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Supporting Methods

Molecular dynamics simulations. All molecular dynamics (MD) simulations were performed using the
program NAMD,1 a 1 fs integration time step, particle mesh Ewald (PME) electrostatics,2 and periodic
boundary conditions. Simulations in the NPT ensemble (constant number of particles N, pressure P and
temperature T) were performed using a Langevin thermostat3 and Nosé-Hoover Langevin piston pressure
control4 set at 295 K and 1 atm, respectively. The damping coefficient of the Langevin thermostat was 1 ps−1

and was applied only to the atoms of the silica surfaces, unless specified otherwise. A smooth (1.0–1.2 nm)
cutoff was used to compute the Lennard-Jones forces. External potentials were applied using grid-steered
molecular dynamics (G-SMD).5 All simulations were performed using the TIP3P water model modified
for the CHARMM6 force field and a CHARMM-compatible model for silica,7 except during membrane
generation. In the simulations of solute adsortion, the charges of the silicon and oxygen atoms of silica
were set to 0.9 e and −0.45 e, respectively, and the Lennard-Jones parameters were rmin

Si =0.4295 nm,
εSi =0.3 kcal/mol, rmin

O =0.35 nm, and εO =0.15 kcal/mol.

All-atom model for dimethyl methylphosphonate (DMMP). To model DMMP, we have adapted
the united-atom DMMP parameters developed by Vishnyakov and Neimark8 for use with the CHARMM
force field.6 Tables S1 a–e list the all-atom parameters for DMMP based on the original united-atom model8

with additions from the CHARMM force field6 and quantum chemical calculations.9,10 The parameters for
DMMP provided by Vishnyakov and Niemark were not charge neutral. To correct this, we subtracted 0.004 e
from the charge of the phosphorus oxygen and 0.002 e from the charge of each methyl carbon, where e is the
charge of a proton. The addition of three hydrogens was performed according to the standard CHARMM
parameter protocol. That is, hydrogens were each given a charge of +0.09 e; this was balanced by subtracting
an equal amount of charge from the parent atom. A list of all the atomic charges is given in Table S1 a.

To compare our parameters to those of Vishnyakov and Neimark,8 we created two test systems of DMMP
solvated in TIP3P11 water at 4.6 and 1.1 mol/L concentrations. The first system recreates “mixture I” in,8

while the second system tests our model at lower concentration. MD simulations were performed on both
systems in the NPT ensemble at 303 K and 1 atm for 10 ns. The parameters of Vishnyakov and Neimark8

were developed for a 1-4 scaling factor of 0.5, but our model of silica uses a 1-4 scaling factor of 1.0. In
order to determine whether our adapted DMMP parameters could be used with a 1-4 scaling factor of 1.0,
we performed each simulation twice, once with each 1-4 scaling factor.

Table 2 shows a comparison of the all-atom model with the united-atom model. Like the united-atom
DMMP molecules, our all-atom DMMP molecules do not aggregate in solution. To determine the diffusion
constant of DMMP in water, we have measured the mean squared displacement (MSD) of the DMMP
molecules over all independent 10, 20, 50, 100, 200, 500, 1000, 2000 and 5000 ps periods during our simulations
and used weighted linear regression to calculate d

dt (MSD). The Einstein relation〈
r2(t)

