Diversity-Oriented Synthesis Yields a Novel Lead for the Treatment of Malaria

Richard W. Heidebrecht Jr., ${ }^{*} \dagger, \S$ Carol Mulrooney, ${ }^{\dagger}$ Christopher P. Austin, ${ }^{\ddagger}$ Robert H. Barker Jr., Jennifer Beaudoin, ${ }^{\dagger}$ Ken Chih-Chien Cheng, ${ }^{\dagger}$ Eamon Comer, ${ }^{\dagger}$ Sivaraman Dandapani, ${ }^{\dagger}$ Justin Dick, ${ }^{\S}$ Jeremy R. Duvall, ${ }^{\dagger}$ Eric H. Ekland, ${ }^{\|}$David A. Fidock, $\|, \neq$Mark Fitzgerald, ${ }^{\dagger}$ Michael Foley, ${ }^{\dagger}$ Rajarshi Guha, ${ }^{\dagger}$ Paul Hinkson, ${ }^{\dagger}$ Martin Kramer, ${ }^{\dagger}$ Amanda K. Lukens, ${ }^{\S}$ Daniela Masi, ${ }^{\dagger}$ Lisa A. Marcaurelle, ${ }^{\dagger}$ Xin-Zhuan $\mathrm{Su},{ }^{\perp}$ Craig J. Thomas, ${ }^{\dagger}$ Roger Weigand, ${ }^{\dagger}$ Michel Weïwer, ${ }^{\dagger}$ Dyann Wirth, ${ }^{\S}$ Menghang Xia, ${ }^{\ddagger}$ Jing Yuan, ${ }^{\perp}$ Jinghua Zhao, ${ }^{\ddagger}$ Michelle Palmer, ${ }^{\dagger}$ Benito Munoz, ${ }^{\dagger}$ Stuart Schreiber. ${ }^{\dagger \dagger, \#}$
${ }^{+}$The Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, United States.
${ }^{*}$ National Institutes of Health Chemical Genomics Center, Bethesda, MD, United States.
§Harvard School of Public Health, Huntington Avenue, Boston, MA, United States.
${ }^{\|}$Colombia University, Department of Microbiology and Immunology, New York, NY, United States.
${ }^{\text {Y }}$ Colombia University, Division of Infectious Diseases, Department of Medicine, New York, NY, United States.
${ }^{\dagger}$ National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States.
*Howard Hughes Medical Institute, Chemistry and Chemical Biology, Harvard University, Cambridge, MA, United States.
fGenzyme Corporation, 153 Second Avenue, Waltham, Massachusetts 02451, United States.

Supporting Information

General Information
Experimental Procedures
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra; LC/MS ChromatogramS-2S-3S-21

General Information

All oxygen and/or moisture sensitive reactions were carried out under N_{2} atmosphere in glassware that had been flame-dried under vacuum ($\sim 0.5 \mathrm{mmHg}$) and purged with N_{2} prior to use. All reagents and solvents were purchased from commercial vendors and used as received, or synthesized according to the footnoted references. NMR spectra were recorded on a Bruker $300\left(300 \mathrm{MHz}{ }^{1} \mathrm{H}, 75 \mathrm{MHz}{ }^{13} \mathrm{C}\right)$ or Varian UNITY INOVA 500 ($500 \mathrm{MHz}{ }^{1} \mathrm{H}, 125 \mathrm{MHz}{ }^{13} \mathrm{C}$) spectrometer. Proton chemical shifts are reported in ppm (δ) referenced to the NMR solvent. ${ }^{1}$ Data are reported as follows: chemical shifts, multiplicity $(\mathrm{br}=$ broad, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{p}=$ pentet, $\mathrm{m}=$ multiplet; coupling constant(s) in Hz; integration). Unless otherwise indicated NMR data were collected at $25^{\circ} \mathrm{C}$. Flash chromatography was performed using $40-60 \mu \mathrm{~m}$ Silica Gel ($60 \AA$ mesh) on a Teledyne Isco Combiflash R_{f}. For purity analysis, purity was measured by UV absorbance at 210 nm for all examples, and identity was determined on a SQ mass spectrometer by positive electrospray ionization. The following methods were used: Method A: UPLC-MS (Waters, Milford, MA). Mobile phase A consisted of either 0.01% ammonium hydroxide or 0.01% formic acid in water, while mobile phase B consisted of the same additives in acetonitrile. The gradient ran from 5% to 95% mobile phase B over 0.8 minutes at $0.45 \mathrm{~mL} / \mathrm{min}$. An Acquity BEH C18, $1.7 \mathrm{um}, 1.0 \times 50 \mathrm{~mm}$ column was used with column temperature maintained at $65{ }^{\circ} \mathrm{C}$. Method B: Tandem Liquid Chromotography/Mass Spectrometry (LCMS) was performed on a Waters 2795 separations module and 3100 mass detector. Mobile phase A consisted of 0.01% formic acid in water, while mobile phase B consisted of 0.01% formic acid in acetonitrile. The gradient ran from 5% to 95% mobile phase B over 15 minutes at $1 \mathrm{~mL} / \mathrm{min}$. An XBridge C18, $3.5 \mathrm{um}, 4.6 \times 30 \mathrm{~mm}$ column was used with column temperature maintained at $40{ }^{\circ} \mathrm{C}$. 5 uL of sample solution were injected. Method C: Tandem Liquid Chromotography/Mass Spectrometry (LCMS) was performed on a Waters 2795 separations module and 3100 mass detector. Mobile phase A consisted of 0.01% formic acid in water, while mobile phase B consisted of 0.01% formic acid in acetonitrile. The gradient ran from 5% to 95% mobile phase B over 7.5 minutes at $1.75 \mathrm{~mL} / \mathrm{min}$. An Agilent Poroshell 120 EC-C18, $2.7 \mathrm{um}, 3.0 \times 30 \mathrm{~mm}$ column was used with column temperature maintained at $40^{\circ} \mathrm{C} .2 .1 \mathrm{uL}$ of sample solution were injected. Analytical thin layer chromatography (TLC) was performed on EM Reagent 0.25 mm silica gel $60-\mathrm{F}$ plates. Visualization was accomplished with UV light and aqueous potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$ stain followed by heating. High-resolution mass spectra were obtained at the Boston University Mass Spectrometry Facility.

[^0]
Experimental Procedures

Schemes 1-5 outline the various protocols that were developed to prepare the products $\mathbf{1 -}$ 27. The synthesis of compounds \mathbf{A} and 2-10 were previously reported. ${ }^{2}$

Scheme 1. Initial synthesis of derivatives of compound 1

Allyl (((2S,8R,9R)-14-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-11-((S)-1-((tert-butyldimethylsilyl)oxy)propan-2-yl)-2,9-dimethyl-12-oxo-2,3,4,5,6,8,9,10,11,12-decahydrobenzo[b][1,9,5]dioxaazacyclotetradecin-8-yl)methyl)(methyl)carbamate (B):

To a solution of alcohol $\mathbf{A}(0.494 \mathrm{~g}, 0.692 \mathrm{mmol})$ in dry DMF $(2.77 \mathrm{~mL})$ was added imidazole ($0.141 \mathrm{~g}, 2.076 \mathrm{mmol}$) followed by TBSCl ($0.146 \mathrm{~g}, 0.692 \mathrm{mmol}$) under N_{2} atmosphere at room temperature. The resulting mixture was stirred at room temperature for 16 h . The reaction was diluted with DCM $(10 \mathrm{~mL})$ and washed with water (2 X). The organic phase was then separated, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to dryness. This material was chromatographed on silica, using ethyl acetate / hexanes to give 0.37 g (65%) of the desired product. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78(\mathrm{~d}, 2 \mathrm{H}), 7.60(\mathrm{~d}, 2 \mathrm{H})$, $7.53-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~m}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 5.94(\mathrm{~m}, 1 \mathrm{H}), 5.47-5.06$ $(\mathrm{m}, 1 \mathrm{H}), 4.75-4.39(\mathrm{~m}, 4 \mathrm{H}), 4.26(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 1 \mathrm{H}), 3.99-3.62(\mathrm{~m}, 4 \mathrm{H}), 3.49-$

[^1]$3.10(\mathrm{~m}, 2 \mathrm{H}), 3.00(\mathrm{~m}, 2 \mathrm{H}), 2.88-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 1 \mathrm{H}), 2.01(\mathrm{~s}, 1 \mathrm{H}), 1.83(\mathrm{~m}, 1 \mathrm{H})$, $1.63(\mathrm{~s}, 4 \mathrm{H}), 1.32(\mathrm{~m}, 4 \mathrm{H}), 1.16-1.02(\mathrm{~m}, 2 \mathrm{H}), 1.02-0.57(\mathrm{~m}, 9 \mathrm{H}), 0.15-0.15(\mathrm{~m}$, 5 H). HRMS (ESI) calcd for $\mathrm{C}_{47} \mathrm{H}_{66} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 828.4619$. Found: 828.4620.

(S)-2-((2S,8R,9R)-14-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)-8-((((allyloxy)carbonyl)(methyl)amino)methyl)-2,9-dimethyl-12-oxo-3,4,5,6,9,10-hexahydrobenzo[b][1,9,5]dioxaazacyclotetradecin-11(2H,8H,12H)-yl)propyl benzoate (C)

To a solution of alcohol $\mathbf{A}(0.509 \mathrm{~g}, 0.713 \mathrm{mmol})$ in dry DCM $(5.94 \mathrm{~mL})$ was added pyridine $(0.577 \mathrm{~mL}, 7.13 \mathrm{mmol})$ followed by benzoyl chloride $(0.248 \mathrm{~mL}, 2.139$ mmol) under N_{2} atmosphere at room temperature. The resulting mixture was stirred at room temperature for 4 h . The reaction was diluted with DCM (10 mL) and washed with water (2 X 10 mL). The organic phase was then separated, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to dryness. This material was chromatographed on silica, using ethyl acetate / hexanes to give $0.54 \mathrm{~g}(93 \%)$ of the desired product. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05$ $(\mathrm{d}, 1 \mathrm{H}), 8.00(\mathrm{~d}, 1 \mathrm{H}), 7.77(\mathrm{~d}, 2 \mathrm{H}), 7.66-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.28(\mathrm{~m}$, 2H), 7.22-7.11 (m, 1H), 6.89-6.66 (m, 2H), 6.03-5.78 (m, 1H), 5.26-5.06 (m, 1H), 4.72$4.40(\mathrm{~m}, 4 \mathrm{H}), 4.32-4.22(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.02(\mathrm{~m}, 1 \mathrm{H}), 4.00-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.50(\mathrm{~m}$, $1 \mathrm{H}), 3.47(\mathrm{~d}, 2 \mathrm{H}), 3.41-3.15(\mathrm{~m}, 1 \mathrm{H}), 3.12-2.73(\mathrm{~m}, 3 \mathrm{H}), 2.19(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~m}, 1 \mathrm{H})$, $1.91-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.45(\mathrm{~m}, 3 \mathrm{H}), 1.37-1.08(\mathrm{~m}, 9 \mathrm{H}), 0.99-0.80(\mathrm{~m}, 6 \mathrm{H}), 0.77(\mathrm{~m}$, 2H). HRMS (ESI) calcd for $\mathrm{C}_{48} \mathrm{H}_{56} \mathrm{~N}_{3} \mathrm{O}_{9}[\mathrm{M}+\mathrm{H}]^{+}: 818.4017$. Found: 818.4017.

