
S1

Supporting Information for

Fast Non-line-of-sight Imaging with Two-step Deep Remapping

Dayu Zhu1, Wenshan Cai1,2*

1 School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta,

Georgia 30332-0250

2 School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta,

Georgia 30332-0295

* Correspondence should be addressed to W.C. (wcai@gatech.edu)

15 pages

2 figures

3 tables

Contents:

1. Functioning details of the Lidar and experimental details

2. Implementation of NLOS renderer

3. Structure and training details of the generator

4. Structure and training details of the compressor

5. Comparison with other methods

6. Error analysis

S2

1. Functioning details of the Lidar and experimental details

The device used in the experiment is Intel RealSense L515, with a Lidar, a RGB camera

and an IMU (not used in our experiment) integrated in one device. The maximum laser

power is 240 mW, which is designed for short-distance indoor applications. During the

experiment, the Lidar is set static (< 0.3 m to the wall, facing angle to the wall normal is

between 15 to 75 degree). The occluder is set > 0.05 m to the wall to guarantee enough

aperture for NLOS imaging. For the detection of every point on the depth map, the Laser

diode emits a pulse (~1 ns), then the IR photodiode will receive a train of scattered photons

(within 100 ns). The ASIC on the device will process the temporal distribution of received

photons and denote the ToF with the highest intensity and further calculate the

corresponding depth. Next, the MEMS mirror will alter the Laser to another direction,

sequentially scan the FOV in this way and generate the maps. The one-bounce path does

not always overshadow multi-bounced paths. As an evidence, if only direct reflections are

counted, all the depth maps in Figure 3 of the main text should be the same and show even

or gradient depths which represent distances to the wall. However, they are not the case

and distinct for different objects, which means multi-reflection information is involved.

In our experiments, the NLOS objects are miniature 3D printed models of daily items.

There are 54 objects in total, which fall into the categories of: airplane, baskets, birdhouse,

bowl, oven, motorcycle, tower, soundbox, table, rocket, cup, lamp, bell, cupboard,

computer, hat, car, and boat. As for the experimental setup, to guarantee enough aperture

for NLOS imaging, the distance of the Lidar to the wall should be between 0.15 and 0.30

m, and the facing angle of the Lidar to the wall should be between 15 and 75 degrees. In

our experiment, The Lidar is placed at 0.2 m to the wall, 0.2 m to the occluder, with the

S3

facing angle of the Lidar as 45 degree. We set the distance between the occluder and the

wall to 0.1 m. In practice, this distance should be large enough (> 0.05 m) to guarantee

sufficient aperture for imaging, and in the meantime not too wide (< 0.2 m) to avoid leakage

of line-of-sight photons into the Lidar detector.

2. Implementation of NLOS renderer

Figure S1. (a) Sketch of renderer operation for direct-reflection and multi-reflection. (b)

Details for the calculation of one patch on the NLOS target.

In the implementation of the renderer, we assume all surfaces of the wall and the objects

are Lambertian. The surfaces can also be set as any customized BRDF, while here we use

uniform Lambertian for general purpose. The renderer assumes millions of beams will be

sent along all directions in the FOV of the Lidar, and for each beam the depth and intensity

will be calculated based on the reflected light. In the definition of the coordinate system,

the wall is on the xy plane with z=0. Meanwhile, the NLOS object can be represented by a

depth map parallel to the xy plane, with the pixel value of each point shows the orthogonal

distance to the xy plane. We can digitalize both the wall and the NLOS object as grids, thus

the bouncing paths between the wall and the object will be the direct mappings between

the two grids. The direction and length of the bouncing path can be readily obtained by the

S4

vector connecting the points of the wall and of the object, which will favor fast matrix

operations. For a beam sent to a specific direction, as shown in Figure S1a, the reflection

path can be both direct-reflected or undergoing multiple bounces. There is only one direct-

reflection path but numerous multi-reflection paths. Here we only consider the three-

bounce paths and ignore any higher order reflection. Thus, the optical path length for the

direct-reflection case is Ldirect=2d1, while the length for three-bounce multi-reflection case

is Lmulti=d1+d2+d3+d4. As for the light intensity, since the incidence is the same for both

cases, we only need to consider the reflection conditions. The direct reflection photon can

be expressed as:

