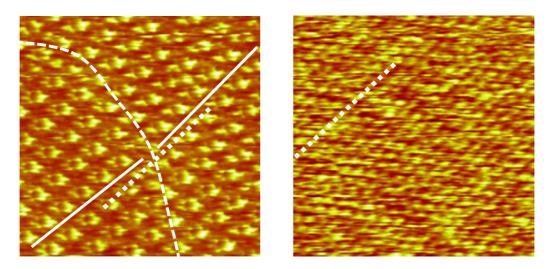
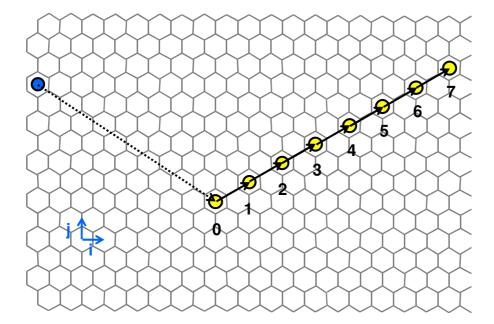
Supplementary material



1. Direct comparison of molecular lattice orientation and HOPG <110> axis.

Comparison of a Scanning Tunneling Microscopy images taken on the same area of a self-assembled nanoporous network obtained with TSB3,5-C10. Left: with imaging parameters adapted to molecular imaging (Setpoint: 12pA, sample bias: -0.9V). Right: with imaging parameters adapted to atomic resolution on the HOPG substrate (Setpoint: 900pA, sample bias: -0.28V). Both images were acquired within a 30 second time interval, in the current- (*i.e.* constant-height) mode at fast frame rate (4.8s per frame) in order to reduce the drift. Both images are corrected by home-made software for the drift of the instrument, which was evaluated by correlating successively-acquired images with opposite slow-scan direction. The <100> direction of the substrate is highlighted with a dotted line (right image) and reproduced on the molecular network (left image). The lattice directions of the mirror-symmetric domains (solid lines) form angles of $+5^{\circ}$ and -2° with the separately measured <100> direction of HOPG, in good agreement with the values expected from the model ($\pm 3.2^{\circ}$), within experimental errors inherent to this two-step measurement.



2. Derivation of the lattice epitaxial registry formula

A simplified view of fig. 3.b is represented above. The molecular lattice vectors \mathbf{p}_n are represented (from the origin point in blue to the corresponding point in yellow) for each number n of methylene pairs in the alkyl chain (from the extrapolated value n = 0 up to n = 7 which corresponds to *TSB3*,5-C14). It appears that this vector is the sum of a vector \mathbf{u} (dotted arrow) and n times a vector \mathbf{v} (solid arrow). The orthonormal basis we consider in the following is represented in blue in the lower left corner. The unit vectors have the size of HOPG unit vector. Vector \mathbf{i} is oriented along the <100> direction. In this basis, we have:

 $v = 3/2i + 3/2\sqrt{3}j$

then
$$\mathbf{p}_n = \mathbf{u} + n\mathbf{v} = (\frac{16+3n}{2})\mathbf{i} + (\frac{-18+3n}{2\sqrt{3}})\mathbf{j}$$

and
$$|\mathbf{p}_n| = \sqrt{\left(\frac{16+3\pi}{2}\right)^2 + \left(\frac{-18+3\pi}{2\sqrt{3}}\right)^2}$$

and finally:

$$|\mathbf{p}_n| = \sqrt{91 + 15n + 3n^2}$$

The angle θ made with the vector i is such that

$$\tan\theta = \pm \frac{\left(\frac{-18+3n}{2\sqrt{3}}\right)}{\left(\frac{16+3n}{2}\right)}$$

and finally:

$$\tan\theta = \pm \sqrt{3} \frac{n-6}{3n+16}$$