Allyl (((2S,8R,9R)-11-((S)-1-((tert-butyldimethylsilyl)oxy)propan-2-yl)-2,9-dimethyl-12-oxo-14-(3-phenylureido)-2,3,4,5,6,8,9,10,11,12decahydrobenzo $[b][1,9,5]$ dioxaazacyclotetradecin-8-yl)methyl)(methyl)carbamate (D)

To a solution of Fmoc protected aniline B ($0.330 \mathrm{~g}, 0.398 \mathrm{mmol}$) in dry DMF $(3.98 \mathrm{~mL})$ was added piperidine $(0.079 \mathrm{~mL}, 0.797 \mathrm{mmol})$. The reaction mixture was stirred for 30 min , then phenyl isocyanate ($0.174 \mathrm{~mL}, 1.594 \mathrm{mmol}$) was added. The resulting mixture was stirred at room temperature for 16 h . The reaction was diluted with water and EtOAc, the phases were separated, and the organic phase was washed with $\mathrm{H}_{2} \mathrm{O} 6 \mathrm{X}$. The organic phase was then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to dryness.
This material was chromatographed on silica, using MeOH / DCM to yield $0.200 \mathrm{~g}(69 \%)$ of the desired product. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.91(\mathrm{~m}, 1 \mathrm{H}), 7.70(\mathrm{~m}, 1 \mathrm{H}), 7.47$ $(\mathrm{m}, 2 \mathrm{H}), 7.37-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{~m}, 1 \mathrm{H}), 6.67(\mathrm{~m}, 2 \mathrm{H}), 5.91(\mathrm{~m}, 1 \mathrm{H}), 5.43-5.08(\mathrm{~m}$, $2 \mathrm{H}), 4.58(\mathrm{~m}, 3 \mathrm{H}), 3.86(\mathrm{~m}, 4 \mathrm{H}), 3.49(\mathrm{~m}, 4 \mathrm{H}), 3.18-2.92(\mathrm{~m}, 4 \mathrm{H}), 2.85(\mathrm{~m}, 1 \mathrm{H}), 2.21$
$(\mathrm{m}, 1 \mathrm{H}), 1.73(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~m}, 5 \mathrm{H}), 1.23(\mathrm{~m}, 2 \mathrm{H}), 1.20-1.06(\mathrm{~m}, 2 \mathrm{H}), 1.04-0.77(\mathrm{~m}$, $11 \mathrm{H}), 0.22--0.08(\mathrm{~m}, 5 \mathrm{H})$. HRMS (ESI) calcd for $\mathrm{C}_{39} \mathrm{H}_{61} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 725.4310$. Found: 725.4316.

(R)-2-((2S,8R,9R)-8-((((Allyloxy)carbonyl)(methyl)amino)methyl)-2,9-dimethyl-12-oxo-14-(3-phenylureido)-3,4,5,6,9,10-hexahydrobenzo[b][1,9,5]dioxaazacyclotetradecin-11(2H,8H,12H)-yl)propyl benzoate (E)

A mixture of Fmoc-protected aniline $\mathbf{C}(1.61 \mathrm{~g}, 1.968 \mathrm{mmol})$ and piperidine $(0.390 \mathrm{~mL}, 3.94 \mathrm{mmol})$ in dry DMF $(19.7 \mathrm{~mL})$ was stirred under N_{2} atmosphere at room temperature for 40 min . Then phenyl isocyanate $(0.209 \mathrm{~mL}, 1.914 \mathrm{mmol})$ was introduced to the reaction mixture, which was stirred at room temperature for 3 h . The reaction was diluted with water/EtOAc (10 mL) and extracted with EtOAc. The organic phase was separated, washed with water, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to dryness. This material was chromatographed on silica, using ethyl acetate / hexanes to afford the desired product ($0.77 \mathrm{~g}, 60 \%$ over 2 steps). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06(\mathrm{~m}, 1 \mathrm{H})$, $8.04-7.89(\mathrm{~m}, 1 \mathrm{H}), 7.81(\mathrm{~m}, 1 \mathrm{H}), 7.59(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~m}, 2 \mathrm{H}), 6.96$ $(\mathrm{m}, 1 \mathrm{H}), 6.82(\mathrm{~m}, 1 \mathrm{H}), 6.69(\mathrm{~m}, 1 \mathrm{H}), 5.89(\mathrm{~m}, 1 \mathrm{H}), 5.45-5.08(\mathrm{~m}, 2 \mathrm{H}), 4.83(\mathrm{~m}, 1 \mathrm{H})$, $4.55(\mathrm{~m}, 3 \mathrm{H}), 4.18-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{~m}, 2 \mathrm{H}), 3.50(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{~m}, 1 \mathrm{H}), 3.26-2.95$ $(\mathrm{m}, 3 \mathrm{H}), 2.88(\mathrm{~m}, 3 \mathrm{H}), 2.26(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~m}$, $3 \mathrm{H}), 1.24(\mathrm{~m}, 5 \mathrm{H}), 1.14-1.00(\mathrm{~m}, 2 \mathrm{H}), 0.99-0.85(\mathrm{~m}, 2 \mathrm{H}), 0.77(\mathrm{~m}, 2 \mathrm{H})$. HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{51} \mathrm{~N}_{4} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}: 715.3707$. Found: 715.3718.

2-Fluoro-N-(($2 S, 8 R, 9 R)$-11-((S)-1-hydroxypropan-2-yl)-2,9-dimethyl-12-oxo-14-(3-phenylureido)-2,3,4,5,6,8,9,10,11,12-decahydrobenzo[b][1,9,5]dioxaazacyclotetradecin-8-yl)methyl)-Nmethylbenzenesulfonamide (13)

To a solution of alloc protected amine $\mathbf{D}(0.157 \mathrm{~g}, 0.217 \mathrm{mmol})$ in DCM (2.5 mL) under N_{2} was added 1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione ($0.483 \mathrm{~g}, 3.09$ $\mathrm{mmol})$ followed by $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.143 \mathrm{mg}, 0.124 \mathrm{mmol})$. The reaction mixture was stirred for 30 min , then purification via siliabond catch and release was performed to yield the product of the TBS deprotection. The crude material was dissolved in DCM (2.5 mL) and to this solution was added 2,6 -lutidine ($43 \mu \mathrm{~L}, 0.373 \mathrm{mmol}$) followed by 2 -fluorobenzene-1-sulfonyl chloride ($31 \mathrm{mg}, 0.16 \mathrm{mmol}$). The reaction mixture was stirred 16 h . Purification of the crude mixture was accomplished with SiO_{2} chromatography to yield 10 mg (12% yield) of desired product. LC/MS: Method A, RT $0.84 \mathrm{~min}, 95 \%$ purity. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.39(\mathrm{~m}$, $1 \mathrm{H}), 7.37-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.10-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.86-6.63(\mathrm{~m}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 4.40(\mathrm{~m}$,
$1 \mathrm{H}), 4.22-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~m}, 3 \mathrm{H}), 3.76(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.39(\mathrm{~m}, 2 \mathrm{H}), 3.32(\mathrm{~m}, 1 \mathrm{H})$, $3.09(\mathrm{~m}, 1 \mathrm{H}), 2.99-2.71(\mathrm{~m}, 4 \mathrm{H}), 2.67(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.47$ $(\mathrm{m}, 4 \mathrm{H}), 1.39-1.22(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.09(\mathrm{~m}, 2 \mathrm{H}), 1.08-0.89(\mathrm{~m}, 2 \mathrm{H}), 0.77(\mathrm{~d}, 2 \mathrm{H}) . \mathrm{MS}$ calculated for $\mathrm{C}_{35} \mathrm{H}_{45} \mathrm{FN}_{4} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 685. Found: 685. HRMS (ESI) calcd for $\mathrm{C}_{35} \mathrm{H}_{46} \mathrm{FN}_{4} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 685.3071$. Found: 685.3071.

3-[(2S,8R,9R)-11-[(2S)-1-Hydroxypropan-2-yl]-2,9-dimethyl-8-(\{N-methyl[4-(trifluoromethyl)benzene]sulfonamido\}methyl)-12-oxo-2,3,4,5,6,8,9,10,11,12-decahydro-1,7,11-benzodioxazacyclotetradecin-14-yl]-1-phenylurea (14) was synthesized in 10% yield using the above protocol. LC/MS: Method A, RT 0.91 min , 100% purity. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98-7.91(\mathrm{~m}, 1 \mathrm{H}), 7.90-7.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.82-7.71(\mathrm{~m}, 3 \mathrm{H}), 7.71-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.10-6.95(\mathrm{~m}, 2 \mathrm{H})$, $6.95-6.82(\mathrm{~m}, 1 \mathrm{H}), 6.80-6.67(\mathrm{~m}, 1 \mathrm{H}), 4.68(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.10-3.63(\mathrm{~m}$, 5 H), 3.61-3.38 (m, 2H), 3.35-2.97 (m, 3H), $2.95-2.66(\mathrm{~m}, 4 \mathrm{H}), 2.01$ (br s, 1H), 1.86$1.58(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.42(\mathrm{~m}, 3 \mathrm{H}), 1.37(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.32-1.11(\mathrm{~m}, 3 \mathrm{H}), 1.11-$ $0.93(\mathrm{~m}, 3 \mathrm{H}), 0.90-0.75(\mathrm{~m}, 3 \mathrm{H})$. HRMS (ESI) calcd for $\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 735.3039. Found: 735.3034.