〉
= 6Dt

or, in terms of the MSD

D =
1
6

lim
t→∞

d

dt
(MSD),

was used to calculate the diffusion constant. The measured diffusion constant of DMMP in water with our
parameters is found to be 13% be greater than DMMP as described by the united-atom parameters at the
same concentration. At a concentration of 1.1 mol/L, the diffusivity of DMMP increases by almost a factor
of two. Hydrogen bonding between water and the DMMP oxygens was considered using the same metrics as
in Vishnyakov and Neimark:8 A distance cutoff of 3.4 Å and a minimum O-H-O angle of 120 degrees. Our
model shows a higher affinity for accepting hydrogen bonds than the united-atom model,8 but is within the
experimental range of 2–3 hydrogen bonds per molecule in pure water.12 The difference between the results
for diffusion and hydrogen bonding is most likely due to the difference in water models. The self-diffusion of
TIP3P water used in our simulations is more than twice that of the SPC/E model used in,8 which leads to
quicker diffusion for solutes in our simulations. In addition, the united-atom simulations used rigid SPC/E
water, which may have reduced the hydrogen-bonding count. The use of 1-4 scaling of 0.5 or 1.0 had no
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measurable effect on the dynamics of DMMP. In accordance with our silica parameters, a 1-4 scaling of 1.0
was used for all further simulations. To test the DMMP parameters at the same temperature and similar
concentration to our adsorption chamber simulations, we created a third system at 0.62 mol/L concentration
and simulated it in the NPT ensemble for 10 ns at 295 K. The results of this simulation, presented in Table 2,
show that the diffusion constant remains the same, while the affinity for accepting hydrogen bonds increases
slightly to 2.8 hydrogen bonds per molecule.

(a)
Atom Charge (e)

P∗ 1.17

O2 −0.695

OS −0.36

CT3P −0.291

CT3OS −0.137

HC3∇ 0.09

(b)
Bond Length (Å) Strength (kcal/mole/Å2)

CT3 P 1.795∗ 1.86†

CT3 HC3∇ 322.0 1.111

CT3 OS∇ 340.0 1.43

OS P∇ 269.0 1.60

O2 P∇ 580.0 1.48

(c)

Angle Theta (degrees) Strength (kcal/mole/Å2) U-B Length (Å) (U-B) Strength (kcal/mole/Å2)

OS P OS∇ 104.3 80.0

HC3 CT3 OS∇ 109.5 60.0

HC3 CT3 HC3∇ 108.40 35.500 5.40 108.40

O2 P CT3∗ 116.3 80.0

CT3 P OS∗ 104.3 40.6

O2 P OS∗ 116.5 100.1

P OS CT3∗ 121.0 80.0

P CT3 HC3† 110.0 50.0

(d)
Dihedral Kχ (kcal/mole) n ∆ (degrees)

CT3 P OS CT3∗ 0.0671 1 0.00

CT3 P OS CT3∗ 0.6289 2 0.00

CT3 P OS CT3∗ 0.0755 3 0.00

CT3 P OS CT3∗ −0.0582 4 0.00

CT3 P OS CT3∗ 0.0733 5 0.00

CT3 P OS CT3∗ −0.0060 6 0.00

HC3 CT3 P OS∗ 0.0000 3 0.00

HC3 CT3 P O2∗ 0.0000 3 0.00

O2 P OS CT3∗ 0.1004 3 0.00

OS P OS CT3∗ 0.9536 2 0.00

OS P OS CT3∗ 0.5019 3 0.00

X CT3 OS X∇ 0.00 3 0.00

(e)
Atom epsilon Rmin/2 (Å)

HC3∇ −0.024 1.3400

P∗ −0.347 1.192

O2∗ −0.159 1.47

CT3∗ −0.208 1.90

OS∗ −0.159 1.52

Table S1: All-atom, CHARMM-compatible parameters for MD simulations of DMMP. The tables specify (a) charge,
(b) bond, (c) angle, (d) dihedral and (e) lennard-jones parameters. The parameters are based on the united-atom
model8 (indicated with an ∗), modified in accordance with the CHARMM force field6(∇) and ab initio quantum
chemical calculations9,10 (†).

All-atom model for synthetic surfaces. To produce the silica membrane used in this study, we created
a 2.5× 2.5× 3.5 nm3 block of crystalline silica containing 500 silicon and 1000 oxygen atoms by replicating
a unit cell of SiO2. The resulting system was annealed through NVT (constant number of particles N,
volume V and temperature T) simulations for 20 ps at 7000 K, 20 ps at 5000 K, 50 ps at 2000 K, 100 ps
at 1000 K, and 50 ps at 300 K using the BKS potential13,14 and a 2.5 × 2.5 × 5.5 nm3 periodic cell, to
produce an amorphous silica membrane with two relaxed surfaces (normal to the z-axis). As in Vollmayer
et al.,14 the form of the BKS potential was modified at small distances to prevent spurious behavior at high
temperature. The Coulomb portion of the BKS potential was computed using the PME method,2 while
the Lennard-Jones portion was smoothly shifted to zero at an interatom distance of 0.55 nm. During the
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System # Atoms [DMMP], (mol/L) Duration (ns) 1-4 Scaling D, 10−6·cm2/s # Hydrogen Bonds

