.* 72, 7757–7760.
 - (19) Prepared by NBS-mediated hydrolysis of phenyl 2,3,4,6-tetra-O-benzyl-1-thio-α-D-galactose: see ref. 3 and ref. 4.
- (20) Morita, M., Sava, E., Yamaji, K., Sakai, T., Natori, T., Koezuka, Y., Fukushima, H., and Akimoto, K. (1996) Practical total synthesis of (2S,3S,4R)-1-O-(α -D-galactopyranosyl)-N-hexacosanoyl-2-amino-1,3,4-octadecanetriol, the antitumorial and immunostimulatory α -galactosylceramide, KRN7000, *Biosci. Biotech. Biochem.* 60, 288–292.
- (21) Serizawa, I., Ushida, K., and Nishi, N. (2005) Hepatitis C Virus Inhibitor Comprising Alpha-Glycosylceramide as the Active Ingredient. U. S. Patent 0159365 A1, July 21.
- (22) Michieletti, M., Bracci, A., Compostella, F., De Libero, G., Mori, L., Fallarini, S., Lombardi, G., and Panza, L. (2008) Synthesis of α-Galactosyl Ceramide (KRN7000) and Analogues Thereof via a Common Precursor and Their Preliminary Biological Assessment, *J. Org. Chem.* 73, 9192–9195.
- (23) Morita, M., Motoki, K., Akimoto, K., Natori, T., Sakai, T., Sawa, E., Yamaji, K., Koezuka, Y., Kobayashi, E., and Fukushima, H. (1995) Structure-Activity Relationship of α -Galactosylceramidesagainst B16-Bearing Mice, *J. Med. Chem.* 38, 2176–2187.
- (24) Fan, Q.-H., Ni, N.-T., Li, Q., Zhang, L.-H., and Ye, X.-S. (2006) New One-Carbon Degradative Transformation of β-Alkyl-β-azido Alcohols, *Org. Lett.* 8, 1007–1009.
- (25) Reddy, B. G., Silk, J. D., Salio, M., Balamurugan, R., Shepherd, D., Ritter, G., Cerundolo, V., and Schmidt, R. R. (2009) Nonglycosidic Agonists of Invariant NKT Cells for Use as Vaccine Adjuvants, *ChemMedChem 4*, 171–175.
- (26) Martin, S. F., Chen, H. J., and Yang, C. P. (1993) Facile asymmetric syntheses of 1-deoxycastanospermine and 1-deoxy-8a-epi-castanospermine, *J. Org. Chem.* 58, 2867–2873.
- (27) Nicolaou, K. C., Mitchell, H. J., Fylaktakidou, K. C., Rodríguez R. M., and Suzuki, H. (2000) Total Synthesis of Everninomicin 13,384-1—Part 2: Synthesis of the FGHA₂ Fragment, *Chem. Eur. J.* 6, 3116–3148.
- (28) Schmieg, J., Yang, G. L., Franck, R. W., and Tsuji, M. (2003) Superior protection against malaria and melanoma metastases by a C-glycoside analogue of the natural killer T cell ligand alpha-galactosylceramide, *J. Exp. Med.* 198, 1631–1641.