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A. Additional Spectra and Figures 

 

 

Figure S1: Continuous wave EPR spectra of 1 mM aqueous solutions of Fremy’s Salt together with 1 wt 
% of the particular denpol generation. The rotational correlation time decreases with increasing genera-
tion. 
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Figure S2: Molecular structures of the generations 1, 2 and 4 of the dendronized polymers used in this 
study. 
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Figure S3: HYSCORE spectrum of FS on the generation 1 denpol at 10K. The  ridge at 2 MHz indicates 
a weak coupling to a 14N nucleus to the spin probes.. 

 

 

Figure S4: HYSCORE spectrum of FS on the generation 4 denpol at 10K. The ridge at 2 MHz indicates 
a weak coupling to a 14N nucleus to the spin probes. 
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Figure S5: HYSCORE spectrum of FS at 10K. No additional 14N couplings are visible. 

 

 

 

Figure S6: Distance distributions for different ratios of cylinder length L to radius R. 
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B. Sample Preparation and EPR Measurements. 

All samples were prepared equally: We added small concentrations (2 mM) of Fremy’s Salt, a two times 
negative charged spin-probe, to 1 wt % aqueous (or 0.5 % of both de-PG2 and de-PG4 for the mixture) 
solutions of four different generations of the denpols presented in Figure 1 and S2. HYSCORE and 
DEER is applied to glassy solids obtained by freeze-quenching the denpol solutions in supercooled iso-
pentane. In this way a snapshot representative for the solution at room temperature is detected. The 
sample volume was always large enough to fill the complete resonator. A Miniscope MS200 (Magnet-
tech, Berlin, Germany) benchtop spectrometer was used for X-band CW EPR measurements at a mi-
crowave frequency of ∼9.4 GHz. Measurements were performed at room temperature (293 K) using a 
modulation amplitude of 0.05 mT. The microwave frequency was recorded with a frequency counter, 
model 2101 (Racal-Dana). The four pulse DEER sequence π/2(νobs) - τ1 - π(νobs) - (τ1 + t) - (νpump) - (τ2 - 
t) - π(νobs) - τ2 - echo was used to obtain dipolar time evolution data at X-band frequencies (9.2 to 9.4 
GHz) with a Bruker Elexsys 580 spectrometer equipped with a Bruker Flexline split-ring resonator 
ER4118X_MS3. The dipolar evolution time t was varied, whereas τ2 = 2.5 μs and τ1 were kept constant. 
Proton modulation was averaged by the addition of eight time traces of variable τ1 , starting with τ1,0 = 
200 ns and incrementing by Δτ1 = 8 ns. The resonator was overcoupled to Q = 100. The pump fre-
quency, νpump, was set to the maximum of the EPR spectrum. The observer frequency, νobs, was set to 
νpump+ 61.6 MHz, coinciding with the low field local maximum of the nitroxide spectrum. The observer 
pulse lengths were 32 ns for both π/2 and π pulses, and the pump pulse length was 12 ns. The tempera-
ture was set to 50 K by cooling with a closed cycle cryostat (ARS AF204, customized for pulse EPR, 
ARS,Macungie, PA). The total measurement time for each sample was around 12 h. The raw time do-
main DEER data were processed with the program package DeerAnalysis2008. Intermolecular contribu-
tions were removed by division by an exponential decay with a dimension of d = 3. The resulting time 
traces were normalized to t = 0. 

The parameter λ was determined by measuring DEER on a bi-radical, where Δ = λ and n = 2.  λ was 
found to be 0.516. 

HYSCORE experiments employed the pulse sequence π/2−τ−π/2−τ1−π−τ2−π/2−τecho. The 
following parameters were used: mw pulses of lengths tπ/2 = tπ = 16 ns, starting times 96 ns for t1 
and t2, and time increments ∆t = 16 ns (data matrix 256 × 256). Spectra with different τ values were 
recorded. An eight-step phase cycle was used to remove unwanted echoes. The HYSCORE data 
were processed with MATLAB 6.5 (The MathWorks, Inc.). The time traces were baseline corrected 
with an exponential, apodized with a Gaussian window and zero filled. After a two-dimensional 
Fourier transformation absolute-value spectra were calculated. Spectra recorded with different τ 
values were added to eliminate τ-dependent blind spots. 
In all cases the temperature was set to 8 K by cooling with an ARS cryostat and closed-cycle 
cooling system. The samples were prepared as concentrated solutions (concentrations typically >10 
mM) and the sample volume was always large enough to fill the complete resonator volume in the 
probehead (>300 μL).  
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C. The Distance Distributions of Particles on Cylinders  

Given the highly-constrained molecular shapes of the dendronized polymers, we shall assume that the 
spin probes are distributed independently and uniformly on the lateral surface of right, circular cylind-
ers. Working in dimensionless units with radius R = 1 and denoting the cylinder height by L the distance 
distribution is given by 
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s   is the cord length formed by two points on the circumference of the capping 

disk (of radius R = 1) subtending the angle ϑ. δ denotes the Dirac function. Eq. (3) is also equal to 
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denoting the probability densities that two points chosen by random on a line (length L) or the circumfe-
rence of the unit-circle are separated by z or s, respectively. These probability density functions are easi-
ly evaluated from an ansatz analogous to eq. (3).1, 2  Inserting eqs. (5) into eq. (4) and transforming the 
surface integral into a line integral over contours of constant 2 2r s z  , we obtain 
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where 2 2dl ds dz  is the line element. By parameterizing the contours via cosz r   and sins r  , 

the distance distribution results (for  2 4r L  ): 
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Here,  F m  is the incomplete elliptic integral of the first kind and  denotes the real part. Note that 

the modulus m also assumes values larger than 1 here.  Eq. (7) assumes its maximum at r = 2 (where it 
is singular). Transforming eq. (7) to dimensional units, eq. (2) in the main manuscript is obtained. At the 
expense of conciseness, eq. (7) can easily expressed as piecewise function with 5 distinct domains.  In 
practice we eventually convolute P(r) as given by eq. (7) with a Gaussian broadening kernel. This is 
permitted for small broadenings since the exact asymptotic behavior for r  0 is elusive to DEER. This 
additional broadening is interpreted as to account for the fluxionally/mobility of the probe, dispersion of 



