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List of the symbolsb1 Admittane ratio between the membrane and the exterior solution, de�ned by eq. (62).b3 Admittane ratio between the membrane and the interior solution, de�ned by eq. (63). Ratio of the interior ondutivity to the exterior ondutivity, de�ned in eq. (1).d Ratio of the bilayer thikness to the exterior radius of the vesile, lme=rex, de�ned by eq. (23).E0 Magnitude of the eletri �eld.EEE ex The eletri �elds in the exterior solution, de�ned by eq. (8).Eex The time independent part of the eletri �elds in the exterior solution, de�ned by eq. (8).EEE in The eletri �elds in the interior solution, de�ned by eq. (8).Ein The time independent part of the eletri �elds in the interior solution, de�ned by eq. (8) .EEE me The eletri �elds in the membrane, de�ned by eq. (8).Eme The time independent part of the eletri �elds in the membrane, de�ned by eq. (8).eex Dieletri onstant of the exterior solution, abbreviated as e1.ein Dieletri onstant of the interior solution, abbreviated as e3.eme Dieletri onstant of the membrane, abbreviated as e2.ew Dieletri onstant of water.h Condutivity and frequeny dependent part of the deformation amplitudes.hth Threshold value of h , de�ned by eq. (35).Fbe Bending energy.DFbe The bending energy required to deform a spherial vesile to ellipsoid.F Free energy of a vesile.k Bending rigidity.lme Thikness of bilayer.Msp Spontaneous urvature.n Frequeny of the eletri �eld.w Angular frequeny of the eletri �eld.w̄ Resaled angular frequeny de�ned by eq. (38).60



w Frequeny of prolate-oblate morphologial transition.ws Inverse Maxwell-Wagner harging time.wth Transition frequeny of the prolate/oblate-sphere transitions.f Azimuth angle.yex Admittane of the external solution, abbreviated as y1.yin Admittane of the internal solution, abbreviated as y3.yme Admittane of the membrane, abbreviated as y2.Reb1Real part of b1.Reb3Real part of b3.rex Exterior radius of spherial vesile.rin Interior radius of spherial vesile.rme Radius of the middle surfae of spherial vesile.s Amplitude of vesile deformation.sex Condutivity of the exterior solution, abbreviated as s1.sin Condutivity of the interior solution, abbreviated as s3.sme Condutivity of the membrane, abbreviated as s2.T Maxwell stress applied to a vesile.q Inlination angle.Wel Work done by the Maxwell stresses.
Physial onstantsIt is instrutive to estimate the order of the magnitudes of these parameters from the physialquantities involved in the experiments in se. 2. The ondutivity of the membrane, sme, is of theorder of 10�14 S=m,14 and the ondutivities of the exterior/interior solutions, sex and sin, mainlyused in the experiments are of the order of 10�4 S=m to 10�2 S=m. The dieletri onstants of61



the solutions are not very sensitive to the salts. We assume that the dieletri onstants of theexterior and the interior solutions, eex and ein, is equal to the dieletri onstant ew of water, i.e.eex = ein = ew. The dieletri onstant eme of the membrane is approximately 2e0 and the dieletrionstant of water is approximately 78e0, where e0 = 8:85�10�12 C=Vm is the dieletri onstantof vauum. b1 and b3 are the ratios of the membrane admittane to the admittanes of the exteriorand interior solutions, respetively, see eqs. (62) and (63).Bending energy required for prolate/oblate deformationThe bending energy required to deform a vesile in prolate