, (S1)𝐼𝑑𝑖𝑟𝑒𝑐𝑡 =
𝐼0𝑐𝑜𝑠 𝜃1𝑆𝑢𝑛𝑖𝑡_𝑤𝑎𝑙𝑙

2𝜋𝑑2
1

where I0 is the incidence intensity to the wall and we can explicitly set I0=1. is the angle 𝜃1

between the incidence direction and the wall normal. is the unit area of the wall 𝑆𝑢𝑛𝑖𝑡_𝑤𝑎𝑙𝑙

grid. Similarly, the case for multi-reflection is:

, (S2)𝐼𝑚𝑢𝑙𝑡𝑖 =
𝐼0𝑐𝑜𝑠 𝜃1𝑐𝑜𝑠 𝜃2𝑐𝑜𝑠 𝜃3𝑆2

𝑢𝑛𝑖𝑡_𝑤𝑎𝑙𝑙𝑆𝑢𝑛𝑖𝑡_𝑡𝑎𝑟𝑔𝑒𝑡𝛽

(2𝜋)3𝑑2
2𝑑2

3𝑑2
4

where is the angle between the second-bounce direction and the surface normal () of 𝜃2 𝑛𝑠

the incidence point on the NLOS object, and is the angle between the third-bounce 𝜃3

direction and the wall normal. represents the unit area of the NLOS object grid. 𝑆𝑢𝑛𝑖𝑡_𝑡𝑎𝑟𝑔𝑒𝑡

Since the unit cell on the object may not parallel to xy plane, we introduce a surface area

ratio, , to compensate the difference. As depicted in Figure S1b, assume a point on the 𝛽

depth map with coordinate (x0, y0, z0). Then the next grid points along x and y directions

can be denoted as (x0+Δx, y0, z0+Δzx) and (x0, y0+Δy, z0+Δzy), respectively, where Δx and Δy

S5

are the unit lengths of the object grid along x and y directions (), and 𝑆𝑢𝑛𝑖𝑡_𝑡𝑎𝑟𝑔𝑒𝑡 = ∆𝑥∆𝑦

Δzx and Δzy are the depth changes along x and y directions. Then the patch area ratio around

this grid point can be calculated as

. (S3)𝛽 =
∆𝑥2∆𝑧2

𝑦 + ∆𝑦2∆𝑧2
𝑥 + ∆𝑥2∆𝑦2

∆𝑥∆𝑦

Since there are millions of possible multi-reflected paths, we collectively group them into

bins with resolution of 0.01m, and the intensity for one bin is the intensity summation of

all the possible light paths whose lengths fall within the bin. In this way, the intensity for

a given optical path length can be expressed as𝐿𝑚𝑢𝑙𝑡𝑖

, (S4)𝐼𝑚𝑢𝑙𝑡𝑖（𝐿𝑚𝑢𝑙𝑡𝑖） = ∑𝑖
(𝑑1 + 𝑑2 + 𝑑3 + 𝑑4 = 𝐿𝑚𝑢𝑙𝑡𝑖)

𝐼𝑚𝑢𝑙𝑡𝑖(𝑖)𝑉𝑚𝑢𝑙𝑡𝑖(𝑖)

where is a visibility function: if there is no obstacle in the light path, ; 𝑉𝑚𝑢𝑙𝑡𝑖 𝑉𝑚𝑢𝑙𝑡𝑖 = 1

while if there is a patch of the target blocks the light path, then this multi-bounce path will

not be possible and .1 After that, the simulated light intensity of this scanning 𝑉𝑚𝑢𝑙𝑡𝑖 = 0

point will be the maximum between all the multi-reflection and direct-reflection intensities,

