Supporting Information (PART III)

Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions

Aleksandr V. Marenich, Christopher J. Cramer,* and Donald G. Truhlar*

Department of Chemistry and Supercomputing Institute,

University of Minnesota, 207 Pleasant Street S.E.,

Minneapolis, MN 55455-0431

Prepared for the Journal of Physical Chemistry B

Revised March 27, 2009

Number of pages: 4

_

^{*} Corresponding author e-mail: cramer@umn.edu (C.J.C) and truhlar@umn.edu (D.G.T.)

Functional Forms for Atomic Surface Tensions Used by SMD

The atomic surface tensions given by eq 7 in the article are decribed here in more detail.

For $Z_k = H$:

$$\sigma_{k} = \tilde{\sigma}_{H} + \tilde{\sigma}_{HC} \sum_{k'}^{\text{atoms}} T(R_{kk'}, r_{HC}, \Delta r_{HC}) + \tilde{\sigma}_{HO} \sum_{k'}^{\text{atoms}} T(R_{kk'}, r_{HO}, \Delta r_{HO})$$

$$Z_{k'} = C$$

$$Z_{k'} = O$$

For $Z_k = \mathbb{C}$:

$$\sigma_{k} = \tilde{\sigma}_{\text{C}} + \tilde{\sigma}_{\text{CC}} \sum_{k'}^{\text{atoms}} T(R_{kk'}, r_{\text{CC}}, \Delta r_{\text{CC}}) + \tilde{\sigma}_{\text{CN}} \left[\sum_{k'}^{\text{atoms}} T(R_{kk'}, r_{\text{CN}}, \Delta r_{\text{CN}}) \right]^{2}$$

$$Z_{k'} = C$$

$$Z_{k'} = N$$

$$Z_{k'} = N$$

For $Z_k = N$:

$$\sigma_{k} = \tilde{\sigma}_{N} + \tilde{\sigma}_{NC} \left\{ \sum_{k'}^{\text{atoms}} T(R_{kk'}, r_{NC}, \Delta r_{NC}) \left[\sum_{k''}^{\text{atoms}} T(R_{k'k''}, r_{CZ_{k''}}, \Delta r_{CZ_{k''}}) \right]^{2} \right\}^{1.3} + Z_{k'} = C$$

$$\tilde{\sigma}_{NC(3)} \sum_{k'}^{\text{atoms}} T(R_{kk'}, r_{NC(3)}, \Delta r_{NC(3)})$$

$$Z_{k'} = C$$

For $Z_k = O$:

$$\begin{split} \sigma_{k} &= \widetilde{\sigma}_{\mathrm{O}} + \widetilde{\sigma}_{\mathrm{OC}} \sum_{k'}^{\mathrm{atoms}} T(R_{kk'}, r_{\mathrm{OC}}, \Delta r_{\mathrm{OC}}) + \widetilde{\sigma}_{\mathrm{ON}} \sum_{k'}^{\mathrm{atoms}} T(R_{kk'}, r_{\mathrm{ON}}, \Delta r_{\mathrm{ON}}) + \\ Z_{k'} &= \mathrm{C} & Z_{k'} &= \mathrm{N} \end{split}$$

$$\widetilde{\sigma}_{\mathrm{OO}} \sum_{k'}^{\mathrm{atoms}} T(R_{kk'}, r_{\mathrm{OO}}, \Delta r_{\mathrm{OO}}) + \widetilde{\sigma}_{\mathrm{OP}} \sum_{k'}^{\mathrm{atoms}} T(R_{kk'}, r_{\mathrm{OP}}, \Delta r_{\mathrm{OP}}) + \widetilde{\sigma}_{\mathrm{O$$

For $Z_k = F$, Si, S, Cl, and Br:

$$\sigma_k = \tilde{\sigma}_{Z_k}$$

For $Z_k \neq H$, C, N, O, F, Si, S, Cl, or Br:

$$\sigma_k = 0$$

In the equations above, k runs over all atoms in a molecule, Z_k is the atomic symbol of atom k, σ_k is the atomic surface tension of atom k, $\tilde{\sigma}_{Z_k}$ is an atomic-number-specific parameter, $\tilde{\sigma}_{Z_k Z_{k'}}$ is a parameter that depends on the atomic numbers of atoms k and k', $T(R_{k\,k'}, r_{Z_k Z_{k'}}, \Delta r_{Z_k Z_{k'}})$ is a geometry-dependent switching function called a cutoff tanh. This function is described as follows

$$T(R_{kk'}, r_{Z_k Z_{k'}}, \Delta r_{Z_k Z_{k'}}) = \begin{cases} \exp\left(\frac{\Delta r_{Z_k Z_{k'}}}{R_{kk'} - \Delta r_{Z_k Z_{k'}} - r_{Z_k Z_{k'}}}\right) & \text{if } R_{kk'} < r_{Z_k Z_{k'}} + \Delta r_{Z_k Z_{k'}} \\ 0 & \text{otherwise} \end{cases}$$

where $R_{kk'}$ is the interatomic distance between atoms k and k' and $r_{Z_kZ_{k'}}$ and $\Delta r_{Z_kZ_{k'}}$ are atomic-number-specific parameters described in Table.

Table. Values of $r_{ZZ'}$ and $\Delta r_{ZZ'}$ (Å) a

Z, Z'	r _{ZZ'}	$\Delta r_{ZZ'}$
H, C	1.55	0.3
Н, О	1.55	0.3
C, H	1.55	0.3
C, C	1.84	0.3
C, N	1.84	0.3
C, O	1.84	0.3
C, F	1.84	0.3
C, P	2.2	0.3
C, S	2.2	0.3
C, Cl	2.1	0.3
C, Br	2.3	0.3
C, I	2.6	0.3
N, C	1.84	0.3
N, C(3)	1.225	0.065
O, C	1.33	0.1
O, N	1.5	0.3
Ο, Ο	1.8	0.3
O, P	2.1	0.3

^a Any possible $r_{ZZ'}$ or $\Delta r_{ZZ'}$ that is not in the table is set equal to zero in the SMD model.