or oblate shapes is written as eq. (6).This equation is idential to that used by Winterhalter and Helfrih.1 However, we outline thederivation of eq. (6) to be self-ontained.The bending energy of the vesile is written as2�4Fbe = DPZ dV +l Z dS+ 12k Z dS(2M�Msp)2+ 12kG Z dSG: (104)DP is the osmoti pressure differene between the exterior and interior solutions and R dV is thevolume of the interior of the vesile, l is the tension of the vesile, M and G are the mean andGaussian urvatures of the vesile, k is the bending rigidity, Msp is the spontaneous urvature,and kG is the modulus of Gaussian urvature. Aording to the Gauss-Bonnet theorem, see e.g.ref.,5 the bending energies arising from the Gaussian urvature do not hange with the elliptideformation of the spherial vesile beause the topology does not hange with the deformation.In the experiments, the osmoti pressure in the exterior is adjusted to be idential to the osmotipressure in the interior solutions, i.e. DP= 0.A spherial vesile with small deformation, whih is represented by the displaement vetoru(q ;f), is desribed by r(q ;f) = rmeer+ur(q)er+uq (q)eq : (105)62



er and eq are unit vetors in r- and q -diretions, where the oordinate system is illustrated inFigure 2 in the main text. ur(q) and uq (q) are the r- and q -omponents of the displaementvetor u(q ;f). ju(q ;f)j is muh smaller than the radius of the vesile rme in the absene of thedeformation, i.e. ju(q ;f)j � rme. In the absene of the eletri �elds, the stable shape of thevesile is sphere, i.e. u(q ;f) = 0, and rme must be hosen to minimize the bending energy, eq.(104). The bending energy for a spherial vesile is alulated by substituting eq. (105) into eq.(104) for u(q ;f) = 0 as Fbe = 4p[l r2me+ k2 (2+Msprme)2+kG℄: (106)The minimum of the bending energy is ahieved when the tension and the radius of the vesilesatisfy the relationship l = � krmeMsp� 12kM2sp: (107)Beause the surfae integral of the Gaussian urvature, i.e. the fourth term of eq. (104), istopologial invariant, the bending energy assoiated with the ellipti deformations is due to themean urvature M and the area element dS. We derive the mean urvatureM and the area elementby the seond order of u(q ;f) following the presriptions of differential geometry. The tangentsof the surfae are alulated by the derivatives of eq. (105) with respet to q and f asrq (q ;f) = rme�1+ urrme + u0qrme�eq + rme� u0rrme � uqrme�errf (q ;f) = rme sinq �1+ urrme + uqrme tanq�ef ; (108)where we omitted the expliit notation of the dependene of ur and uq on q for simpliity. u0rand u0q are the derivatives of ur and uq , respetively. ef is the unit vetor in f diretion, i.e.ef � er� eq . The subsript, q and f , in the left hand side indiate the partial derivative of r(q ;f)with respet to q and f . Here, we note that this rule is only applied to the derivative of r(q ;f)63



otherwise the subsripts q and f represent the q and f omponents of vetors and tensors. Thenormal vetor n(q ;f) to the surfae of the vesile is direted parallel to rq (q ;f)�rf (q ;f) and iswritten asn(q ;f) = "1� 12� u0rrme � uqrme�2#er�� u0rrme � uqrme��1�� urrme + u0qrme��eq (109)by normalizing rq (q ;f)� rf (q ;f) to a unit vetor. The area element dS is alulated asdS � j(rq (q ;f)dq)� (rf (q ;f)df)j= r2me sinqdqdf �1+�2urrme + u0qrme + uqrme tanq�+� urrme + u0qrme�� urrme + uqrme tanq �+ 12� u0rrme � uqrme�2# : (110)The omponents, gqq , gqf , and gff , of the �rst fundamental form are written asgqq � rq (q ;f) � rq (q ;f)= r2me"1+2� urrme + u0qrme�+� urrme + u0qrme�2+� u0rrme � uqrme�2# (111)gqf � rq (q ;f) � rf (q ;f)= 0 (112)gff � rf (q ;f) � rf (q ;f)= r2me sin2 q �1+ urrme + uqrme tanq � : (113)