, (S5)𝐼𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒_𝑝𝑜𝑖𝑛𝑡 = 𝑚𝑎𝑥(𝐼𝑑𝑖𝑟𝑒𝑐𝑡,𝐼𝑚𝑢𝑙𝑡𝑖_1,𝐼𝑚𝑢𝑙𝑡𝑖_2,𝐼𝑚𝑢𝑙𝑡𝑖_3,...)

 with . Then the simulated depth will be the 𝑓𝑜𝑟 𝑎𝑙𝑙 𝐿𝑚𝑢𝑙𝑡𝑖 < 𝑐 × 100 𝑛𝑠 𝑐 = 3 × 108 𝑚/𝑠

corresponding distance multiplied by the cosine between the incidence direction and the

normal vector of the Lidar plane. The final depth and intensity maps consist of 80 by 64

pixels. Since the renderer conducts matrix operations and multiprocessing calculation, the

rendering for one object takes only seconds, which is much more efficient than traditional

ray-tracing renderers.

S6

3. Structure and training details of the generator

The generator is used for the synthesis of non-line-of-sight (NLOS) scenes, which is

the decoder of a variational autoencoder (VAE).2 To guarantee that sufficient details can

be recovered in the generated images, the VAE is not based on the vanilla version which

only has linear layers. Instead, the VAE used in this work is a convolutional neural network

(CNN), and the skip-connection blocks in ResNet are introduced.3, 4 The detailed structure

of the Res-VAE is presented in Table S1.

During the training phase, the depth maps are reshaped to 64×64 images. Data

augmentation techniques, such as random rotation by 90 or 180 degrees and random

horizontal flip, are involved. The image pixels are normalized to between 0 and 1. One

vital trade-off to be considered is to balance the reconstruction loss and the Kullback–

Leibler divergence (KL loss). As the priority is to achieve decent reconstruction quality

and the requirement on the distribution of the latent space is relaxed, we can lower the

weight of KL loss and set it to be 0.05. As for the training strategy, Adam optimizer is

applied, with β1 = 0.5 and β2 = 0.999. The original learning rate is 1×10-3, and the

ReduceLROnPlateau (PyTorch) scheduler is utilized to carry out the adaptive training. The

learning rate will change to 0.3 of the current value if the loss does not drop for 5 epochs.

The training stops when the learning rate is reduced to below 1×10-8.

The structure of the Res-VAE for full-color image generation is nearly identical to the

above description, with the dimensions of input and output images are 64×64×3. The

weight of KL loss is set to be 0.03 for this case. To deal with the increased information in

complex full-color scenes, the dimension of latent space is doubled, from 256 to 512.

S7

Conv2d (1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d (32, eps=1e-05, momentum=0.1)
Conv2d (32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d (64, eps=1e-05, momentum=0.1)
Conv2d (1, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

Res-block
1

AvgPool2d (kernel_size=2, stride=2, padding=0)
Conv2d (64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d (64, eps=1e-05, momentum=0.1)
Conv2d (64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d (128, eps=1e-05, momentum=0.1)
Conv2d (64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

Res-block
2

AvgPool2d (kernel_size=2, stride=2, padding=0)
Conv2d (128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d (128, eps=1e-05, momentum=0.1)
Conv2d (128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d (256, eps=1e-05, momentum=0.1)
Conv2d (128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

Res-block
3

AvgPool2d (kernel_size=2, stride=2, padding=0)
Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d (256, eps=1e-05, momentum=0.1)
Conv2d (256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d (512, eps=1e-05, momentum=0.1)
Conv2d (256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

Res-block
4

AvgPool2d (kernel_size=2, stride=2, padding=0)
Conv2d (512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d (256, eps=1e-05, momentum=0.1)
Conv2d (256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d (512, eps=1e-05, momentum=0.1)
Conv2d (512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

Res-block
5

AvgPool2d (kernel_size=2, stride=2, padding=0)
(mean) Conv2d (512, 256, kernel_size=(2, 2), stride=(2, 2))