UA 1419 4.6 0.5 0.5 4.5 1.7

I 13,728 4.6 9.5 0.5 5.2 ± 0.1 2.2

I 13,728 4.6 10 1.0 5.0 ± 0.2 2.3

II 10,528 1.1 10 0.5 9.3 ± 0.2 2.5

II 10,528 1.1 10 1.0 9.2 ± 0.1 2.5

III 57,296 0.62 10 1.0 9.1 ± 0.1 2.8

Table S2: Comparison of the united-atom (UA) model of DMMP8 with our all-atom model at three concentrations
of DMMP. Simulations of systems I and II were performed using two values of 1-4 scaling: 0.5 and 1.0.

annealing procedure, an external force was applied to prevent the atoms from evaporating into the vacuum
region. The temperature was controlled by Langevin dynamics with a damping constant of 5 ps−1.

From the results of the annealing simulations, we created four SiO2 surfaces, each with different surface
properties. Surfaces A and B were generated by removing atoms within 0.42 nm of the top and bottom
surfaces from the structure at the end of the annealing process, resulting in two different surfaces that were
similar to cross sections of bulk amorphous silica. The resulting structure, having surface A as its bottom
surface and surface B as its top surface is referred to as system AB. System A was created by splitting
system AB in half and replicating and rigidly transforming the half containing surface A to produce a silica
slab having identical surfaces (A) on the top and bottom.

The same replication and transformation procedure was used to produce system C using the bottom half
of the SiO2 block and the atomic coordinates from the first step of the annealing procedure—20 ps at 700 K.
This system had similar properties to the system used in Carr et al.15 System D was made in the same
way as system C except that atomic coordinates from the end of the annealing procedure were used. Thus,
the two identical surfaces of system D can be thought of as more relaxed than the two identical surfaces of
system C due to the more gradual annealing process in the first case.

The use of the BKS force field in the annealing simulations was to produce plausible atomic structures
for the SiO2 surfaces. In the subsequent simulations of the adsorption chamber, the SiO2 atoms were
restrained to the positions generated by the annealing simulations.7,15,16 The strength of the restraints
and bonds were chosen to give the membrane a dielectric constant of ∼ 5. The restraint force was given by
F (~ri) = −2K(~ri− ~Ri), where ~ri and ~Ri are the current and initial positions of atom i and K = 13, 900 pN/nm.
Bonds were established between all silicon and oxygen atoms separated by < 0.22 nm using with Kbond =
695 pN/nm. The interaction of the SiO2 atoms with water and DMMP were calculated using the CHARMM
compatible force field of Cruz-Chu et al.7

To separate the effects of surface roughness from other surface features, a fifth surface, which we will
refer to as the phantom or Ph surface, was used. This surface did not consist of atoms; instead an infinitely
smooth, frictionless surface was modeled by applying the following smooth potential to all atoms using
G-SMD.5

U(z) =


U0 if |z| ≤ z0
0 if |z| ≥ z0 + 2l
1
4U0

(
2− 3 |z|−(z0+l)

l +
(
|z|−(z0+l)

l

)3
)

otherwise

where U0 = 5 eV, l = 0.2 nm, and z0 = 1.25 nm.

Solute adsorption simulations and analysis. The simulations of solute adsorption were performed
using atomic-scale models of small chambers that contained DMMP solution enclosed between two surfaces
(see Figure 1). Systems A, AB, C and D were created using silica slabs A, AB, C, D, respectively, tiled in a
four-by-four grid to create new slabs consisting of sixteen identical patches, measuring 10× 10 nm2 in total
area. System Ph was created using a phantom surface slab (Ph, described above), measuring 10 × 10 nm2

in area. To create the enclosed chambers, the silica or phantom slab was placed in a periodic box with the
same width and breadth as the slab, but with a height greater than that of the slab, creating systems that
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were effectively infinitely long and wide, with a gap of 5 to 6 nm separating the surfaces (see Figure 1). The
volume between the surfaces was then filled with a solution of DMMP.