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The omponents of the inverse matrix of the fundamental form aregqq � gffg= 1r2me "1�2� urrme + u0qrme�+3� urrme + u0qrme�2�� u0rrme � uqrme�2# (114)gqf � �gqfg= 0 (115)gff � gqqg= 1r2me sin2q "1�2� urrme + uqrme tanq�+3� urrme + uqrme tanq �2# ; (116)where g � gqqgff �g2qf is the determinant of the �rst fundamental form. The omponents, Lqq ,Lqf , and Lff , of the seond fundamental form areLqq � �rq (q ;f) �nq(q ;f)= �rme"1+ urrme + 2u0qrme � u00rrme � 12� u0rrme � uqrme�2+ � u0rrme � uqrme��2u0rrme + u00qrme � uqrme�� (117)Lqf � �rq (q ;f) �nf(q ;f)= 0 (118)Lff � �rf (q ;f) �nf (q ;f)= �rme sin2 q �1+ urrme + uqrme tanq ��"1� 12� u0rrme � uqrme�2� 1tanq � u0rrme � uqrme��1�� urrme + u0qrme��# : (119)
65



The mean urvatureM is derived as2M � �Ñ �n(q ;f)= �hgqqLqq +gqfLqf +gfqLfq +gffLffi= � 2rme "1� 12�2urrme + u00rrme + u0rrme tanq��� u0rrme � uqrme�2+ 32� urrme + u0qrme�2+12� urrme + uqrme tanq�2+ 12� u0rrme � uqrme��2u0rrme + u00qrme � uqrme��� urrme + u0qrme�� urrme + 2u0qrme � u00rrme�+ 12tanq � u0rrme � uqrme��2urrme + u0qrme + uqrme tanq�� : (120)The membrane is inompressible, and the loal area must be onserved during the deformationof the vesile. Aording to eq. (110), the ondition for loal area onservation by the �rst orderin u(q ;f)=rme is written as 2urrme + u0qrme + uqrme tanq = 0: (121)The deformation of the vesile into prolate or oblate is represented by ur in eq. (4). Eq. (121)suggests that uq , whih is represented as eq. (5), must be assoiated with ur to keep the loal areaonstant. For eqs. (4) and (5), the area element dS and the mean urvature M are alulated asdS = r2me sinqdqdf "1� 14� srme�2 sin4 q +2� srme�2 sin2 q os2 q# (122)2M = � 2rme "1+ srme �3os2 q �1��4� srme�2 sin2 q os2 q + 54� srme�2 sin4 q# : (123)By substituting eqs. (122) and (123) into eq. (104) and using eq. (107), the inrease of the bendingenergy arising from the ellipti deformation is derived asDFbe = 48p5 �1�Msprme6 �k� srme�2 : (124)66



Quasistati Maxwell equations and Maxwell-Wagner theoryThe eletri �elds around the vesile are derived as the solutions of the Maxwell equation. Thefrequeny of the external eletri �elds is low enough to neglet the generation of indued eletri�elds by alternating magneti �elds. In this limit, the Maxwell equations are written as6Ñ �DDDk(r; t) = rk(r; t) (125)Ñ �BBBk(r; t) = 0 (126)Ñ�EEE k(r; t) = 0 (127)Ñ�HHH k(r; t) = jk(r; t) (128)for k = 1, 2, and 3. The subsripts k = 1, 2, and 3 are the abbreviations of ex, me, and in, respe-tively. Ñ is 3D gradient and r is the positional vetor. DDDk is the eletri �ux density and rk is thetrue eletri harge density. BBBk is the magneti �ux density. EEE k is the eletri �eld. HHH k is themagneti �eld, and jk is the eletri urrent density. rk(r; t) is the eletri harge density and j(r; t)is the eletri urrent density.DDD k is related to EEE k as DDD k(r; t) = ekEEE k(r; t): (129)In general, r(r; t) in the right hand side of eq. (125) inludes the densities of both the �xed trueeletri harges and the true eletri harges aumulated by the eletri urrent jk. However, inthis paper, we assume that the �xed eletri harges are absent, and that rk(r; t) only inludesthe aumulated true eletri harge. j(r; t) is the eletri urrent density inluding the Maxwelldisplaement urrent. jk(r; t) is represented asjk(r; t) = 12ykEk(r)e�iwt + ::; (130)
