Analytical Chemistry

Direct Plant Tissue Analysis and Imprint Imaging by Desorption Electrospray Ionization Mass Spectrometry

Thomas Müller^{*,§}, Sheran Oradu[&], Demian Ifa[&], R. Graham Cooks^{*,&} and Bernhard Kräutler[§]

Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020 Innsbruck, (Austria), Department of Chemistry, Purdue University, West Lafayette, IN 47907 (USA)

Supporting Information

Materials. HPLC grade methanol and acetonitrile were from Acros Organics (Geel, Belgium). Formic acid puriss.p.a. was from Fluka (Buchs, Switzerland).

Methods. *HPLC:* Dionex Ultimate 3000 HPLC system equipped with an autosampler and a diode array detector. Injection loop 20 μ l. Data were collected and processed with Chromeleon V6.80. *Analytical:* Phenomenex HyperClone ODS 5 μ m 250 x 4.6mm i.d. column at 20°C protected with a Phenomenex ODS 4 mm x 3 mm i.d. precolumn was used with a flow rate 0.5 mlmin⁻¹. Solvent A: water with 0,2% formic acid (v/v), solvent B: acetonitrile; standard solvent compositions: (A/B) as function of time (0 - 50 min): 0 - 5: 90/10; 5 - 43: 90/10 to 60/40; 43 - 47: 60/40 to 40/60; 47 - 50: 40/60 to 0/100.

Spectroanalytical Data *Ov*-NCC-1. HPLC: Retention time in analytical HPLC (Rt) = 32.4 min (see main text and Figure S1). UV/Vis (from diode array detector): λ max (rel ε) = 217 (ca. 1.81), 245sh (0.84), 314 (1.00).

Spectroanalytical Data *Ov*-NCC-2. HPLC: Retention time in analytical HPLC (Rt) = 34.4 min (see main text and Figure S1). UV/Vis (from diode array detector): λ max (rel ε) = 217 (ca. 1.35), 245sh (0.85), 314 (1.00).

Supporting Figures

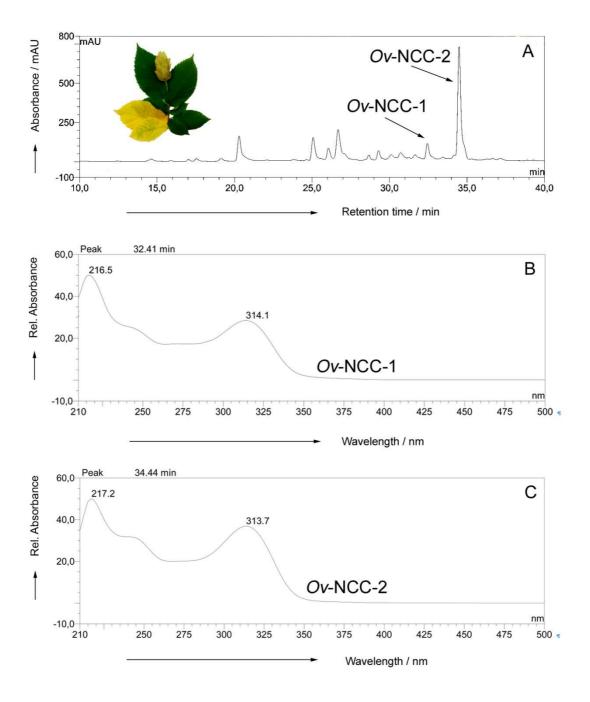


Figure S1. (A) HPLC analysis (320 nm trace) of NCCs in senescent Hophornbeam leaves (*Ostrya virginiana*) from the Purdue campus. The two NCC fractions at Rt = 32.4 min and Rt = 34.4 min are marked. Insert: Green and yellow (senescent) leaves as well as fruit from Hophornbeam tree. (B) UV spectrum of *Ov*-NCC-1 fraction at Rt = 32.4 min from diode array detector. (C) UV spectrum of *Ov*-NCC-2 at Rt = 34.4 min from diode array detector.