Surface Length (ns) ∆P (bar) NDMMP nDMMP nm−2 Cbulk M

A 100 71.0 25 0.078 0.035

A 100 71.0 50 0.16 0.060

A 100 70.0 100 0.30 0.13

A 100 69.0 150 0.43 0.20

A 100 69.0 200 0.56 0.28

A 50 0.0 200 0.56 0.28

A 100 67.0 300 0.76 0.46

A 100 41.0 1500 1.6 4.6

AAB 100 67.0 200 0.67 0.38

BAB 100 67.0 200 0.16 0.38

AAB 100 41.0 1500 1.6 4.7

BAB 100 41.0 1500 0.83 4.7

C 100 63.0 400 1.7 0.17

C 100 41.0 1500 2.3 4.1

D 50 60.0 200 1.0 0.005

D 100 60.0 400 2.0 0.014

D 100 60.0 600 2.3 0.43

D 100 41.0 1500 2.5 4.1

Ph 50 69.0 200 0.26 0.57

Ph 100 41.0 1500 1.5 4.7

Table S3: Summary of solute adsorption simulations. Each simulation is characterized by the duration of the NVT
portion of the simulation, the pressure difference across the chamber (∆P), the total number of DMMP molecules
(NDMMP), the steady-state adsorption density (nDMMP) and the steady-state bulk concentration Cbulk (see Figure 1).
Each simulation of system AB, which contained both surfaces A and B, is listed twice, specifying adsorption densities
for individual surfaces, labeled AAB and BAB.

Following a 2000-step minimization using a conjugate gradients method, each system was equilibrated
for 1.5 ns in the NPAT ensemble (constant number of particles N, pressure P, area in the xy plane A and
temperature T). During the NPAT simulation, some DMMP molecules may have adsorbed to the surfaces.
To remove this effect, all DMMP molecules were moved back to their initial coordinates, and constrained to
those coordinates for a 0.5 ns simulation in the NVT ensemble, removing any steric clashes between DMMP
and water molecules. Each system was then simulated in the NVT ensemble with a pressure gradient induced
in the x-direction, resulting in a pressure-driven flow of DMMP solution through the system. To induce a
pressure gradient, a constant force in the x-direction Fx was applied to all N water molecules, creating a
pressure difference ∆Px across the system of

∆Px = N · Fx/A, (1)

where A is the area of the chamber in the yz plane.15 Temperature was maintained by applying the Langevin
thermostat to all silica atoms, which was sufficient to keep the temperature of the entire system within 1.2%
of the target temperature.15 To investigate whether the pressure-driven flow affected the amount of solute
bound, we performed simulations of system A with and without the applied pressure difference, which showed
that the pressure-driven flow had no measurable effect on adsorption. A summary of all solute adsorption
simulations is given in Table 3. For all simulations of the phantom channel, the Langevin temperature control
was applied only to water oxygens with a damping coefficient of 0.1 ps−1.

To calculate the solute adsorption densities at the surfaces, a DMMP molecule was considered adsorbed
if its phosphorus atom, approximately the center of mass, was within 0.5 nm of the surface. The surface of
each silica slab was defined as the x− y plane with the z coordinate determined as the average z coordinate
of the isosurface defined by the five-to-one ratio of silica and water atoms. The region extending 0.5 nm
away from that surface is referred to as the adsorption layer, see Figure 1. The average solute adsorption
densities were calculated by removing data before 15 ns, keeping only steady-state data. Figure S1 shows a
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Figure S1: The surface density of adsorbed DMMP as a function of time in system A, block averaged in 3-ns intervals.
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Figure S2: Calculations of the maximum adsorption density nmax. a) Surface density of DMMP as a function of
DMMP bulk concentration for system D. b) The maximum adsorption density nmax as a function of the normalized
surface area for each surface studied (see text).

typical plot of the surface density of adsorbed DMMP as a function of time. The system reaches a steady
state in 15 ns.