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where yk = sk� iwek (131)is the admittane of the medium. :: stands for the omplex onjugate.We an solve eqs. (125) - (128) for eah dieletri medium one by one with appropriate bound-ary onditions to derive the eletri �eld. However, beause we have negleted the indued eletri�elds, the eletri �elds are independent of the magneti �elds in the quasistati approximation.The ontinuity equation of the eletri urrent is derived asÑ � jk(r; t) = 0; (132)by taking the divergene to the both sides of eq. (128). The eletri �eld distributions are derivedby solving eqs. (127) and (132) simultaneously. Eq. (127) suggests that eletri �elds are stillonservative �elds in the quasistati approximation, and it is possible to de�ne salar potentialU(r; t) suh that EEE (r; t) =�ÑU(r; t): (133)Beause of eq. (132), the salar potentialU(r; t) satis�es the Laplae equationÑ2U(r; t) = 0: (134)The boundary onditions are derived from eqs. (127) and (132). We onsider a retangulariruit aross the interfae between the external solution and the membrane shown in Figure 11(a). Dlre and wre are the length of the edges of the retangular iruit aross and along theinterfae, respetively. In the limit of Dlre ! 0, the line integral of the eletri �elds along the
68



iruit is alulated as [E1;t�E2;t℄wre = limDlre!0I E (r; t) �dl= limDlre!0Z (Ñ�E (r; t)) �dS= 0: (135)E1;t and E2;t are the tangent omponents of the eletri �eld at the media 1 and 2 sides of the inter-fae. dl and dS are the line element and area element vetors. The area surrounded by the losediruit is the range of the area integral in the seond equation of the right hand side. Eq. (127)is used to derive the last equation of eq. (135). Beause eq. (135) must be satis�ed for any wre,the tangent eletri �elds are ontinuous aross the interfae. To derive the other boundary on-dition, we onsider a ylindrial losed surfae aross the interfae between the external solutionand the membrane as it is desribed in Figure 11 (b). Syl and lyl are the area of the base and theheight of the ylindrial surfae. The area integral of the eletri urrent density �owing out of theylindrial surfae is alulated as( j1;n� j2;n)Syl = limDlyl!0I j(r; t) �dS= limDlyl!0Z dVÑ � j(r; t)= 0: (136)j1;n and j2;n are the normal omponents of the eletri urrent densities at the 1, i.e. the externalsolution, and 2, i.e. membrane, sides of the interfae. dV is the volume element, and the volumeintegral expands inside of the ylindrial losed surfae. Eq. (132) is used to derive the lastequation of eq. (136). Beause eq. (136) must be satis�ed for any Syl, the normal omponentsof the eletri urrent density are ontinuous aross the interfae. In short, the ontinuities ofthe tangent eletri �elds and the normal eletri urrent densities aross the interfae provide theboundary onditions to derive the eletri �elds. The boundary onditions for the interior interfae69



between the membrane and the internal solution are derived by replaing the suf�xes 1 and 2 ineqs. (135) and (136) to 2 and 3, respetively, and are the ontinuities of the tangent eletri �eldsand the normal eletri urrent densities aross the interior interfae.