3-[(2S,8R,9R)-11-[(2S)-1-Hydroxypropan-2-yl]-2,9-dimethyl-8-[(N-methylpyridine-3-sulfonamido)methyl]-12-oxo-2,3,4,5,6,8,9,10,11,12-decahydro-1,7,11-benzodioxazacyclotetradecin-14-yl]-1-phenylurea (15) was synthesized in 21% yield using the above protocol. LC/MS: Method B, RT 8.48 min, 96% purity. ${ }^{1}$ H NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.12$ - $8.92(\mathrm{~m}, 1 \mathrm{H}), 8.8-8.76(\mathrm{~m}, 1 \mathrm{H}), 8.15-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.82-7.52$ $(\mathrm{m}, 2 \mathrm{H}), 7.52-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.15-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.80(\mathrm{~m}$, $1 \mathrm{H}), ~ 6.77-6.69(\mathrm{~m}, 1 \mathrm{H}), 4.65-4.22(\mathrm{~m}, 1 \mathrm{H}), 4.00-3.62(\mathrm{~m}, 4 \mathrm{H}), 3.60-3.33(\mathrm{~m}, 2 \mathrm{H}), 3.33-$ $2.95(\mathrm{~m}, 3 \mathrm{H}), 2.95-2.75(\mathrm{~m}, 4 \mathrm{H}), 2.71-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.11-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.43(\mathrm{~m}$, $4 \mathrm{H}), 1.42-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.07(\mathrm{~m}, 3 \mathrm{H}), 1.05-0.93(\mathrm{~m}, 3 \mathrm{H}), 0.83-0.74(\mathrm{~m}, 3 \mathrm{H})$. HRMS (ESI) calcd for $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 668.3118$. Found: 688.3112.

(2S)-2-[(2S,8R,9R)-2,9-Dimethyl-8-\{[N-methyl(4-
fluorobenzene)sulfonamido]methyl\}-12-oxo-14-[(phenylcarbamoyl)amino]-

2,3,4,5,6,8,9,10,11,12-decahydro-1,7,11-benzodioxazacyclotetradecin-11-yl]propyl benzoate (22)

A mixture of Alloc-protected amine $\mathbf{E}(0.77 \mathrm{~g}, \quad 1.077 \mathrm{mmol})$, 1,3-dimethylpyrimidine-2,4,6-($1 \mathrm{H}, 3 \mathrm{H}, 5 \mathrm{H}$)-trione $(1.261 \mathrm{~g}, 8.08 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.249$ $\mathrm{g}, 0.215 \mathrm{mmol})$ in dry $\mathrm{DCM}(15.4 \mathrm{~mL})$ was stirred under N_{2} atmosphere at room temperature for 1 h . The reaction mixture was diluted with DCM $(25 \mathrm{~mL})$, washed with Sat. $\mathrm{NaHCO}_{3}(2 \mathrm{X} 25 \mathrm{~mL}$) and water (2 X 25 mL). The organic phase was separated, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to dryness. The crude product was then re-dissolved in dry DCM $(11 \mathrm{~mL})$, then 2,6 -lutidine $(0.878 \mathrm{~mL}, 7.54 \mathrm{mmol})$ was added, followed by 4 -fluorobenzene-1-sulfonyl chloride ($0.419 \mathrm{~g}, 2.154 \mathrm{mmol}$) under N_{2} atmosphere. The resulting mixture was stirred at room temperature for 15 h . The reaction was diluted with DCM (25 mL) and washed with water (2 X 25 mL). The organic layer was separated, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to dryness. This material was chromatographed on silica, using ethyl acetate / hexanes to give $0.53 \mathrm{~g}(62 \%)$ of the title product as colorless resin. LC/MS: Method B, RT $10.90 \mathrm{~min}, 96 \%$ purity. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11-$ $7.84(\mathrm{~m}, 2 \mathrm{H}), 7.79(\mathrm{~m}, 1 \mathrm{H}), 7.62(\mathrm{~m}, 3 \mathrm{H}), 7.37(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~m}$, $4 \mathrm{H}), 6.87-6.63(\mathrm{~m}, 2 \mathrm{H}), 6.52(\mathrm{~m}, 1 \mathrm{H}), 4.89-4.48(\mathrm{~m}, 1 \mathrm{H}), 4.45-4.18(\mathrm{~m}, 1 \mathrm{H}), 4.06$ $(\mathrm{m}, 1 \mathrm{H}), 3.77(\mathrm{~m}, 2 \mathrm{H}), 3.50(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{~m}, 5 \mathrm{H}), 1.88(\mathrm{~m}$, $1 \mathrm{H}), 1.56(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~m}, 4 \mathrm{H}), 1.04(\mathrm{~m}, 3 \mathrm{H}), 0.88(\mathrm{~m}, 2 \mathrm{H}), 0.75(\mathrm{~m}, 1 \mathrm{H})$, $0.60(\mathrm{~m}, 2 \mathrm{H}), 0.37(\mathrm{~m}, 1 \mathrm{H})$. HRMS (ESI) calcd for $\mathrm{C}_{42} \mathrm{H}_{50} \mathrm{FN}_{4} \mathrm{O}_{8} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 789.3333$. Found: 789.3336.

3-[(2S,8R,9R)-11-[(2S)-1-Hydroxypropan-2-yl]-2,9-dimethyl-8-\{[N-methyl(4-fluorobenzene)sulfonamido]methyl\}-12-oxo-2,3,4,5,6,8,9,10,11,12-decahydro-1,7,11-benzodioxazacyclotetradecin-14-yl]-1-phenylurea (1)

To a solution of Bz-protected alcohol $22(0.49 \mathrm{~g}, 0.621 \mathrm{mmol})$ in methanol (12.4 mL) was added potassium carbonate ($0.472 \mathrm{~g}, 3.42 \mathrm{mmol}$) under N_{2} atmosphere. The suspension was stirred at room temperature for 15 h . The reaction mixture was then quenched with Sat. $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$ and extracted with EtOAc. The phases were separated, the organic phase was washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to dryness. This material was chromatographed on silica, using methanol / dichloromethane to afford the desired product ($0.4 \mathrm{~g}, 94 \%$) as colorless resin. LC/MS: Method A, RT $0.85 \mathrm{~min}, 96 \%$ purity. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.95-7.51(\mathrm{~m}$, $3 \mathrm{H}), 7.39(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.07(\mathrm{~m}, 5 \mathrm{H}), 7.07-6.91(\mathrm{~m}, 1 \mathrm{H}), 6.91-6.60(\mathrm{~m}, 2 \mathrm{H}), 4.65(\mathrm{~s}$, $1 \mathrm{H}), 4.33(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{~m}, 4 \mathrm{H}), 3.56(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{~m}, 2 \mathrm{H}), 2.96-2.55(\mathrm{~m}, 5 \mathrm{H}), 2.47-$ $2.27(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~m}, 3 \mathrm{H}), 1.47(\mathrm{~m}, 4 \mathrm{H}), 1.38-1.22(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.09$ $(\mathrm{m}, 3 \mathrm{H}), 1.09-0.90(\mathrm{~m}, 2 \mathrm{H}), 0.79(\mathrm{~m}, 2 \mathrm{H})$. HRMS (ESI) calcd for $\mathrm{C}_{35} \mathrm{H}_{46} \mathrm{FN}_{4} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}+$ $\mathrm{H}]^{+}$: 685.3071. Found: 685.3065.

3-[(2R,8R,9R)-8-(\{[(4-Fluorophenyl)methyl](methyl)amino\}methyl)-11-[(2S)-1-hydroxypropan-2-yl]-2,9-dimethyl-12-oxo-2,3,4,5,6,8,9,10,11,12-decahydro-1,7,11-benzodioxazacyclotetradecin-14-yl]-1-phenylurea (16)

A mixture of crude amine (deprotected $\mathbf{E}, 0.0484 \mathrm{~g}, 0.077 \mathrm{mmol}$) and magnesium sulfate ($7.37 \mathrm{mg}, 0.077 \mathrm{mmol}$) in dry DCM $(0.77 \mathrm{~mL})$ was stirred under N_{2} and to this mixture was added 4-fluorobenzaldehyde ($0.024 \mathrm{~mL}, 0.230 \mathrm{mmol}$). The suspension was stirred for 1 h followed by the addition of sodium triacetoxyborohydride $(0.101 \mathrm{~g}, 0.537$ $\mathrm{mmol})$. The resulting mixture was stirred at room temperature for 4 h . The reaction was diluted with DCM $(10 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$. The aqueous phase was separated and washed with DCM (10 mL). Then the combined organic layers were washed with water (10 mL), separated, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to dryness. Crude product was carried on to the benzoyl deprotection step, following the same procedure as for compound (1). 11 mg (23% over 2 steps) of the desired compound were obtained as colorless resin. LC/MS: Method B, RT $6.39 \mathrm{~min}, 98 \%$ purity. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18-7.79$ (m, 2H), $7.46(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.17-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.76(\mathrm{~m}, 1 \mathrm{H}), 4.69-$ $4.44(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{~m}, 2 \mathrm{H}), 3.20-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{~m}$, $1 \mathrm{H}), 2.64(\mathrm{~m}, 6 \mathrm{H}), 2.17(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~m}, 4 \mathrm{H}), 1.40(\mathrm{~m}, 4 \mathrm{H}), 1.31-$ $1.16(\mathrm{~m}, 4 \mathrm{H}), 1.08(\mathrm{~m}, 2 \mathrm{H}), 0.98-0.84(\mathrm{~m}, 2 \mathrm{H}), 0.80-0.62(\mathrm{~m}, 2 \mathrm{H})$. HRMS (ESI) calcd for $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{FN}_{4} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 635.3609$. Found: 635.3616.