Calculations of the maximum adsorption density. The maximum adsorption density nmax was com-
puted for each surface and was found to depend on its atomic-scale features. To determine nmax, we used
the expression for the Langmuir isotherm in terms of the adsorption densities,

n = nmax
αCbulk

1 + αCbulk
. (2)

In the limit of high concentration, the surface density n asymptotically approaches nmax. To determine nmax,
we performed brute-force simulations of DMMP adsorption in system D for a range of DMMP concentrations.
The resulting dependence of surface density on bulk concentration is shown in Figure S2 a. As the bulk
concentration increased, the adsorption density approached a constant value. Thus, we chose nmax for
surface D to be the adsorption density at the highest bulk concentration simulated, which was 4.1 M. As
surface D has the highest affinity to DMMP of all surfaces considered, to determine nmax for the other four
surfaces (A, B, C and Ph), we simulated systems A, AB, C and Ph at the same initial DMMP concentration
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as the one that yielded nmax for system D. The simulation of system AB was used to determine nmax

for surface B. To verify that the presence of two surfaces (A and B) in one simulation did not affect the
determination of nmax, we compare the value of nmax for surface A calculated through simulation of system A
with that calculated through simulation of system AB. The value of nmax for surface A in system AB at
4.7 M: 1.7 molecules/nm−1 agreed with the value in system A at 4.6 M: 1.7 molecules/nm−1.

The value of nmax for each surface is shown in Figure S2 b, plotted as a function of the normalized surface
area. The normalized surface area was calculated as the solvent-accessible surface area (SASA) divided by
the planar (x− y plane) area of the slab. To calculate the SASA, we used the ‘measure sasa’ feature of the
Visual Molecular Dynamics (VMD)17 package, using a solvent radius of 1.4, the approximate radius of a
water molecule. Figure S2 b shows that nmax is not a simple geometric parameter. Approximating a DMMP
molecule as a disk of radius 0.23 nm (the radius of gyration) that packs in a hexagonal lattice with a packing
density of 0.9069, one would expect nmax to correspond to a density of ∼5.6 molecules nm−2. However, the
observed maximum adsorption densities are much lower and depend on the properties of individual surfaces.
Furthermore, Figure S2 b shows that nmax is not a function of the normalized surface area, meaning that
variation in nmax is not caused by the variation in the surface area of the slabs, even after taking into account
the atomic scale roughness.

Umbrella sampling simulations. To study the interaction between a single DMMP and the membrane
surfaces, we created 5 small systems consisting of a single slab of silica membrane or an equal size phantom
membrane, water, and one DMMP molecule. The potential of mean force (PMF) of a DMMP molecule as
a function of its position relative to the membrane surface was determined from a set of umbrella sampling
simulations,18 which were analyzed using the weighted histogram analysis method (WHAM)19 generalized to
three dimensions (see below). Prior to the umbrella sampling simulations, each of the four systems underwent
2000 steps of energy minimization, 2 ps of equilibration at fixed volume during which the temperature was
raised from 0 to 295 K by velocity rescaling, and 200 ps of NPT simulation.

The umbrella sampling simulations were performed by restraining the phosphorus atom of the DMMP
molecule to points in (x, y, z) (where z is perpendicular to the surface) using the potential energy function
wi(x, y, z) = 1

2kx(x−xi)2 + 1
2ky(y− yi)2 + 1

2kz(z− zi)2, where (xi, yi, zi) was the center of sampling window
i and kx, ky and kz were the spring constants along each axis. Because the gradient of the PMF was much
larger along the z axis than in the xy plane, a stiffer spring constant of kz =1390 pN/nm was used along
the z axis than perpendicular to it, for which kx = ky =70 pN/nm. Furthermore, the sampling windows
(xi, yi, zi) were more closely spaced along the z axis. The sampling windows formed a three-dimensional
grid with 4, 4, and 9 points along the x, y, and z directions, respectively. Results were first obtained using
the 144 sampling windows centered at these points, but to increase the resolution of our PMF distributions,
we added another 300 sampling windows. For these simulations, we used a grid of 5, 5, and 12 points with
spring constants kx = ky = 560 and kz = 2780 pN/nm. To ensure that the calculated PMF extended into
bulk water, 19 sampling windows with the same spring constant as the previous set were added to the (x,y)
center of the slab for an additional nanometer in z. Each simulation represented more than 2.2 ns. The first
0.2 ns of each simulation was excluded from the WHAM PMF calculation.