 

 

S7 

the cylinder radius, etc.3 Figure S6 depicts an illustration of the shapes of the distance distributions so 
obtained and their dependence on L. 

D. Corrections of Cylinder Radii Based on the Poisson-Boltzmann Equation 

The interplay of thermal motion and attractive electrostatic interactions leads to a statistical distribution of the 
charged spin probe about the polyelectrolyte/denpol. Besides the finite size of the probe, this non-covalent at-
tachment gives rise to larger distances in the DEER distance distribution than would be expected on the basis of 
the molecular object under study. Given the well-defined molecular shape of the denpols de-PG1 to de-PG4, this 
overestimate of R can be compensated easily: Within the mean-field picture, the distribution of the probe about 
the denpol strands, and hence a judicious correction to R, can be determined on the basis of the non-linear Pois-
son-Boltzmann equation.4 We shall employ the cylindrical cell model (Manning-Onsager model). To this end the 
polyelectrolyte solution is modeled as being assembled from cylindrical cells containing the cylindrical polyions 
along their axes and all counterioins (here: trifluoroacetate) and co-ions (potassium and the FS anion) within the 
surrounding dielectric.  In detail, the Poisson-Boltzmann equation for the electrostatic potential, ϕ(r), is solved in 
the form 
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Here, 1( )Bk T  , and the sum runs over all mobile electrolytes of charge number zi (co-ions and counterions, 3 

summands). ni(b) is the number density of the ionic species i at the location for which ϕ = 0. We (arbitrarily) en-
force ϕ(b) = 0 at the outer cell boundary, b.  The ni(b)s deviate significantly from the macroscopic concentration 
due to the condensation of the counterions at the denpoly boundary. Self-consistency is ensured by requiring that 
the number of ionic species within the cell (macroscopic concentration ci, volume Vz), ciVzNA, fulfills 

                                                            
 2 ( ) exp ( )

b

i z A i ia
cV N n b r ez r dr    . 

(9) 

 
The inner domain radius, a, equals the average contact distance of the polycation and the co-ions, i.e. a = R + rion, 
with R denoting the (true) denpol radius. rion = 1.5 Å (half the S-S distance in FS) has been assumed here. The 
outer boundary radius, b, is evaluated from the concentration of repeat units, i.e. cRU = 1 / (πb2NAh), where h is 
the height of the repeat unit. The boundary conditions follow from Gauss’ law: 
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with σ denoting surface charge density of the polycation. The second condition reflects the electro-neutrality of 
the cylindrical cell. No analytical solution of eqs. (8) and (10) is available. With the numerical solution in mind, it 
is convenient to transform the equation by introducing the dimensionless quantities y = eβϕ and x = ln(r/a). The 
transformed differential equation reads: 
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where the Bjerrum length is defined by LB = e2β/(4πε0εr). LB = 7.1 Å for water at 293K. The transformed bounda-
ry conditions are: 
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The linear charge parameter, ξ, is related to the charge, eξ, of a cylinder of height LB. 

The boundary value problem is solved using a home-written Matlab program. The bvp4c routine (Lobatto collo-
cation) is used to solve eqs. (11) and (12) for given values of the number density at b, ni(b). A shift parameter of 
the potential is introduced, that enforces ϕ(b) = 0 (in addition to the boundary conditions given by eq. (12)). Self-
consistency is established in an iterative process. In every iteration the ni(b)s are updated using eq. (9). This 
process is continued until no significant change in the potential is observed. The average cylinder radius, is then 
determined from 
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where rmax = 8 nm, i.e. the upper bound of distances currently attainable by DEER. Note that the potential is quasi 
entirely shielded at large distances and hence the number of particles at large radii increases just because of the 
increase in phase-space volume. However, these particles at large distances do only contribute to the DEER 
background. Following this approach, corrections to the cylinder radius have been evaluated for the pertinent 
experimental conditions. The projected radius, the surface charge density and, hence, the repeat unit height, the 
concentrations of electrolytes, and the co-ion radius determine the size of the correction. Table 1 summarizes the 
correction factors using the RAFMs and the repeat unit heights for the protected PG denpols as starting point5,6 
Using RDEER instead of RAFM gives concordant results. Note that primarily due to the increase in h with generation, 
the correction amounts to approximately 3 Å for all systems. 

Table 1: Correction factors, ∆, for the cylinder radius resulting from the Poisson-Boltzmann treatment of the charge distribution of FS 
about cylindrical polycations and the parameters used for their derivation. In addition, cFS = 2 mM, LB = 7.1 Å. 

generation a / Å zRU cRU / mM D / Å 
1 3.5 2 1.9 -3.4 
2 6.5 4 0.84 -2.9 
3 12.5 8 0.39 -3.0 
4 21.5 16 0.19 -3.4 
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