Scheme 2. An alternate synthesis to provide compounds 11 and 12

(S)-2-((2S,8R,9R)-14-((($9 \mathrm{H}-$ Fluoren-9-yl)methoxy)carbonyl)amino)-8-((4-fluoro-N-methylphenylsulfonamido)methyl)-2,9-dimethyl-12-oxo-3,4,5,6,9,10-hexahydrobenzo[b][1,9,5]dioxaazacyclotetradecin-11(2H,8H,12H)-yl)propyl benzoate (H)

A mixture of Alloc-protected amine $\mathbf{B}(0.268 \mathrm{~g}, 0.328 \mathrm{mmol})$, 1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione ($0.384 \mathrm{~g}, 2.46 \mathrm{mmol}$) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(76 \mathrm{mg}$, $0.066 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.7 \mathrm{~mL})$ was stirred under N_{2} atmosphere at room temperature for 1 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with Sat. NaHCO_{3} and water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to dryness. The crude product was then re-dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.3 \mathrm{~mL})$, then 2,6 -lutidine ($0.27 \mathrm{~mL}, 2.3 \mathrm{mmol}$) was added, followed by 4-fluorobenzene-1-sulfonyl chloride ($0.127 \mathrm{~g}, 0.654 \mathrm{mmol}$) under N_{2} atmosphere. The resulting mixture was stirred at room temperature for 15 h . The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to dryness. This material was chromatographed on silica, using ethyl acetate / hexanes to give $0.20 \mathrm{~g}(70 \%)$ of the title product as colorless resin. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 8.08-7.95 (m, 2H), 7.86-7.67 (m, 4H), 7.65-7.49 (m, 3H), 7.48-7.37 (m, 4H), 7.36 $7.23(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.09(\mathrm{~m}, 3 \mathrm{H}), 6.88-6.74(\mathrm{~m}, 1 \mathrm{H}), 6.68(\mathrm{~m}, 1 \mathrm{H}), 4.89-4.58(\mathrm{~m}, 1 \mathrm{H})$, 4.57 - $4.40(\mathrm{~m}, 3 \mathrm{H}), 4.30-4.17(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}), 3.99-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.78-3.40(\mathrm{~m}$, $2 \mathrm{H}), 3.20-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.86-2.68(\mathrm{~m}, 3 \mathrm{H}), 2.28-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.86-$ $1.52(\mathrm{~m}, 4 \mathrm{H}), 1.52-1.29(\mathrm{~m}, 6 \mathrm{H}), 1.23-1.08(\mathrm{~m}, 3 \mathrm{H}), 1.01-0.70(\mathrm{~m}, 3 \mathrm{H})$. HRMS (ESI) calcd for $\mathrm{C}_{50} \mathrm{H}_{55} \mathrm{FN}_{3} \mathrm{O}_{9} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 892.3643$. Found: 892.3648.

N -\{[(2S,8R,9R)-14-[(1,3-Benzoxazol-2-yl)amino]-11-[(2S)-1-hydroxypropan-2-yl]-2,9-dimethyl-12-oxo-2,3,4,5,6,8,9,10,11,12-decahydro-1,7,11-benzodioxazacyclotetradecin-8-yl]methyl\}-4-fluoro-N-methylbenzene-1-sulfonamide (12)

To a solution of Fmoc protected compound $\mathbf{H}(181 \mathrm{mg}, 0.203 \mathrm{mmol})$ in DMF (2.0 mL) was added piperidine $(40 \mu \mathrm{~L}, 0.406 \mathrm{mmol})$. The reaction mixture was stirred 1 h , then diluted with aqueous sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and DCM . The phases were separated, the aqueous was washed with DCM, and the combined organics were washed with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent evaporated. The crude material was carried on to the next step without further purification. The aniline ($28.6 \mathrm{mg}, 0.086 \mathrm{mmol}$) was dissolved in anhydrous DMF (0.43 mL) and to this solution under Ar was added triethylamine ($24 \mu \mathrm{~L}, 0.170$ mmol) followed by 2 -cholrobenzo[d]oxazole ($20 \mu \mathrm{~L}, 0.170 \mathrm{mmol}$). The reaction mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 72 h . The reaction mixture was cooled, diluted with DCM and
washed with $\mathrm{H}_{2} \mathrm{O}$. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent evaporated. The residue was chromatographed on silica using $\mathrm{MeOH} / \mathrm{DCM}$ and the resultant impure product was carried on to the next step without further purification.

To a solution of this crude benzoyl protected alcohol ($53 \mathrm{mg}, 0.067 \mathrm{mmol}$) in $\mathrm{MeOH}(0.67 \mathrm{~mL})$ was added potassium carbonate ($51 \mathrm{mg}, 0.37 \mathrm{mmol}$). The reaction mixture was stirred for 24 h , then quenched with aqueous sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and diluted with DCM. The aqueous phase was washed with DCM, and the combined organics were washed with $\mathrm{H}_{2} \mathrm{O} 2 \mathrm{X}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent evaporated. The residue was chromatographed on silica using $\mathrm{MeOH} / \mathrm{DCM}$ to yield 7.1 mg (16% yield) of the title product as a colorless resin. LC/MS: Method B, RT $9.96 \mathrm{~min}, 99 \%$ purity. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93$ - $7.79(\mathrm{~m}, 2 \mathrm{H}), 7.78-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.35-$ $7.28(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.08(\mathrm{~m}, 4 \mathrm{H}), 7.04-6.86(\mathrm{~m}, 1 \mathrm{H}), 4.76-4.46(\mathrm{~m}, 1 \mathrm{H}), 4.13-3.70$ $(\mathrm{m}, 3 \mathrm{H}), 3.68-3.46(\mathrm{~m}, 3 \mathrm{H}), 3.18-2.94(\mathrm{~m}, 2 \mathrm{H}), 2.92-2.76(\mathrm{~m}, 3 \mathrm{H}), 2.71-2.62(\mathrm{~m}, 1 \mathrm{H})$, $2.28-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.47(\mathrm{~m}, 3 \mathrm{H}), 1.47-1.36(\mathrm{~m}, 6 \mathrm{H}), 1.34-1.20$ $(\mathrm{m}, 3 \mathrm{H}), 1.01-0.77(\mathrm{~m}, 3 \mathrm{H})$. HRMS (ESI) calcd for $\mathrm{C}_{35} \mathrm{H}_{44} \mathrm{FN}_{4} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 683.2915$. Found: 683.2919.

Scheme 3. Alternate synthesis of compound 1 and synthesis of compounds 15, 1720, 28-31 from an early stage intermediate.

Intermediates I-O were synthesized using the procedures previously reported. ${ }^{2}$

tert-Butyl (((2S,8R,9R)-11-((S)-1-((4-methoxybenzyl)oxy)propan-2-yl)-2,9-dimethyl-12-oxo-14-(3-phenylureido)-2,3,4,5,6,8,9,10,11,12-decahydrobenzo[b][1,9,5]dioxaazacyclotetradecin-8-yl)methyl)(methyl)carbamate (P)

To a solution of aniline $\mathbf{O}(570 \mathrm{mg}, 0.908 \mathrm{mmol})$ in DCM (9.08 ml) under N_{2} was added phenyl isocyanate $(0.198 \mathrm{ml}, 1.816 \mathrm{mmol})$. The reaction was stirred for 16 h . The crude reaction mixture was evaporated under reduced pressure and purified by column chromatography using Ethyl acetate/hexane to afford the desired product ($568 \mathrm{mg}, 84 \%$) ${ }^{1} \mathrm{HNMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.32-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.72-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.41(\mathrm{~m}, 2 \mathrm{H})$, 7.36-7.17 (m, 5H), 7.08-6.64 (m, 2H), 6.79-6.59 (m, 1H), 4.70-4.25 (m, 3H), 4.24-4.03 $(\mathrm{m}, 2 \mathrm{H}), 4.03-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.71(\mathrm{~m}, 3 \mathrm{H}), 3.71-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.54-3.21(\mathrm{~m}, 3 \mathrm{H})$, $3.21-2.66(\mathrm{~m}, 5 \mathrm{H}), 1.94-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.55-1.31(\mathrm{~m}, 12 \mathrm{H}), 1.33-$ $0.99(\mathrm{~m}, 8 \mathrm{H}), 0.96-0.86(\mathrm{~m}, 1 \mathrm{H}), 0.83-0.65(\mathrm{~m}, 2 \mathrm{H})$. HRMS (ESI) calcd for $\mathrm{C}_{42} \mathrm{H}_{59} \mathrm{~N}_{4} \mathrm{O}_{8}$ $[\mathrm{M}+\mathrm{H}]^{+}: 747.4333$. Found: 747.4335.

4-Fluoro-N-(((2S,8R,9R)-11-((S)-1-((4-methoxybenzyl)oxy)propan-2-yl)-2,9-dimethyl-12-oxo-14-(3-phenylureido)-2,3,4,5,6,8,9,10,11,12-decahydrobenzo[b][1,9,5]dioxaazacyclotetradecin-8-yl)methyl)-Nmethylbenzenesulfonamide (20)

A solution of boc-protected amine $\mathbf{P}(2.30 \mathrm{~g}, 3.08 \mathrm{mmol})$ in dry $\mathrm{DCM}(62 \mathrm{~mL})$ under N_{2} was chilled in a ice- $\mathrm{H}_{2} \mathrm{O}$ bath and to this was added 2,6-dimethylpyridine (1.44 $\mathrm{mL}, 12.32 \mathrm{mmol}$) and then tert-butyldimethylsilyl trifluoromethanesulfonate (1.82 mL , 7.70 mmol) dropwise. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 30 min , and was then stirred at room temperature for a further 3 h . To the solution was added 2,6-lutidine (1.4 mL) and the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$. The layers were separated, and the aqueous layer was extracted with DCM. The combined organic extracts were washed with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent evaporated. The residue was dissolved in THF (30 mL), transferred to a teflon bottle, then a solution of 70% pyridine hydrofluoride in pyridine ($0.382 \mathrm{~mL}, 3.08 \mathrm{mmol}$) was added. The reaction was stirred for 30 min . and to this was added sat. NaHCO_{3}, the organic layer was dried over MgSO_{4}, filtered and concentrated in vacuo to yield the crude product which was carried onto the next step. To a solution of the residue ($1.992 \mathrm{~g}, 3.08 \mathrm{mmol}$) in $\mathrm{DCM}(30.8 \mathrm{ml})$ was added 2,6-dimethylpyridine ($0.717 \mathrm{ml}, 6.16 \mathrm{mmol}$) was added 4-fluorobenzene-1-sulfonyl
chloride ($0.899 \mathrm{~g}, 4.62 \mathrm{mmol}$). The reaction was stirred at room temperature under N_{2} overnight. To the solution was added $\mathrm{H}_{2} \mathrm{O}$, the layers were separated and aqueous layer extracted with DCM, washed with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. The reaction was purified by column chromatography using Ethyl acetate/hexane to afford the desired product ($2.14 \mathrm{~g}, 86 \%$). LC/MS: Method B, RT 6.39 $\min , 98 \%$ purity. LC/MS: Method C, RT $3.65 \mathrm{~min}, 100 \%$ purity. ${ }^{1}$ HNMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.74-7.86(\mathrm{~m}, 1 \mathrm{H}), 7.81-7.42(\mathrm{~m}, 5 \mathrm{H}), 7.37-6.98(\mathrm{~m}, 7 \mathrm{H}), 6.98-6.74(\mathrm{~m}, 1 \mathrm{H})$, $6.77-6.54(\mathrm{~m}, 2 \mathrm{H}), 5.57-5.38(\mathrm{~m}, 1 \mathrm{H}), 4.66-4.37(\mathrm{~m}, 1 \mathrm{H}), 4.35-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.96-3.19$ $(\mathrm{m}, 7 \mathrm{H}), 3.19-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.87-2.53(\mathrm{~m}, 6 \mathrm{H}), 2.14-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.30(\mathrm{~m}, 8 \mathrm{H})$, $1.29-0.84(\mathrm{~m}, 7 \mathrm{H}), 0.84-0.47(\mathrm{~m}, 2 \mathrm{H})$. HRMS (ESI) calcd for $\mathrm{C}_{43} \mathrm{H}_{53} \mathrm{FN}_{4} \mathrm{O}_{8} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 805.3646. Found: 805.3652.