Encoder

Encoder
output (variance) Conv2d (512, 256, kernel_size=(2, 2), stride=(2, 2))

Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d (256, eps=1e-05, momentum=0.1, affine=True)
Conv2d (256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d (512, eps=1e-05, momentum=0.1, affine=True)
Conv2d (256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

Res-up-
block1

Upsample (scale_factor=2.0, mode=nearest)
Conv2d (512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d (256, eps=1e-05, momentum=0.1)
Conv2d (256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d (512, eps=1e-05, momentum=0.1)
Conv2d (512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

Res-up-
block2

Upsample (scale_factor=2.0, mode=nearest)

Decoder

Res-up- Conv2d (512, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

S8

BatchNorm2d (128, eps=1e-05, momentum=0.1)
Conv2d (128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d (256, eps=1e-05, momentum=0.1)
Conv2d (512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

block3

Upsample (scale_factor=2.0, mode=nearest)
Conv2d (256, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d (64, eps=1e-05, momentum=0.1)
Conv2d (64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d (128, eps=1e-05, momentum=0.1)
Conv2d (256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

Res-up-
block4

Upsample (scale_factor=2.0, mode=nearest)
Conv2d (128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d (32, eps=1e-05, momentum=0.1)
Conv2d (32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d (64, eps=1e-05, momentum=0.1)
Conv2d (128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

Res-up-
block5

Upsample (scale_factor=2.0, mode=nearest)
Conv2d (64, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d (16, eps=1e-05, momentum=0.1)
Conv2d (16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d (32, eps=1e-05, momentum=0.1)
Conv2d (64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

Res-up-
block6

Upsample (scale_factor=2.0, mode=nearest)
Decoder
output

Conv2d (32, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

Table S1. Structure of the Res-VAE

4. Structure and training details of the compressor

To extract the NLOS information from detected maps and achieve dimension reduction,

a neural network-based compressor is pivotal. The compressor is adapted from

MobileNetV2, which is a compact network with only 2.5 million trainable parameters.5

The structure details of the compressor are clarified in Table S2.

When trained on the synthetic dataset, the input to the compressor is 4-channel tensors

with split-and-stack depth and intensity maps. The left-depth and left-intensity channels

are added with random Gaussian noise with standard deviation of 0.2. The tensor is resized

to 100×100×4 with channel-wise normalization. The original learning rate is 0.01, and the

S9

ReduceLROnPlateau scheduler is utilized to perform adaptive training, with factor of 0.3

and patience of 5 epochs. The training process would stop when the learning rate is reduced

to below 1×10-8.

As for the training on the real-world dataset, transfer learning is utilized. The

preprocessing for the real-world dataset is the same as the synthetic one. The model

pretrained on the synthetic dataset is used, and further trained on the real-world dataset for

3-5 epochs with a learning rate of 1×10-3. Furthermore, all the layers are frozen except for

the last classifier (the dropout layer and the final linear layer), then the training process

carries on until the learning rate is reduced to lower than 1×10-8. Based on our observation,

the loss will not decrease further after 10 epochs, so early-stop of the training is also

practical.

The compressor for full-color NLOS imaging is based on ResNet50, with 24.5 million

trainable parameters. The model is widely used and we adopted this model with limited

modifications (only the input and output layers are adapted to fulfill the dimensions of data).

The training details are similar to those for the synthetic dataset.

Conv2d (4, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
BatchNorm2d (32, eps=1e-05, momentum=0.1)First convolution
ReLU6 (inplace=True)
Conv2d (32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d (32, eps=1e-05, momentum=0.1)
ReLU6 (inplace=True)
Conv2d (32, 16, kernel_size=(1, 1), stride=(1, 1))

InvertedResidual_1

BatchNorm2d (16, eps=1e-05, momentum=0.1)
Conv2d (16, 96, kernel_size=(1, 1), stride=(1, 1))
BatchNorm2d (96, eps=1e-05, momentum=0.1)
ReLU6 (inplace=True)
Conv2d (96, 96, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
BatchNorm2d (96, eps=1e-05, momentum=0.1)