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Figure 11: (a) The broken line is the losed iruit, along whih the line integral of the �rst equationof the right hand side of eq. (135) is alulated. Dlre and wre are the length of the edges of theretangular iruit aross and along the interfae, respetively. (b) The ylindrial losed surfae,for whih the surfae integral of the �rst equation of the right hand side of eq. (135) is alulated.Syl and lyl are the area of the base and the height of the ylindrial surfae, respetively. () Theylindrial losed surfae, for whih the surfae integral of the �rst equation of the right hand sideof eq. (137) is alulated. Syl and lyl are the area of the base and the height of the ylindrialsurfae, respetively. The surfae eletri harges qex(r; t) are aumulated at the interfae to makethe normal eletri urrent density ontinuous aross the boundary.In priniple, it is possible to derive the eletri �elds by solving eqs. (127) and (132) simultane-ously with the boundary onditions. It is instrutive to analyze eq. (125). The argument presentedhere is the basis for the disussion in se. 6. In a similar manner to eq. (136), we onsider aylindrial surfae with base area Syl and height lyl shown in Fig. Figure 11 (). For lyl! 0, the
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area integral of the eletri �ux density �owing out from the ylindrial surfae is alulated asD1;n�D2;n = limDlyl!0 1Syl I DDD(r; t) �dS= limDlyl!0 1Syl Z dVÑ �DDD(r; t)= qex(r; t); (137)where D1;n and D2;n are the normal omponents of the eletri �ux densities at 1 and 2 sides ofthe exterior interfae. qex(r; t) is the true eletri harges aumulated at the interfae betweenthe external solution and the membrane. The eletri harges are aumulated at the interfae inorder to make the eletri urrent �ow aross the interfae ontinuously. A similar relationship issatis�ed for the interior interfae asD2;n�D3;n = qin(r; t); (138)where D2;n and D3;n are the normal omponents of the eletri �ux densities at 2 and 3 sides ofthe interior interfae. qin(r; t) is the true eletri harges aumulated at the interfae betweenthe external solution and the membrane. It is important to note that qex(r; t) and qin(r; t) are trueeletri harges, whih are transported by the ondution urrent, and do not inlude the eletriharges, whih are indued by the dieletri polarizations.Brief Derivation of eqs. (42) and (43)In this setion, we brie�y summarize the derivation of eqs. (42) and (43). The reinterpretation ofthe tangent fore densities arising from the shear Maxwell stresses is straight forward. Beausethe tangent eletri �elds Eq (r;q ; t) are ontinuous aross an interfae, the tangent fore densities
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at the exterior and interior interfaes, see eqs. (19) and (20), are rewritten asfexq (q ; t) = hqex(q ; t)Eq(rex;q ; t)i (139)finq (q ; t) = hqin(q ; t)Eq(rin;q ; t)i (140)with qex(q ; t) � eexEexr(rex;q ; t)� emeEmer(rex;q ; t) (141)qin(q ; t) � emeEmer(rin;q ; t)� einEinr(rin;q ; t): (142)hi represents the time average over one period, 2p=w , of the external AC eletri �eld, see se.3.4. The quantities qex(q ; t) and qin(q ; t) are the area densities of eletri harges aumulated atthe exterior and interior interfaes, respetively. It is important to note that qex(q ; t) and qin(q ; t)represent true eletri harges, e.g. ions in the solutions, and the eletri harges indued by thedieletri polarizations of the membrane and of the solutions do not give rise to fore densities.Eqs. (139) and (140) suggest that the fore densities assoiated with shear Maxwell stresses are,indeed, the fore densities arising from the interations between the eletri harges aumulatedat the orresponding interfae and the tangent eletri �elds.The normal fore densities assoiated with the tensile and the ompressive ontributions to theMaxwell stresses are rewritten in terms of the eletri harge densities, qex(q ; t) and qin(q ; t), asfexr(q ; t) = hqex(q ; t)Ēexr(q ; t)i� 12(eex� eme)hEexr(rex;q ; t)Emer(rex;q ; t)i�12(eex� eme)hE 2q (rex;q ; t)i (143)finr(q ; t) = hqin(q ; t)Ēinr(q ; t)i� 12(eme� ein)hEmer(rin;q ; t)Einr(rin;q ; t)i�12(eme� ein)hE 2q (rin;q ; t)i (144)