Potential of mean force calculation. The potential of mean force (PMF) is computed by the weighted
histogram analysis method (WHAM) described by Roux19 generalized to three dimensions. Each of the
three spatial dimensions is a reaction coordinate. We estimate the unbiased probability distribution by

〈ρ(x, y, z)〉 =

(
Nw∑
i=1

ni 〈ρi(x, y, z)〉

) Nw∑
j=1

nj exp
[
−wj(x, y, z)− Fj

kBT

]−1

, (3)

where ρ(x, y, z) is the unbiased probability distribution, Nw is the number of biased simulations, ρi(x, y, z)
is the biased probability distribution derived from the results of biased simulation i, ni and wi(x, y, z) are
the number of independent data points and the biasing potential, respectively, for biased simulation i, and
{Fi} is a set of constants.
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The set of constants {Fi} are initially unknown; thus, we make an initial guess for their values. After
estimating 〈ρ(x, y, z)〉 by Equation 3, we can obtain improved estimates these constants by solving

exp
[
− Fi

kBT

]
=
∫

dx
∫

dy
∫

dz exp
[
−wi(x, y, z)

kBT

]
〈ρ(x, y, z)〉 . (4)

To obtain self-consistency, the equations are iterated, feeding the newest estimate of {Fi} into Equa-
tion 3 and then the newest estimate of 〈ρ(x, y, z)〉 into Equation 4. Iteration ceases at iteration j when∣∣(Fi+1 − Fi)(j) − (Fi+1 − Fi)(j−1)

∣∣ < 0.0001 kBT for all windows i ∈ {1, 2, ..., Nw − 1}. The PMF is then
computed by −kBT log(〈ρ(x, y, z)〉).

Surface Characterization. To characterize the atomic-scale features of the surfaces, we computed the
local surface roughness and the local surface charge density of each surface. Topographical maps of the
surfaces, shown in Figure S3, were generated using hard spheres with radii of 0.2 nm as probes and considering
the silicon and oxygen atoms as hard spheres with radii of 0.2147 nm and 0.175 nm, respectively. To compare
the surfaces, the reference height z = 0 was defined to be the mean value of z (direction normal to the plane
of the slab) over the topographical map of that surface. The the root-mean-square (RMS) roughness for
each surface was then computed from the topographical maps. In Figure S4, the Langmuir constant for each
surface is shown as a function of its RMS roughness.

The surface charge density for each surface was computed using the ‘volmap’ tool in Visual Molecular
Dynamics (VMD).17 To compute the surface charge density, the charge of each atom comprising the silica
slab was distributed over a three-dimensional grid of 0.42 Å resolution by approximating each atom as a
normalized Gaussian distribution with width equal to the radius of the atom and taking into account the
periodicity of the system. The resulting three-dimensional grid, periodic in x and y, described the charge
density in the system produced by the silica atoms. Following that, we defined a surface charge layer as
the volume above the plane located 2 Å below the silica surface (defined in ”Solute adsorption simulations
and analysis” of the Supporting Information). The local surface charge density, shown in the bottom row
of Figure S3, was calculated as the total charge density of the surface layer at each (x,y) coordinate. In
Figure S5, the Langmuir constant is shown as a function of the total surface charge of each silica surface.
We found the plot of the Langmuir constant versus the total surface charge to sensitively depend on the
definition of the surface charge layer, in contrast to the dependence of the Langmuir constant on the RMS
charge density, Figure 5a, which was robust with respect to the definition of the surface charge layer.
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Figure S5: The Langmuir constant as a function of the total charge density of the surface.
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