3-[(2S,8R,9R)-11-[(2R)-1-[(4-Methoxyphenyl)methoxy]propan-2-yl]-2,9-dimethyl-8-\{[N-methyl(4-fluorobenzene)sulfonamido]methyl\}-12-oxo-2,3,4,5,6,8,9,10,11,12-decahydro-1,7,11-benzodioxazacyclotetradecin-14-yl]-1-phenylurea (29)
This derivative was synthesized in 55% yield from the corresponding diastereomer of intermediate \mathbf{O} following the methods described for compound 20. LC/MS: Method B, RT $11.02 \mathrm{~min}, 96 \%$ purity. ${ }^{1} \mathrm{HNMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.72-7.86(\mathrm{~m}, 1 \mathrm{H}), 7.80-7.42$ $(\mathrm{m}, 5 \mathrm{H}), 7.38-6.98(\mathrm{~m}, 7 \mathrm{H}), 6.94-6.74(\mathrm{~m}, 1 \mathrm{H}), 6.77-6.54(\mathrm{~m}, 2 \mathrm{H}), 5.57-5.30(\mathrm{~m}, 1 \mathrm{H})$, 4.63-4.37 (m, 1H), 4.32-3.97 (m, 1H), 3.94-3.20 (m, 7H), 3.19-2.87 (m, 2H), 2.87-2.53 (m, 6H), 2.14-1.82 (m, 2H), 1.79-1.33 (m, 8H), 1.29-0.84 (m, 7H), 0.86-0.49 (m, 2H). HRMS (ESI) calcd for $\mathrm{C}_{43} \mathrm{H}_{53} \mathrm{FN}_{4} \mathrm{O}_{8} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 805.3646$. Found: 805.3656.

3-[(2S,8R,9R)-11-\{2-[(4-Methoxyphenyl)methoxy]ethyl\}-2,9-dimethyl-8-\{[N-methyl(4-fluorobenzene)sulfonamido]methyl\}-12-oxo-2,3,4,5,6,8,9,10,11,12-decahydro-1,7,11-benzodioxazacyclotetradecin-14-yl]-1-phenylurea (31)
This derivative was synthesized in 60% yield from the corresponding des-methyl analog of intermediate \mathbf{O} following the methods described for compound 20. LC/MS: Method B, RT $10.77 \mathrm{~min}, 96 \%$ purity. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.49-$ $7.30(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.08(\mathrm{~m}, 4 \mathrm{H}), 7.08-6.92(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.77(\mathrm{~m}, 1 \mathrm{H}), 6.76-6.47$ $(\mathrm{m}, 1 \mathrm{H}), 4.67-4.35(\mathrm{~m}, 1 \mathrm{H}), 4.34-4.16(\mathrm{~m}, 1 \mathrm{H}), 4.12-4.06(\mathrm{~m}, 1 \mathrm{H}), 4.00-3.91(\mathrm{~m}, 1 \mathrm{H})$, $3.88-3.70(\mathrm{~m}, 3 \mathrm{H}), 3.69-3.28(\mathrm{~m}, 3 \mathrm{H}), 3.28-2.96(\mathrm{~m}, 2 \mathrm{H}), 2.94-2.60(\mathrm{~m}, 3 \mathrm{H}), 2.35-$ $2.06(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.36(\mathrm{~m}, 3 \mathrm{H}), 1.35-1.14(\mathrm{~m}, 3 \mathrm{H}), 1.13-0.68(\mathrm{~m}$, 5 H). HRMS (ESI) calcd for $\mathrm{C}_{42} \mathrm{H}_{52} \mathrm{FN}_{4} \mathrm{O}_{8} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 791.3490$. Found: 7.488.

2-Methoxyethyl (((2S,8R,9R)-11-((S)-1-((4-methoxybenzyl)oxy)propan-2-yl)-2,9-dimethyl-12-oxo-14-(3-phenylureido)-2,3,4,5,6,8,9,10,11,12-decahydrobenzo[b][1,9,5]dioxaazacyclotetradecin-8-yl)methyl)(methyl)carbamate (Q)

To a solution of crude amine ($0.22 \mathrm{~g}, 0.340 \mathrm{mmol}$) in dioxane (8.5 mL) under N_{2} was added a 10% Sodium Bicarbonate ($1.648 \mathrm{~mL}, 2.041 \mathrm{mmol}$) aqueous solution, followed by 2-methoxyethyl chloroformate ($0.079 \mathrm{~mL}, 0.680 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 15 h . The reaction was diluted with EtOAc and water. The aqueous phase was separated and washed with EtOAc , then the combined organic layers were washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. This material was chromatographed on silica, using methanol / dichloromethane to give 0.15 g (59\%) of the final product as colorless resin.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76-7.57$ (m, 2H), $7.49-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.17$ (m, $6 \mathrm{H}), 7.02-6.81(\mathrm{~m}, 3 \mathrm{H}), 6.80-6.65(\mathrm{~m}, 4 \mathrm{H}), 4.64-4.37(\mathrm{~m}, 2 \mathrm{H}), 4.37-4.09(\mathrm{~m}, 3 \mathrm{H})$, 4.06-3.86 (m, 2H), 3.81-3.63 (m, 3H), 3.62-3.41 (m, 5H), 3.43-3.19 (m, 4H), 3.12-2.87 $(\mathrm{m}, 3 \mathrm{H}), 1.89-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.14(\mathrm{~m}, 7 \mathrm{H}), 1.13-0.96(\mathrm{~m}, 3 \mathrm{H})$, 0.95-0.65 (m, 3H). MS (ESI) calcd for $\mathrm{C}_{41} \mathrm{H}_{57} \mathrm{~N}_{4} \mathrm{O}_{9}: 749[\mathrm{M}+\mathrm{H}]^{+}$. Found 749.

Scheme 4. Alternate synthesis of compounds 5 and 6 from intermediate \mathbf{N}

N-(((2S,8R,9R)-14-(3-(3,5-Dimethylisoxazol-4-yl)ureido)-11-((S)-1-((4-methoxybenzyl)oxy)propan-2-yl)-2,9-dimethyl-12-oxo-2,3,4,5,6,8,9,10,11,12-decahydrobenzo[b][1,9,5]dioxaazacyclotetradecin-8-yl)methyl)-4-fluoro-Nmethylbenzenesulfonamide (S)
To a solution of the mixture of diastereomers of RCM product $\mathbf{N}(1.10 \mathrm{~g}, 1.68 \mathrm{mmol})$ in DCM (17 mL) under N_{2} chilled to $0{ }^{\circ} \mathrm{C}$ was added 2,6-lutidine ($0.78 \mathrm{~mL}, 6.7 \mathrm{mmol}$) followed by tert-butyldimethylsilyl trifluoromethanesulfonate ($0.99 \mathrm{~mL}, 4.2 \mathrm{mmol}$). The solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min , then the bath was removed and the solution was stirred an additional 3 h at room temperature. An additional 0.78 mL of 2,6-lutidine was
then added to the reaction vessel, and the solution was quenched with sat. aqueous NaHCO_{3}. The aqueous phase was washed with DCM and the organic phases were combined and washed with $\mathrm{H}_{2} \mathrm{O} 2 \mathrm{X}$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent evaporated. The residue was dissolved in THF (17 mL) and HF-pyridine (70% solution in pyridine, $0.21 \mathrm{~mL}, 1.68 \mathrm{mmol}$) was added. The solution was stirred 45 min , then quenched with sat. aqueous NaHCO_{3} and extracted into EtOAc. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent evaporated. The residue was dissolved in DCM (17 mL) and to this solution under N_{2} was added 2,6-lutidine $(0.12 \mathrm{~mL}, 1.1 \mathrm{mmol})$ followed by 4-fluorobenzenesulfonyl chloride ($156 \mathrm{mg}, 0.801$ $\mathrm{mmol})$. The solution was stirred 16 h , then diluted with DCM and $\mathrm{H}_{2} \mathrm{O}$. The phases were separated, the aqueous extracted with DCM and the combined organics were washed with $\mathrm{H}_{2} \mathrm{O} 2 \mathrm{X}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent evaporated. The residue was chromatographed on SiO_{2} (EtOAc/hexanes) to remove 2,6-lutidine and excess sulfonyl chloride, and the crude mixture of diastereomers was carried on to the next step without further purification.
To a solution of this PMB ether ($1.064 \mathrm{~g}, 1.49 \mathrm{mmol}$) in EtOH (149 mL) was added 10% Pd on carbon (159 mg) and the suspension was stirred under H_{2} at 1 atm for 24 h . The suspension was then filtered through celite, the solvent evaporated, and the residue was used without further purification for the next step of urea formation.
To a solution of the above aniline $\mathbf{R}(458 \mathrm{mg}, 0.668 \mathrm{mmol})$ in $\mathrm{DCM}(6.7 \mathrm{~mL})$ was added 4-isocyanato-3,5-dimethylisoxazole ($0.15 \mathrm{~mL}, 1.34 \mathrm{mmol}$). The solution was stirred for 2 h at room temperature, then the solvent was evaporated and the residue chromatographed on SiO_{2} to yield $0.40 \mathrm{~g}(73 \%)$ of colorless resin.
1 H NMR: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.39-$ $7.09(\mathrm{~m}, 4 \mathrm{H}), 7.06-6.95(\mathrm{~m}, 1 \mathrm{H}), ~ 6.92-6.79(\mathrm{~m}, 3 \mathrm{H}), 6.79-6.70(\mathrm{~m}, 1 \mathrm{H}), ~ 6.48-6.10(\mathrm{~m}$, $1 \mathrm{H}), 4.72-4.49(\mathrm{~m}, 1 \mathrm{H}), 4.49-4.27(\mathrm{~m}, 2 \mathrm{H}), 4.19-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.81-3.73(\mathrm{~m}, 3 \mathrm{H})$, 3.72-3.59 (m, 2H), 3.57-3.38 (m, 2H), 3.35-3.17 (m, 1H), 3.16-2.97 (m, 2H), 2.91-2.62 $(\mathrm{m}, 4 \mathrm{H}), 2.33-2.22(\mathrm{~m}, 3 \mathrm{H}), 2.21-1.95(\mathrm{~m}, 4 \mathrm{H}), 1.84-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.37(\mathrm{~m}$, $4 \mathrm{H}), 1.36-1.12(\mathrm{~m}, 6 \mathrm{H}), 1.07-1.00(\mathrm{~m}, 2 \mathrm{H}), 0.97-0.81(\mathrm{~m}, 2 \mathrm{H}), 0.78-0.62(\mathrm{~m}, 2 \mathrm{H})$. HRMS (ESI) calcd for $\mathrm{C}_{42} \mathrm{H}_{55} \mathrm{FN}_{5} \mathrm{O}_{9} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 824.3705$. Found: 824.3704.