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with Ēexr(q ; t) � 12(Eexr(rex;q ; t)+Emer(rex;q ; t)) (145)Ēinr(q ; t) � 12(Emer(rin;q ; t)+Einr(rin;q ; t)): (146)Ēexr(q ; t) and Ēinr(q ; t) are the normal eletri �elds, to whih the harges qex(q ; t) and qin(q ; t)are exposed, respetively. Thus, the �rst term of eq. (143) and the �rst term of eq. (144) representthe fore densities arising from the interations between the eletri harges aumulated at theorresponding interfae and the normal eletri �elds. However, at this point, it is not fully obviouswhether the normal fore densities arising from the tensile and the ompressive ontributions tothe Maxwell stresses are reinterpreted in terms of the eletri harge densities aumulated at theinterfaes beause of the additional terms in eqs. (143) and (144).Instead of treating the fore densities applied to the exterior and the interior interfaesindividually, here, we onsider the net fore densities applied at a unit area of the membrane,whih is written as fme(q) = fex(q)+ fin(q)(1�d )2: (147)The area of the interior interfae is smaller than the area of the exterior interfae beause ofthe �nite thikness of the bilayer membrane. The fator (1� d )2 in the seond term of eq.(41) is the orretion for the area differene, see also eq. (21).The fore density fme(q) inludes high order terms with respet to b1, b3, and d , whih areorders of magnitudes smaller than 1. We alulate eq. (147) while negleting those terms. Thefore densities arising from the Maxwell stresses applied from the membrane, hT2(rex;q ; t)iand hT2(rin;q ; t)i, are smaller than the fore densities arising from the Maxwell stresses ap-plied from the solutions, hT1(rex;q ; t)i and hT3(rin;q ; t)i, at least, by a fator of eme=ew. Morepreisely, the terms, whih are lower order than the fore densities arising from hT1(rex;q ; t)iand hT3(rin;q ; t)i, in the fore densities arising from hT2(rex;q ; t)i and hT2(rin;q ; t)i exatly73



anel eah other in the alulation of the workWel. This anellation is independent of thesymmetry of the ondutivity onditions aross the membrane and of the frequeny regimes;the same same anellation was previously found in ref.1 We omit the fore densities arisingfrom hT2(rex;q ; t)i and hT2(rin;q ; t)i assuming eme=ew � 1. In addition, we have assumedthat the dieletri onstants of the solutions are not sensitive to the salt onentrations, whihimplies eex = ein = ew and, thus, (eex� ein)hEexrEinri = 0 in the r-omponent of fme(q). Wefurther neglet the term, ewhEexr(Eq (rex)� Eq (rin))i, in the q -omponent of fme(q) sine itrepresents only a orretion term. Indeed, this term leads to the Reb1=d term in eq. (24)and to the dReb1 term in eq. (26), both of whih were negleted in deriving the asymptotiexpressions for the workWel in se. 4.Finally, the omponents of the net fore densities, fme = ( fmer(q); fmeq (q); fmef (q)) inspherial oordinate system, are represented asfmer(q) = hqme(q ; t)Ēr(q ; t)i� 12ewhE 2q (rex;q ; t)�E 2q (rin;q ; t)i (148)fmeq (q) = hqme(q ; t)Eq(rin;q ; t)i: (149)with Ēr(q ; t) � 12(Eexr(rex;q ; t)+Einr(rin;q ; t)) (150)qme(q ; t) � eexEexr(rex;q ; t)� einEinr(rin;q ; t); (151)and fmef (q) = 0. Eqs. (42) and (43) reover the asymptoti expressions of the workWel, eqs.(24), (26), and (33), for all frequeny regimes exept for the orretion terms Reb1=d in eq.(24) and dReb1 in eq. (26) that are smaller than the other terms of leading order.Referenes(1) M. Winterhalter and W. Helfrih, J. Coll. Interf. Si., 122, 583 (1988).74
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