InvertedResidual_2

ReLU6 (inplace=True)

S10

Conv2d (96, 24, kernel_size=(1, 1), stride=(1, 1))
BatchNorm2d (24, eps=1e-05, momentum=0.1)
Conv2d (24, 144, kernel_size=(1, 1), stride=(1, 1))
BatchNorm2d (144, eps=1e-05, momentum=0.1)
ReLU6 (inplace=True)
Conv2d (144, 144, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d (144, eps=1e-05, momentum=0.1)
ReLU6 (inplace=True)
Conv2d (144, 24, kernel_size=(1, 1), stride=(1, 1))

InvertedResidual_3

BatchNorm2d (24, eps=1e-05, momentum=0.1)
Conv2d (24, 144, kernel_size=(1, 1), stride=(1, 1))
BatchNorm2d (144, eps=1e-05, momentum=0.1)
ReLU6 (inplace=True)
Conv2d (144, 144, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
BatchNorm2d (144, eps=1e-05, momentum=0.1)
ReLU6 (inplace=True)
Conv2d (144, 32, kernel_size=(1, 1), stride=(1, 1))

InvertedResidual_4

BatchNorm2d (32, eps=1e-05, momentum=0.1)
Conv2d (32, 192, kernel_size=(1, 1), stride=(1, 1))
BatchNorm2d (192, eps=1e-05, momentum=0.1)
ReLU6 (inplace=True)
Conv2d (192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d (192, eps=1e-05, momentum=0.1)
ReLU6 (inplace=True)
Conv2d (192, 32, kernel_size=(1, 1), stride=(1, 1))

InvertedResidual_5

BatchNorm2d (32, eps=1e-05, momentum=0.1)
Conv2d (32, 192, kernel_size=(1, 1), stride=(1, 1))
BatchNorm2d (192, eps=1e-05, momentum=0.1)
ReLU6 (inplace=True)
Conv2d (192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d (192, eps=1e-05, momentum=0.1)
ReLU6 (inplace=True)
Conv2d (192, 32, kernel_size=(1, 1), stride=(1, 1))

InvertedResidual_6

BatchNorm2d (32, eps=1e-05, momentum=0.1)
Conv2d (32, 192, kernel_size=(1, 1), stride=(1, 1))
BatchNorm2d (192, eps=1e-05, momentum=0.1)
ReLU6 (inplace=True)
Conv2d (192, 192, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
BatchNorm2d (192, eps=1e-05, momentum=0.1)
ReLU6 (inplace=True)
Conv2d (192, 64, kernel_size=(1, 1), stride=(1, 1))

InvertedResidual_7

BatchNorm2d (64, eps=1e-05, momentum=0.1)
Conv2d (64, 384, kernel_size=(1, 1), stride=(1, 1))
BatchNorm2d (384, eps=1e-05, momentum=0.1)
ReLU6 (inplace=True)
Conv2d (384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d (384, eps=1e-05, momentum=0.1)
ReLU6 (inplace=True)

InvertedResidual_8

Conv2d (384, 64, kernel_size=(1, 1), stride=(1, 1))

S11

BatchNorm2d (64, eps=1e-05, momentum=0.1)
Conv2d (64, 384, kernel_size=(1, 1), stride=(1, 1))
BatchNorm2d (384, eps=1e-05, momentum=0.1)
ReLU6 (inplace=True)
Conv2d (384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d (384, eps=1e-05, momentum=0.1)
ReLU6 (inplace=True)
Conv2d (384, 64, kernel_size=(1, 1), stride=(1, 1))

InvertedResidual_9

BatchNorm2d (64, eps=1e-05, momentum=0.1)
Conv2d (64, 384, kernel_size=(1, 1), stride=(1, 1))
BatchNorm2d (384, eps=1e-05, momentum=0.1)
ReLU6 (inplace=True)
Conv2d (384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d (384, eps=1e-05, momentum=0.1)
ReLU6 (inplace=True)
Conv2d (384, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)