4-Fluoro-N-(($2 S, 8 R, 9 R)$-11-((S)-1-hydroxypropan-2-yl)-2,9-dimethyl-12-oxo-14-(3-phenylureido)-2,3,4,5,6,8,9,10,11,12-
decahydrobenzo[b][1,9,5]dioxaazacyclotetradecin-8-yl)methyl)-Nmethylbenzenesulfonamide (1)
To a solution of PMB-protected alcohol $14(1.99 \mathrm{~g}, 2.472 \mathrm{mmol})$ in DCM (25 mL) was added 2.5 mL pH 7 buffer. The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice- $\mathrm{H}_{2} \mathrm{O}$ bath. To this mixture was added 4,5-dichloro-3,6-dioxocyclohexa-1,4-diene-1,2-dicarbonitrile $(0.730 \mathrm{~g}, 3.21 \mathrm{mmol})$ and the mixture was stirred under N_{2} for 16 h , slowly warming to room temperature. The reaction was quenched with sat. NaHCO_{3}, and stirred for 1 h . The
phases were separated and the aqueous phase was washed with DCM 2X. The organic phases were combined and washed with saturated NaHCO_{3} and $\mathrm{H}_{2} \mathrm{O}$. The organic components were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to afford crude material. The reaction was purified by column chromatography using Ethylacetate/hexane to afford the desired product $\mathbf{1}(1.41 \mathrm{~g}, 83 \%)$. LC/MS: Method B, RT $9.49 \mathrm{~min}, 100 \%$ purity.

3-[(2S,8R,9R)-11-[(2R)-1-Hydroxypropan-2-yl]-2,9-dimethyl-8-\{[N-methyl(4-fluorobenzene)sulfonamido]methyl\}-12-oxo-2,3,4,5,6,8,9,10,11,12-decahydro-1,7,11-benzodioxazacyclotetradecin-14-yl]-1-phenylurea (28)
The -PMB deprotection of compound 29 was achieved in 9% yield following the method used for the synthesis of compound 1. LC/MS: Method B, RT $9.56 \mathrm{~min}, 99 \%$ purity.
${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl3) $\delta 7.94-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.07(\mathrm{~m}$, $5 \mathrm{H}), 7.07-6.91(\mathrm{~m}, 1 \mathrm{H}), 6.91-6.60(\mathrm{~m}, 2 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{~m}, 4 \mathrm{H})$, $3.57(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{~m}, 2 \mathrm{H}), 2.96-2.55(\mathrm{~m}, 5 \mathrm{H}), 2.47-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~m}, 1 \mathrm{H}), 1.64$ $(\mathrm{m}, 3 \mathrm{H}), 1.47(\mathrm{~m}, 4 \mathrm{H}), 1.38-1.22(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.09(\mathrm{~m}, 3 \mathrm{H}), 1.07-0.89(\mathrm{~m}, 2 \mathrm{H})$, 0.79 (m, 2H). HRMS (ESI) calcd for $\mathrm{C}_{35} \mathrm{H}_{46} \mathrm{FN}_{4} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}:$685.3071. Found: 685.3077 .

3-[(2S,8R,9R)-11-(2-Hydroxyethyl)-2,9-dimethyl-8-\{[N-methyl(4-
fluorobenzene)sulfonamido]methyl\}-12-oxo-2,3,4,5,6,8,9,10,11,12-decahydro-1,7,11-benzodioxazacyclotetradecin-14-yl]-1-phenylurea (30)
The -PMB deprotection of compound $\mathbf{3 1}$ was achieved in 71% yield following the method used for the synthesis of compound 1. LC/MS: Method B, RT $9.26 \mathrm{~min}, 97 \%$ purity. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97-7.59(\mathrm{~m}, 3 \mathrm{H}), 7.51-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.29-$ $7.10(\mathrm{~m}, 4 \mathrm{H}), 7.10-6.92(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.78(\mathrm{~m}, 2 \mathrm{H}), 6.78-6.49(\mathrm{~m}, 2 \mathrm{H}), 4.64-4.37$ $(\mathrm{m}, 2 \mathrm{H}), 4.37-4.17(\mathrm{~m}, 1 \mathrm{H}), 4.05-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.69(\mathrm{~m}, 4 \mathrm{H}), 3.70-3.58(\mathrm{~m}, 1 \mathrm{H})$, $3.56-3.26(\mathrm{~m}, 2 \mathrm{H}), 3.26-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.97-2.66(\mathrm{~m}, 4 \mathrm{H}), 2.40-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.91-$ $1.70(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.16(\mathrm{~m}, 2 \mathrm{H}), 1.15-0.68(\mathrm{~m}, 6 \mathrm{H})$.
HRMS (ESI) calcd for $\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{FN}_{4} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 671.2915$. Found: 671.2910.

Phenyl (($(2 S, 8 R, 9 R)-11-((S)-1-h y d r o x y p r o p a n-2-y l)-2,9-d i m e t h y l-12-o x 0-14-(3-$ phenylureido)-2,3,4,5,6,8,9,10,11,12-
decahydrobenzo[b][1,9,5]dioxaazacyclotetradecin-8-yl)methyl)(methyl)carbamate (18)

Compound $\mathbf{1 8}$ was prepared from intermediate \mathbf{P} in 38% overall yield following the methods used to prepare intermediate \mathbf{Q} and compound 1. LC/MS: Method A, RT 0.85 $\mathrm{min}, 99 \%$ purity. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.28(\mathrm{~m}$, $4 \mathrm{H}), 7.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{dd}, J=17.5,9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{dd}, J=14.1,7.1 \mathrm{~Hz}$, 2H), 6.97 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.80(\mathrm{~m}, 1 \mathrm{H}), 6.69(\mathrm{dd}, J=23.1,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.75-$ $4.27(\mathrm{~m}, 2 \mathrm{H}), 4.16-3.63(\mathrm{~m}, 6 \mathrm{H}), 3.62-3.29(\mathrm{~m}, 3 \mathrm{H}), 3.26-2.96(\mathrm{~m}, 5 \mathrm{H}), 1.89(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 1.85-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.34(\mathrm{~m}, 5 \mathrm{H}), 1.33-1.09(\mathrm{~m}, 3 \mathrm{H}), 1.09-0.91(\mathrm{~m}, 2 \mathrm{H}), 0.81$ (d, $J=3.5 \mathrm{~Hz}, 3 \mathrm{H}$). HRMS (ESI) calcd for $\mathrm{C}_{36} \mathrm{H}_{47} \mathrm{~N}_{4} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 647.3445$. Found: 647.3447.

2-Methoxyethyl (((2S,8R,9R)-11-((S)-1-hydroxypropan-2-yl)-2,9-dimethyl-12-oxo-14-(3-phenylureido)-2,3,4,5,6,8,9,10,11,12-
decahydrobenzo $[b][1,9,5]$ dioxaazacyclotetradecin-8-yl)methyl)(methyl)carbamate (19)

Compound 19 was prepared from intermediate \mathbf{Q} in 94% yield following the method used to prepare compound 1. LC/MS: Method A, RT $0.91 \mathrm{~min}, 100 \%$ purity. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.29-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.47-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.95$ $(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.79(\mathrm{~m}, 1 \mathrm{H}), 6.75-6.57(\mathrm{~m}, 1 \mathrm{H}), 4.71-4.28(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{~s}$, $2 \mathrm{H}), 4.05-3.67(\mathrm{~m}, 4 \mathrm{H}), 3.64-3.43(\mathrm{~m}, 4 \mathrm{H}), 3.41-3.27(\mathrm{~m}, 3 \mathrm{H}), 3.28-2.98(\mathrm{~m}, 3 \mathrm{H}), 2.96-$ $2.51(\mathrm{~m}, 3 \mathrm{H}), 2.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.98-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.38-1.19(\mathrm{~m}, 2 \mathrm{H}), 1.13$ $(\mathrm{d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.05-0.88(\mathrm{~m}, 2 \mathrm{H}), 0.89-0.56(\mathrm{~m}, 3 \mathrm{H})$. HRMS (ESI) calcd for $\mathrm{C}_{33} \mathrm{H}_{49} \mathrm{~N}_{4} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}: 629.3550$. Found: 629.3558.

tert-Butyl (((2S,8R,9R)-11-((S)-1-hydroxypropan-2-yl)-2,9-dimethyl-12-oxo-14-(3-phenylureido)-2,3,4,5,6,8,9,10,11,12decahydrobenzo $[b][1,9,5]$ dioxaazacyclotetradecin-8-yl)methyl)(methyl)carbamate (17)

Compound $\mathbf{1 7}$ was prepared from intermediate \mathbf{P} in 67% yield following the method used to prepare compound 1. LC/MS: Method B, RT $9.32 \mathrm{~min}, 100 \%$ purity. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.06-6.92(\mathrm{~m}$, $1 \mathrm{H}), 6.85-6.58(\mathrm{~m}, 2 \mathrm{H}), 4.72-4.33(\mathrm{~m}, 2 \mathrm{H}), 4.02-3.86(\mathrm{~m}, 3 \mathrm{H}), 3.73(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.58(\mathrm{br}$ $\mathrm{s}, 2 \mathrm{H}), 3.51-3.26(\mathrm{~m}, 2 \mathrm{H}), 3.25-2.78(\mathrm{~m}, 9 \mathrm{H}), 2.69-2.33(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.56$ $-1.32(\mathrm{~m}, 13 \mathrm{H}), 1.20-1.08(\mathrm{~m}, 3 \mathrm{H}), 1.07-0.91(\mathrm{~m}, 3 \mathrm{H}), 0.79(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H})$. HRMS (ESI) calcd for $\mathrm{C}_{34} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 649.3577$. Found: 649.3580.

