Supporting Information

Hydrodynamic spinning of protein fractal aggregates into core-shell fibers

Alice Vilotte,[†] Clément de Loubens,^{*,†} Deniz Z. Gunes,^{‡,¶} Christophe Schmitt,[‡] and Hugues Bodiguel[†]

[†]Univ. Grenoble Alpes, CNRS, Grenoble INP, LRP, 38000 Grenoble, France [‡]Nestlé Research, Nestlé Institute of Material Sciences, Vers-Chez-Les-Blanc, Lausanne, CH-1000 26, Switzerland

¶Present address: Department of Chemical Engineering and Center for Food and Microbial Technology, KU Leuven, 3001 Leuven, Belgium

*E-mail: clement.de-loubens@univ-grenoble-alpes.fr

Table of notations

 C_{agg} concentration of aggregates

- $C_{Ca^{2+}}$ concentration of aggregates
- *D* diameter of the fibers
- $D_{Ca^{2+}}$ diffusion coefficient of calcium ions
- D_{agg}^{out} diffusion coefficient of the aggregates
- $Q_{Ca^{2+}}$ Flow rate of calcium chlorie solution
- Q_{agg} Flow rate of the suspension of aggregates
- L length of the tube
- *R_h* hydrodynamic radius
- R_m Molar ratio between calcium ions and WPI
- d_f fractal dimension of aggregates
- q flow rate ratio between calcium chloride and suspension of aggregates
- *r_i* internal radius of the coaxial needle
- *r*_o outer radius of the coaxial needle
- v mean flow velocity in the tube
- v_1 mean critical flow velocity 1
- v_2 mean critical flow velocity 2
- Re Reynolds number
- Pe Péclet number
- ho density of aggregates
- au_g time scale of gelation
- au_r residence time in the tube

Scanning electron microscopy

For SEM imaging, fibers were washed with distilled water, freeze-dried and pasted on a stub covered with double-sided carbon tape. The specimens were coated with Au/Pd and secondary electron images were recorded with an FEI Quanta 250 scanning electron microscope equipped with a field emission gun and operating at 2.5 kV.