Supporting Information for:

Actuation mechanisms of a semicrystalline elastomer-based polymer artificial muscle with high actuation strain

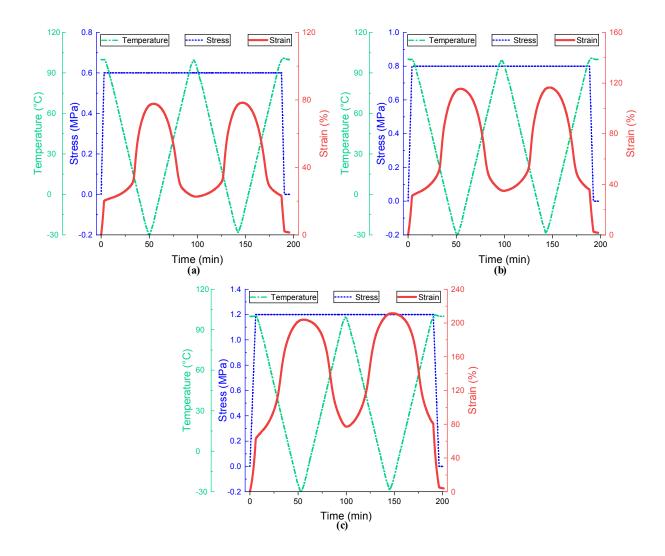
Jin Wang^{a,b,c}, Zhikai Tu^d, Huanhuan Zhang^{a,b,c}, Meng-Meng Wang^{a,b,c}, Weifeng Liu^{d,e*}, Jin-

Ping Qu^{a,b,c*}

^a National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou 510641, China

^b Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou 510641, China

^c Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China


^d School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640,

China

^e State Key Laboratory of Pulp and Paper Engineering, South China University of Technology,

Guangzhou 510640, China

*Email: jpqu@scut.edu.cn (Jin-Ping Qu); weifengliu@scut.edu.cn (Weifeng Liu)

Figure S1. The temperature/stress/strain-time curves recorded in the DMA tests for studying the stress-dependent actuation behavior of the EPDM elastomer: (a) 0.6 MPa, (b) 0.8 MPa, and (c)

1.2 MPa (for the stress of 1.0 MPa, the curves are already displayed in Figure 1)

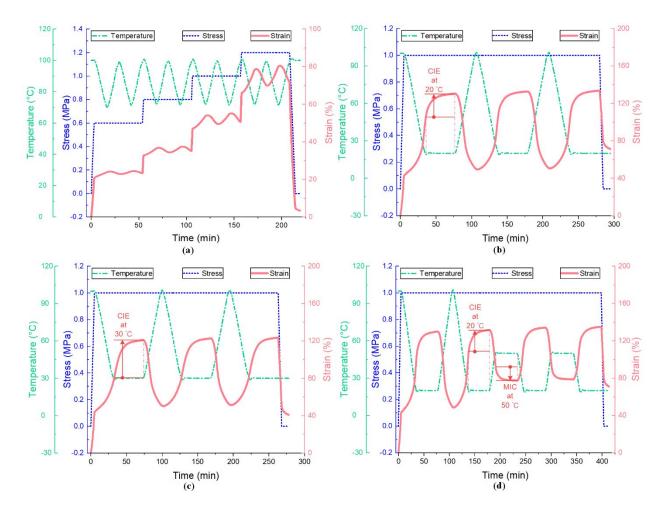


Figure S2. The temperature/stress/strain-time curves recorded in the DMA tests for directly

demonstrating the eeTAM and cmtTAM (CIE and MIC) of the EPDM elastomer: (a) eeTAM (

above the melting temperature, (b) CIE at 20 °C, (c) CIE at 30 °C, and (d) CIE at 20 °C and MIC

at 50 °C

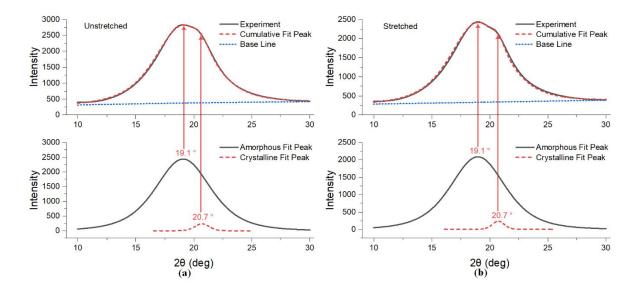
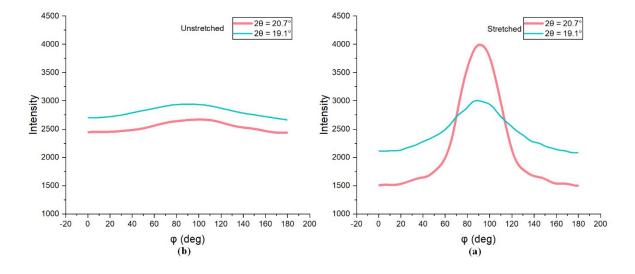



Figure S3. The fit peaks of the 2θ profiles for the two samples crystallized at 20 °C: (a) the

unstretched sample, and (b) the stretched sample.

Figure S4. The azimuthal variation of the X-ray diffraction intensity near $2\theta = 20.7^{\circ}$ and 19.1°

for the two samples crystallized at 20 °C: (a) the unstretched sample, and (b) the stretched

sample.

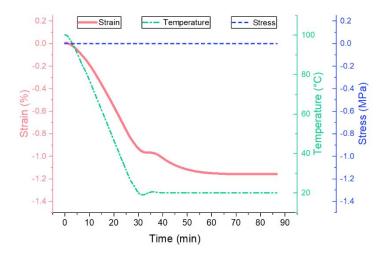


Figure S5. The strain/temperature/stress-time curves recorded in the crystallization test at 20 °C

under free state; the strain of the EPDM elastomer decreases as the temperature decreases from

100 °C to 20 °C and continues to decrease until the crystallization at 20 °C is nearly finished,

showing the elastomer only contracts in isotropic crystallization.