4-Fluoro-N-(($2 S, 8 R, 9 R)-11-((S)-1-h y d r o x y p r o p a n-2-y l)-14-(3-i s o p r o p y l u r e i d o)-2,9-$ dimethyl-12-oxo-2,3,4,5,6,8,9,10,11,12-
decahydrobenzo[b][1,9,5]dioxaazacyclotetradecin-8-yl)methyl)-Nmethylbenzenesulfonamide (6)
Compound $\mathbf{6}$ was prepared from intermediate \mathbf{N} in 40% yield following the methods used to prepare intermediate \mathbf{S} and compound 1. LC/MS: Method B, RT $8.76 \mathrm{~min}, 94 \%$ purity. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.24-$ $7.07(\mathrm{~m}, 3 \mathrm{H}), 6.99-6.67(\mathrm{~m}, 2 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 5.10-4.42(\mathrm{~m}, 2 \mathrm{H}), 4.11-3.79(\mathrm{~m}, 2 \mathrm{H})$, 3.63-3.43 (m, 1H), $3.33-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.93-2.74(\mathrm{~m}, 4 \mathrm{H}), 2.74-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.44-$ $1.93(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.34(\mathrm{~m}, 3 \mathrm{H}), 1.33-1.19(\mathrm{~m}$, $2 \mathrm{H}), 1.12(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.07-0.92(\mathrm{~m}, 4 \mathrm{H}), 0.78(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$. HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{47} \mathrm{FN}_{4} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 651.3228$. Found: 651.3223.

N-(((2S,8R,9R)-14-(3-(3,5-Dimethylisoxazol-4-yl)ureido)-11-((S)-1-hydroxypropan-2-yl)-2,9-dimethyl-12-oxo-2,3,4,5,6,8,9,10,11,12decahydrobenzo $[b][1,9,5]$ dioxaazacyclotetradecin-8-yl)methyl)-4-fluoro-Nmethylbenzenesulfonamide (7)
Compound 6 was prepared from the intermediate \mathbf{S} in 80% yield following the method for compound 7. LC/MS: Method C, RT 3.25 min , 98% purity. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.11-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.06(\mathrm{~m}, 3 \mathrm{H}), 7.03-6.88(\mathrm{~m}$, $1 \mathrm{H}), 6.87-6.70(\mathrm{~m}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 4.75-4.35(\mathrm{~m}, 2 \mathrm{H}), 4.09-3.65(\mathrm{~m}, 5 \mathrm{H}), 3.64-3.27$ $(\mathrm{m}, 3 \mathrm{H}), 3.24-2.96(\mathrm{~m}, 3 \mathrm{H}), 2.96-2.62(\mathrm{~m}, 6 \mathrm{H}), 2.52-1.98(\mathrm{~m}, 7 \mathrm{H}), 1.86-1.68(\mathrm{~m}$, $2 \mathrm{H}), 1.67-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.30-1.09(\mathrm{~m}, 3 \mathrm{H}), 1.09-0.89(\mathrm{~m}$, $3 \mathrm{H}), 0.82(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$. HRMS (ESI) calcd for $\mathrm{C}_{34} \mathrm{H}_{47} \mathrm{FN}_{5} \mathrm{O}_{8} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 704.3129. Found: 704.3128.

Scheme 5: Synthesis of compounds 21 and 23.

1

21 R = Piv
$23 \mathrm{R}=\mathrm{MOM}$

3-[(2S,8R,9R)-11-[(2S)-1-(Methoxymethoxy)propan-2-yl]-2,9-dimethyl-8-\{[N-methyl(4-fluorobenzene)sulfonamido]methyl\}-12-oxo-2,3,4,5,6,8,9,10,11,12-decahydro-1,7,11-benzodioxazacyclotetradecin-14-yl]-1-phenylurea (23)
To a chilled ($0{ }^{\circ} \mathrm{C}$) solution of alcohol 1 ($33.8 \mathrm{mg}, 0.049 \mathrm{mmol}$) and chloro(methoxy)methane ($0.072 \mathrm{~mL}, 0.987 \mathrm{mmol}$) in dry THF (0.494 mL) under N_{2} was added NaHMDS ($0.054 \mathrm{ml}, 0.054 \mathrm{mmol}$). The solution was stirred for 16 h , letting slowly warm to room temperature. The reaction mixture was quenched with sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and the aqueous phase was washed with EtOAc. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent evaporated. Purification was accomplished with SiO_{2} chromatography to yield $7.1 \mathrm{mg}(20 \%)$ of a colorless resin. LC/MS: Method B, RT $10.27 \mathrm{~min}, 97 \%$ purity. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85-7.69$ $(\mathrm{m}, 3 \mathrm{H}), 7.64-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.12(\mathrm{~m}, 4 \mathrm{H}), 7.12-7.00(\mathrm{~m}$, $1 \mathrm{H}), 7.00-6.82(\mathrm{~m}, 1 \mathrm{H}), 6.82-6.67(\mathrm{~m}, 1 \mathrm{H}), 4.72-4.53(\mathrm{~m}, 3 \mathrm{H}), 4.17-3.74(\mathrm{~m}, 3 \mathrm{H})$, $3.74-3.46(\mathrm{~m}, 3 \mathrm{H}), 3.46-3.30(\mathrm{~m}, 3 \mathrm{H}), 3.28-2.94(\mathrm{~m}, 2 \mathrm{H}), 2.94-2.70(\mathrm{~m}, 5 \mathrm{H}), 2.27-$ $1.94(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.42(\mathrm{~m}, 3 \mathrm{H}), 1.38-1.14(\mathrm{~m}, 3 \mathrm{H}), 1.16-1.02(\mathrm{~m}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$.
HRMS (ESI) calcd for $\mathrm{C}_{37} \mathrm{H}_{50} \mathrm{FN}_{4} \mathrm{O}_{8} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 729.3333$. Found: 729.3337.

(2S)-2-[(2S,8R,9R)-2,9-Dimethyl-8-\{[N-methyl(4-
fluorobenzene)sulfonamido]methyl\}-12-oxo-14-[(phenylcarbamoyl)amino]$\mathbf{2 , 3 , 4 , 5 , 6 , 8 , 9 , 1 0 , 1 1 , 1 2}$-decahydro-1,7,11-benzodioxazacyclotetradecin-11-yl]propyl 2,2-dimethylpropanoate (21)
To a solution of alcohol $1(0.041 \mathrm{~g}, 0.060 \mathrm{mmol})$ in dry DCM (0.60 mL) was added pyridine ($0.024 \mathrm{~mL}, 0.299 \mathrm{mmol}$) followed by pivaloyl chloride ($17.84 \mu \mathrm{~L}, 0.148 \mathrm{mmol}$) under N_{2} atmosphere. The resulting mixture was stirred at room temeperature for 15 h . The reaction was diluted with DCM $(10 \mathrm{~mL})$ and washed with water $(10 \mathrm{~mL})$ and brine. The organic phase was then separated, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to dryness. This material was chromatographed on silica, using methanol / dichloromethane to afford 30 $\mathrm{mg}(15 \%)$ of the desired product. LC/MS: Method B, RT $10.96 \mathrm{~min}, 95 \%$ purity. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.79(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.03$ $(\mathrm{m}, 4 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~m}, 2 \mathrm{H}), 4.56(\mathrm{~m}, 2 \mathrm{H}), 4.46-4.31(\mathrm{~m}, 1 \mathrm{H}), 4.26-4.03(\mathrm{~m}$, $2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.78-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{~m}, 2 \mathrm{H}), 2.88(\mathrm{~m}, 3 \mathrm{H}), 2.75(\mathrm{~m}, 3 \mathrm{H}), 1.75$ (m, 2H), $1.53(\mathrm{~m}, 6 \mathrm{H}), 1.39-1.11(\mathrm{~m}, 4 \mathrm{H}), 1.04(\mathrm{~m}, 5 \mathrm{H}), 0.92-0.60(\mathrm{~m}, 7 \mathrm{H})$. HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{54} \mathrm{FN}_{4} \mathrm{O}_{8} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 769.3646$. Found: 769.3652.

Scheme 6: Synthesis of compounds 24, 25 and 27.

N -(($(2 S, 8 R, 9 R)$-11-((S)-1-Azidopropan-2-yl)-2,9-dimethyl-12-oxo-14-(3-
phenylureido)-2,3,4,5,6,8,9,10,11,12-
decahydrobenzo[b][1,9,5]dioxaazacyclotetradecin-8-yl)methyl)-4-fluoro-Nmethylbenzenesulfonamide (24)
To a solution of alcohol $\mathbf{1}$ in dry THF (2.9 mL) under N_{2} was added DBU ($0.27 \mathrm{~mL}, 1.76$ $\mathrm{mmol})$ followed by diphenyl phosphorazidate $(0.19 \mathrm{~mL}, 0.88 \mathrm{mmol})$. The reaction was stirred at room temperature for 16 h . The reaction solvent was evaporated under reduced pressure to afford crude material which was purified by column chromatography using $\mathrm{MeOH} / \mathrm{DCM}$ to afford the desired product ($360 \mathrm{mg}, 87 \%$). LC/MS: Method C, RT 4.48 $\mathrm{min}, 100 \%$ purity. ${ }^{1} \mathrm{HNMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.24-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.33(\mathrm{~m}, 2 \mathrm{H})$, 7.31-7.05 (m, 4H), 7.03-6.77 (m, 3H), 6.77-6.53 (m, 1H), 4.67-4.27 (m, 3H), 4.23-4.09 $(\mathrm{m}, 1 \mathrm{H}), 4.01-3.84(\mathrm{~m}, 2 \mathrm{H}), 3.83-3.61(\mathrm{~m}, 4 \mathrm{H}), 3.61-3.29(\mathrm{~m}, 2 \mathrm{H}), 3.25-3.02(\mathrm{~m}, 2 \mathrm{H})$, 3.06-2.55 (m, 4H), 2.27-1.94 (m, 1H), 1.92-1.32 (m, 6H), 1.30-1.14 (m, 3H), 1.14-1.01 $(\mathrm{m}, 2 \mathrm{H}), 0.98-0.85(\mathrm{~m}, 1 \mathrm{H}), 0.83-0.62(\mathrm{~m}, 1 \mathrm{H})$. HRMS (ESI) calcd for $\mathrm{C}_{35} \mathrm{H}_{45} \mathrm{FN}_{7} \mathrm{O}_{6} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}: 7103136$. Found: 710.3142.