InvertedResidual_10

BatchNorm2d (64, eps=1e-05, momentum=0.1)
Conv2d (64, 384, kernel_size=(1, 1), stride=(1, 1))
BatchNorm2d (384, eps=1e-05, momentum=0.1)
ReLU6 (inplace=True)
Conv2d (384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d (384, eps=1e-05, momentum=0.1)
ReLU6 (inplace=True)
Conv2d (384, 96, kernel_size=(1, 1), stride=(1, 1))

InvertedResidual_11

BatchNorm2d (96, eps=1e-05, momentum=0.1)
Conv2d (96, 576, kernel_size=(1, 1), stride=(1, 1))
BatchNorm2d (576, eps=1e-05, momentum=0.1)
ReLU6 (inplace=True)
Conv2d (576, 576, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d (576, eps=1e-05, momentum=0.1)
ReLU6 (inplace=True)
Conv2d(576, 96, kernel_size=(1, 1), stride=(1, 1))

InvertedResidual_12

BatchNorm2d (96, eps=1e-05, momentum=0.1)
Conv2d (96, 576, kernel_size=(1, 1), stride=(1, 1))
BatchNorm2d (576, eps=1e-05, momentum=0.1)
ReLU6 (inplace=True)
Conv2d (576, 576, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d (576, eps=1e-05, momentum=0.1)
ReLU6 (inplace=True)
Conv2d (576, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)

InvertedResidual_13

BatchNorm2d (96, eps=1e-05, momentum=0.1)
Conv2d (96, 576, kernel_size=(1, 1), stride=(1, 1))
BatchNorm2d (576, eps=1e-05, momentum=0.1)
ReLU6 (inplace=True)
Conv2d (576, 576, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
BatchNorm2d (576, eps=1e-05, momentum=0.1)
ReLU6 (inplace=True)
Conv2d (576, 160, kernel_size=(1, 1), stride=(1, 1))

InvertedResidual_14

BatchNorm2d (160, eps=1e-05, momentum=0.1)

S12

Conv2d (160, 960, kernel_size=(1, 1), stride=(1, 1))
BatchNorm2d (960, eps=1e-05, momentum=0.1)
ReLU6 (inplace=True)
Conv2d (960, 960, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d (960, eps=1e-05, momentum=0.1)
ReLU6 (inplace=True)
Conv2d (960, 160, kernel_size=(1, 1), stride=(1, 1))

InvertedResidual_15

BatchNorm2d (160, eps=1e-05, momentum=0.1)
Conv2d (160, 960, kernel_size=(1, 1), stride=(1, 1))
BatchNorm2d (960, eps=1e-05, momentum=0.1)
ReLU6 (inplace=True)
Conv2d (960, 960, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d (960, eps=1e-05, momentum=0.1)
ReLU6 (inplace=True)
Conv2d (960, 160, kernel_size=(1, 1), stride=(1, 1))

InvertedResidual_16

BatchNorm2d (160, eps=1e-05, momentum=0.1)
Conv2d (160, 960, kernel_size=(1, 1), stride=(1, 1))
BatchNorm2d (960, eps=1e-05, momentum=0.1)
ReLU6 (inplace=True)
Conv2d (960, 960, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d (960, eps=1e-05, momentum=0.1)
ReLU6 (inplace=True)
Conv2d (960, 320, kernel_size=(1, 1), stride=(1, 1))

InvertedResidual_17

BatchNorm2d (320, eps=1e-05, momentum=0.1)
Conv2d (320, 1280, kernel_size=(1, 1), stride=(1, 1))
BatchNorm2d (1280, eps=1e-05, momentum=0.1)Final Convolution
ReLU6 (inplace=True)
Dropout (p=0.5, inplace=False)Classifier Linear (in_features=1280, out_features=256, bias=True)
Table S2. Structure of the compressor.

