Supporting Information Available.

Gibbs energy with respect to temperature during reduction of CO₂ can be predicted as follows:

The Gibbs energy for a closed system,

$$dG = VdP - SdT$$
, at constant pressure $(dP = 0)$ (Eq. 1)

$$dG = -SdT$$
, or $\left(\frac{\partial G}{\partial T}\right)_{P} = -S$ (Eq. 2)

where V = volume, P = pressure, G = Gibbs energy, T = Kelvin temperature (K), <math>S = entropy

From the Gibbs energy (G = H-TS) for a closed system, divide by T, and rearrange

$$\frac{G}{T} = \frac{H + T\left(\frac{\partial G}{\partial T}\right)_{P}}{T}, \text{ because } \left(\frac{\partial G}{\partial T}\right)_{P} = -S$$
 (Eq. 3)

where H = enthalpy

From Eq.3, the change of G/T ratio with respect to T found with quotient rule (Eq.4-1),

$$\left[\partial \left(\frac{G}{T}\right)/\partial T\right]_{p} = \frac{T\left(\frac{\partial G}{\partial T}\right)_{p} - H - T\left(\frac{\partial G}{\partial T}\right)_{p}}{T^{2}} = -\frac{H}{T^{2}}, \text{ (Gibbs-Helmholtz equation)}$$
 (Eq. 4)

$$\frac{d}{dx}f(x) = f'(x) = \frac{g'(x)h(x) - g(x)h'(x)}{h(x)^2}, \text{ where } f(x) = \frac{g(x)}{h(x)}$$
(Eq. 4-1)

Rearrange Eq.4,

$$d\left(\frac{\Delta G}{T}\right)_{p} = -\frac{\Delta H}{T^{2}}dT \tag{Eq. 5}$$

then integrate Eq.5 with respect to T,

$$\int_{T_1}^{T_2} d\left(\frac{\Delta_r G}{T}\right) = -\Delta_r H^0 \int_{T_1}^{T_2} \frac{1}{T^2} dT \text{ (assume } \Delta_r H^0 \text{ independent of T)}$$
 (Eq. 6) *

 $\Delta_r H^0$ and $\Delta_r G^0$ at 298K, 1atm can calculate using Table 1, A-Eq.6-1 and 2

$$\Delta_r H^0 = \sum \gamma \Delta_f \overline{H}^0 \text{ (products)} - \sum \gamma \Delta_f \overline{H}^0 \text{ (reactants)}$$
 (Eq. 6-1)

$$\Delta_r G^0 = \sum \gamma \Delta_f \overline{G}^0 \text{ (products)} - \sum \gamma \Delta_f \overline{G}^0 \text{ (reactants)}$$
 (Eq. 6-2)

Finally, the change of Gibbs energy with respect to T can calculate from Eq.6.

$$\left(\frac{\Delta_r G^0}{T}\right)_{T_2} - \left(\frac{\Delta_r G^0}{T}\right)_{T_1} = \Delta_r H^0 \left(\frac{1}{T_2} - \frac{1}{T_1}\right), \text{ or }$$

$$\left(\frac{\Delta_r G^0}{T}\right)_{T2} = \left(\frac{\Delta_r G^0}{T}\right)_{T1} + \Delta_r H^0 \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$
 (Eq. 7)

Table 1. The standard molar enthalpy $(\Delta_f \overline{H}^0)$ and Gibbs energies $(\Delta_f \overline{G}^0)$ of formation ²⁰			
	$\Delta_{\mathrm{f}} \overline{\mathrm{H}}^{\mathrm{0}} (\mathrm{KJ}{\cdot}\mathrm{mol}^{\mathrm{-1}})$	$\Delta_{\mathrm{f}} \overline{\mathrm{G}}^{\mathrm{0}} (\mathrm{KJ \cdot mol^{-1}})$	
$H_{2(g)}$	0	0	_
$H_2O_{(g)}$	-241.8	-228.6	
C graphite	0	0	
$CH_{4(g)}$	-74.85	-50.79	
$CO_{(g)}$	-110.5	-137.3	
$CO_{2(g)}$	-393.5	-394.4	
$Fe_{(s)}$	0	0	
$Zn_{(s)}$	0	0	
$ZnO_{(s)}$	-348.3	-318.3	