N-(((2S,8R,9R)-11-((S)-1-Aminopropan-2-yl)-2,9-dimethyl-12-oxo-14-(3-phenylureido)-2,3,4,5,6,8,9,10,11,12-
decahydrobenzo[b][1,9,5]dioxaazacyclotetradecin-8-yl)methyl)-4-fluoro-Nmethylbenzenesulfonamide (25)

To a solution of azide $24(0.33 \mathrm{~g}, 0.465 \mathrm{mmol})$ in THF (14.6 mL) under N_{2} was added $\mathrm{H}_{2} \mathrm{O}(0.86 \mathrm{~mL})$ followed by triphenylphosphine ($0.305 \mathrm{~g}, 1.162 \mathrm{mmol}$). The reaction mixture was stirred for 16 h at room temperature. The reaction was diluted with EtOAc, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and solvent evaporated to afford a crude material. This material was purified by column chromatography using $\mathrm{MeOH} / \mathrm{DCM}$ to afford the desired product (45 $\mathrm{mg}, 76 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 8.96-8.20(\mathrm{~m}, 2 \mathrm{H}), 7.92-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.58-$ 7.33 (m, 2H), 7.33-7.05 (m, 4H), 7.08-6.85 (m, 1H), 6.84-6.62 (m, 1H), 4.73-4.32 (m, $1 \mathrm{H}), 4.16-3.53(\mathrm{~m}, 4 \mathrm{H}), 3.48-3.24(\mathrm{~m}, 1 \mathrm{H}), 3.21-2.92(\mathrm{~m}, 4 \mathrm{H}), 2.91-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.80-$ $2.51(\mathrm{~m}, 4 \mathrm{H}), 2.31-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.37(\mathrm{~m}, 6 \mathrm{H}), 1.37-1.14(\mathrm{~m}, 6 \mathrm{H}), 1.10-0.89(\mathrm{~m}$, $2 H$), 0.67-0.32 (m, 2H). HRMS (ESI) calcd for $\mathrm{C}_{35} \mathrm{H}_{47} \mathrm{FN}_{5} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 684.3231$. Found: 684.3228.

N -(($(2 S, 8 R, 9 R)$-11-((S)-1-(Dimethylamino)propan-2-yl)-2,9-dimethyl-12-oxo-14-(3-phenylureido)-2,3,4,5,6,8,9,10,11,12-decahydrobenzo[b][1,9,5]dioxaazacyclotetradecin-8-yl)methyl)-4-fluoro-Nmethylbenzenesulfonamide (27)

To a solution of amine $25(39 \mathrm{mg}, 0.058 \mathrm{mmol})$ in DCM (1.15 mL) was added magnesium sulfate $(0.069 \mathrm{~g}, 0.577 \mathrm{mmol})$ followed by a solution of formaldehyde 30% in $\mathrm{H}_{2} \mathrm{O}(0.026 \mathrm{~mL}, 0.346 \mathrm{mmol})$. This mixture was stirred for 1 h at room temperature. After this period sodium triacetoxyborohydride $(0.147 \mathrm{~g}, 0.692 \mathrm{mmol})$ was added to the reaction flask and the mixture stirred overnight. The reaction solvent was evaporated under reduced pressure to afford crude mixture which was purified by column chromatography using $\mathrm{MeOH} / \mathrm{DCM}$ to afford the desired product ($360 \mathrm{mg}, 87 \%$). LC/MS: Method B, RT $2.94 \mathrm{~min}, 100 \%$ purity. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97$ (s, $1 \mathrm{H}), 7.89-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.80-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.70-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.35(\mathrm{~m}, 2 \mathrm{H})$, $7.34-7.11(\mathrm{~m}, 4 \mathrm{H}), 7.03-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.85-6.65(\mathrm{~m}, 2 \mathrm{H}), 4.67-4.47(\mathrm{~m}, 1 \mathrm{H}), 4.46$ - $4.20(\mathrm{~m}, 1 \mathrm{H}), 4.19-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.96-3.54(\mathrm{~m}, 2 \mathrm{H}), 3.52-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.33-$ $3.18(\mathrm{~m}, 1 \mathrm{H}), 3.17-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{~s}, 1 \mathrm{H}), 2.84-2.69(\mathrm{~m}, 4 \mathrm{H}), 2.69-2.35(\mathrm{~m}, 1 \mathrm{H})$, $2.32(\mathrm{~s}, 3 \mathrm{H}), 2.19-2.01(\mathrm{~m}, 3 \mathrm{H}), 1.96-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.34$ $(\mathrm{m}, 3 \mathrm{H}), 1.35-1.18(\mathrm{~m}, 2 \mathrm{H}), 1.18-1.07(\mathrm{~m}, 2 \mathrm{H}), 1.7-0.92(\mathrm{~m}, 2 \mathrm{H}), 0.91-0.75(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.7,172.4,166.0,164.0,153.3,147.5,139.4$, $133.3,130.0,128.8,128.6,126.1,122.1,119.8,119.4,119.0,118.8,116.6,116.4,116.2$, $113.4,111.9,83.2,74.3,71.6,71.2,69.8,69.4,68.4,63.6,63.1,62.7,53.6,53.1,51.9$, $51.2,51.0,50.7,50.4,46.4,46.0,45.8,45.2,43.4,43.1,40.8,38.4,37.3,36.7,34.6,34.4$, $30.5,29.3,28.8,18.4,18.3,18.2,17.9,17.2,16.9,15.8,14.7,13.6,12.7$. HRMS (ESI) calcd for: $\mathrm{C}_{37} \mathrm{H}_{50} \mathrm{FN}_{5} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 712.3539$. Found: 712.3511.

3-[(2S,8R,9R)-2,9-dimethyl-8-\{[N-methyl(4-fluorobenzene)sulfonamido]methyl\}-11-[(2S)-1-(methylamino)propan-2-yl]-12-oxo-2,3,4,5,6,8,9,10,11,12-decahydro-1,7,11-benzodioxazacyclotetradecin-14-yl]-1-phenylurea (26)
To a solution of alcohol $1(0.081 \mathrm{~g}, 0.118 \mathrm{mmol})$ in dry THF (2.4 ml) was added triphenylphosphine ($0.155 \mathrm{~g}, 0.591 \mathrm{mmol}$) and N -methyl-2-nitrobenzenesulfonamide $(0.051 \mathrm{~g}, 0.237 \mathrm{mmol})$ under N_{2} atmosphere at room temperature. This stirring solution was then cooled to $0^{\circ} \mathrm{C}$ and DIAD ($0.115 \mathrm{ml}, 0.591 \mathrm{mmol}$) was added. The resulting mixture was stirred for 15 h , letting slowly warm to room temperature. The reaction was concentrated in vacuo, then crude product was re-dissolved in dry DMF (0.67 ml) and potassium carbonate ($0.030 \mathrm{~g}, 0.215 \mathrm{mmol}$) was introduced to the reaction mixture, followed by benzenethiol ($0.011 \mathrm{ml}, 0.108 \mathrm{mmol}$). The resulting mixture was stirred under Ar at room temperature for 15 h . This material was then evaporated to dryness and chromatographed on silica, using methanol / dichloromethane to give $2.9 \mathrm{mg}(4 \%)$ of the desired compound. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{~d}, 2 \mathrm{H}), 7.95-7.67(\mathrm{~m}, 3 \mathrm{H}), 7.59$ $(\mathrm{d}, 1 \mathrm{H}), 7.40(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~m}, 1 \mathrm{H}), 6.70(\mathrm{~m}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 1 \mathrm{H}), 4.37$ - 3.97 (m, 1H), 3.97 - 3.72 (m, 2H), 3.64 (m, 2H), $3.31-3.09(\mathrm{~m}, 2 \mathrm{H}), 2.99(\mathrm{~m}, 2 \mathrm{H})$, $2.85(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{~m}, 4 \mathrm{H}), 2.45(\mathrm{~m}, 4 \mathrm{H}), 1.97(\mathrm{~s}, 2 \mathrm{H}), 1.71(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~m}, 2 \mathrm{H}), 1.36$ $(\mathrm{m}, 3 \mathrm{H}), 1.18(\mathrm{~m}, 4 \mathrm{H}), 0.96(\mathrm{~m}, 2 \mathrm{H}), 0.66(\mathrm{~m}, 2 \mathrm{H})$.

Spectral Data

${ }^{1} \mathrm{H}$ NMR Spectrum $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of Compound 27

${ }^{13} \mathrm{C}$ NMR Spectrum $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of Compound 27

LC/MS Chromatogram of Compound 27

[^0]: ${ }^{1}$ Gottlieb, H. E., Kotlyar, V., Nudelman, A. J. Org. Chem. 1997, 62, 7512-7515.

[^1]: ${ }^{2}$ Marcaurelle, L. A.; Comer, E.; Dandapani, S.; Duvall, J. R.; Gerard, B.; Kesavan, S.; Lee, M. D, IV; Liu, H.; Lowe, J. T.; Marie, J.-C.; Mulrooney, C. A.; Pandya, B. A.; Rowley, A.; Ryba, T. D.; Suh, B.-C.; Wei, J.; Young, D. W.; Akella, L. B.; Ross, N. B.; Zhang, Y.-L.; Fass, D. M.; Reis, S. A.; Zhao, W.-N.; Haggarty, S. J.; Palmer, M.; Foley, M. A. J. Am. Chem. Soc. 2010, 132, 16962-16976.