5. Comparison with other methods

A qualitative comparison with other methods is as following:

S13

Table S3. Comparison with other NLOS solutions.

S14

6. Error analysis

In this part we analyze the quality of the NLOS reconstruction of the examples (Figure

3b) presented in the main text. The first three rows of Figure S2 are the same as Figure 3b,

while the last row presents the difference between the reconstructed depth maps and the

ground truth. Provided the very high reconstruction performance (98% accuracy), the error

is not evenly or randomly distributed. The results indicate our methodology performs

impressive localization capability, since the positions of objects are mostly recovered.

Besides, the error is minimized on large or smooth surfaces, while the reconstruction on

small surfaces or fine details shows larger error. This performance is also expected, since

the reflection conditions are far more complex on small surfaces, thus the NLOS signal

may not be collected by the Lidar.

Figure S2. Error analysis of reconstructed maps.

S15

References:6-13

 (1) Iseringhausen, J.; Hullin, M. B., Non-Line-of-Sight Reconstruction Using Efficient Transient
Rendering. ACM Transactions on Graphics (TOG) 2020, 39 (1), 1-14.

 (2) Kingma, D. P.; Welling, M., Auto-Encoding Variational Bayes. arXiv preprint
arXiv:1312.6114 2013.

 (3) Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy,
A.; Khosla, A.; Bernstein, M., Imagenet Large Scale Visual Recognition Challenge. Int. J. Comput.
Vision 2015, 115 (3), 211-252.

 (4) He, K.; Zhang, X.; Ren, S.; Sun, J. In Deep Residual Learning for Image Recognition,
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas,
USA, June; Las Vegas, USA, 2016; pp 770-778.

 (5) Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. In Mobilenetv2: Inverted
Residuals and Linear Bottlenecks, Proceedings of the IEEE conference on computer vision and
pattern recognition, 2018; pp 4510-4520.

 (6) O’Toole, M.; Lindell, D. B.; Wetzstein, G., Confocal Non-Line-of-Sight Imaging Based on
the Light-Cone Transform. Nature 2018, 555 (7696), 338-341.

 (7) Liu, X.; Guillén, I.; La Manna, M.; Nam, J. H.; Reza, S. A.; Le, T. H.; Jarabo, A.; Gutierrez,
D.; Velten, A., Non-Line-of-Sight Imaging Using Phasor-Field Virtual Wave Optics. Nature 2019,
572 (7771), 620-623.

 (8) Chen, W.; Daneau, S.; Mannan, F.; Heide, F. In Steady-State Non-Line-of-Sight Imaging,
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019; pp
6790-6799.

 (9) Chopite, J. G.; Hullin, M. B.; Wand, M.; Iseringhausen, J. In Deep Non-Line-of-Sight
Reconstruction, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020; pp 960-969.

 (10) Metzler, C. A.; Heide, F.; Rangarajan, P.; Balaji, M. M.; Viswanath, A.; Veeraraghavan,
A.; Baraniuk, R. G., Deep-Inverse Correlography: Towards Real-Time High-Resolution Non-Line-
of-Sight Imaging. Optica 2020, 7 (1), 63-71.

 (11) Chen, W.; Wei, F.; Kutulakos, K. N.; Rusinkiewicz, S.; Heide, F., Learned Feature
Embeddings for Non-Line-of-Sight Imaging and Recognition. ACM Transactions on Graphics
(TOG) 2020, 39 (6), 1-18.

 (12) Musarra, G.; Lyons, A.; Conca, E.; Altmann, Y.; Villa, F.; Zappa, F.; Padgett, M. J.;
Faccio, D., Non-Line-of-Sight Three-Dimensional Imaging with a Single-Pixel Camera. Phys. Rev.
Appl 2019, 12 (1), 011002.

 (13) Nam, J. H.; Brandt, E.; Bauer, S.; Liu, X.; Sifakis, E.; Velten, A., Real-Time Non-Line-of-
Sight Imaging of Dynamic Scenes. arXiv preprint arXiv:2010.12737 2020.