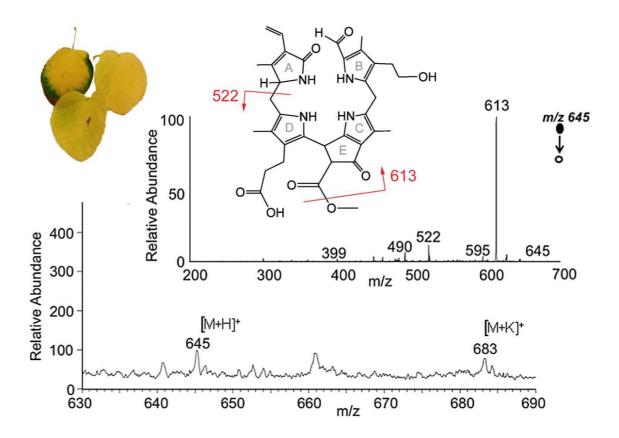


Figure S2. (A) Positive-ion mode DESI-MS spectra of a Katsura tree (*Cercidiphyllum japonicum*) leaf. Spray solvent was methanol/water (80:20) at a flow rate of 13μ l/min. Protonated and potassiated molecules were detected at m/z 645 and m/z 683. (B) DESI-MS/MS spectrum of the isolated protonated molecule at m/z 645. (C) Structure of the chlorophyll catabolite Cj-NCC-1 [1] corresponding to the ion at m/z 645. Characteristic framentations due to the losses of methanol (fragment at m/z 613) and ring A (fragment at m/z 522) are marked.

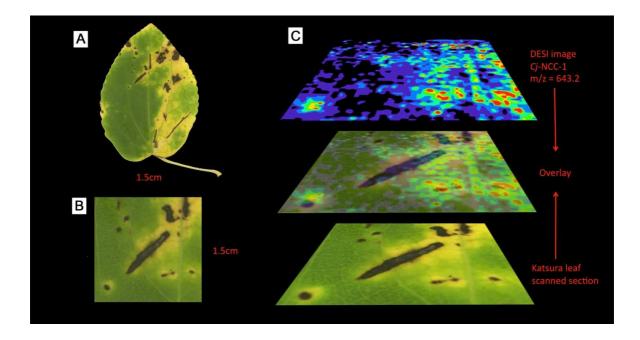


Figure S3. Negative-ion mode DESI imaging of a senescent Katsura tree leaf imprint on porous PTFE substrate. Spray solvent was 1% conc. Aqueous ammonia in methanol at a flow rate of 1.5 μ l/min. Imaging parameters: 1.36 sec per scan; 61 scans per horizontal row; 60 rows; pixel size was 250 x 250 μ m; total acquisition time was 83 min. (A) Senescent Katsura tree (*Cercidiphyllum japonicum*) leaf. (B) 15 x 15 mm section of the photographic image depicted in panel A. (C) Ion image of the chlorophyll catabolite *Cj*-NCC-1 [1] at *m*/*z* 643.2 (top), photographic image of the analyzed leaf section (bottom) and their overlay (center).

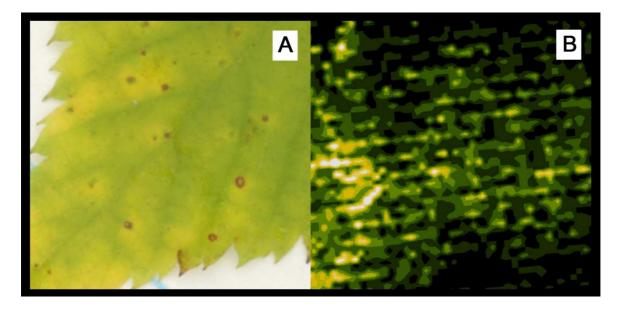


Figure S4. Negative-ion mode DESI imaging of a senescent Hophornbeam leaf imprint on porous PTFE substrate. Spray solvent was 1% conc. aqueous ammonia in methanol at a flow rate of 1.5

 μ l/min. Imaging parameters: 1.36 sec per scan; 61 scans per horizontal row; 60 rows; pixel size was 250 x 250 μ m; total acquisition time was 83 min. (A) 15 x 15 mm section of a photographic image taken from a senescent Hophornbeam tree (*Ostrya virginiana*) leaf. (B) Ion image of the most abundant chlorophyll catabolites in Hophornbeam leaves at *m*/*z* 677.2. The image is plotted on a color scale, which visualizes relative ion intensities from 0 (black) to 50 (green) to 100 (white).

Figure S5. 1 mm² section of a light microscopic image taken from a *Cercidiphyllum japonicum* leaf imprint on filter paper. Leaf imprinting produces well-defined hotspots at diameters of around 100-150 μ m on the printed material (e.g. filter paper, PTFE). 100 μ m bars are highlighted in red.

Supporting References

[1] Curty, C.; Engel, N. *Phytochem.* 1996, *42*, 1531-1536.